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ABSTRACT 

Truncated sharp crested weirs are used to measure flow rate and control upstream water surface in 

irrigation canals and laboratory flumes. The main advantages of such weirs are ease of construction 

and capability of measuring a wide range of flows with sufficient accuracy. Artificial neural 

networks (ANNs) and genetic programming (GP) have recently been used for estimation of 

hydraulic data. In this study, they were used as alternative tools to estimate flow discharge over the 

submerged truncated weirs. The hydraulic parameter of water flow rate, Q was determined as 

functions of the crest width b, upstream head h, weir height P1, tail water depth tY , and flume width 

B. Estimations of the ANN and GP models were in good agreement with the measured data. The 

ANN model results were compared with those of the GP1, GP2, GP3 and GP4 models and showed 

that the proposed ANN models are much more accurate than the GP models. In addition, GP2 model 

has a better performance than GP1, GP3, GP4 models.     
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1. Introduction 

A weir is basically an obstruction in an open 

channel flow path. Weirs are commonly used 

for measurement of open channel flow rate. 

Downstream water rising above the weir crest 

elevation produces a submerged weir condition. 

When the downstream water surface is near or 

above the crest elevation of a sharp-crested 

weir, accuracy of measurement should not be 

expected. Because of the large loss of accuracy, 

designing thin-plate weirs for submergence 

should be deliberately avoided. However, 

submergence may happen unexpectedly or may 

be temporarily necessary. A range of 

measurement techniques were developed by 

Boss (1989) and USBR (1997).  Thin-plate 

weirs are commonly used as measuring devices 

enabling an accurate discharge measurement 

with simple instruments. The commonly used 

cross sections of sharp-crested weirs are 

rectangular, trapezoidal and triangular. The 

most important hydraulic advantages of a 

compound weir, in which the shape of the crest 

is composed of a triangular aperture (on the 

bottom) and a rectangular opening (top of  the 

weir), are the ease of construction and 

capability of measuring a wide range of flows. 

(1) For low flow, as a triangular weir is found 

to be accurate in discharge measurements; (2) 

For high flow,  measuring high discharges and 

suitable operation for preventing backwater 

effects that affect the structures located 

upstream of the weir. 
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Preliminary, Bos (1989), Clemmens et al. 

(1993) and USBR (1997) have done studies to 

investigate the discharge over submerged 

sharp-crested weirs. Wu and Rajaratnam (1996) 

presented the results of an experimental study 

on submerged flow over full-width sharp-

crested rectangular weirs. Submerged flow was 

divided into impinging jet and surface flow 

regimes. A diagram has been developed to 

predict the occurrence of these regimes. The 

boundaries of these regimes depend upon the 

direction of the tail water change. The 

characteristics of a compound weir consisting 

of a rectangular notch and a V-notch cut into 

the center of the crest are discussed in the 

USBR (1997). However, the discontinuity in 

the discharge curve has been a major problem 

in the above stated combination of notches 

when measuring discharge in the transition 

range. Martinez et al. (2005) proposed a 

compound sharp-crested weir having two 

triangular weirs with different notch angles. 

They proposed a theoretical discharge equation 

for fully contracted flow condition. Abbaspour 

and Yasi (2001) experimentally investigated the 

flow over sharp-crested, truncated-90
0
 triangu-

lar weirs with different side construction ratios 

(b/B=1, 0.7, 0.5 and 0.3). A 1-D flow equation 

was presented from the integration of both 

analytical and physical based solutions. A 

coefficient of discharge was introduced to 

represent the complex functions in the equation 

and to overcome any uncertainties. Intensive 

experiments were carried out to evaluate the 

discharge coefficient, Cd, in terms of the most 

significant parameters affecting the flow over 

weirs with and without side contraction. The 

results were presented in the form of non-

dimensional figures from which the flow rate 

can be calculated in conjunction with the 

proposed equation (Bazargan et al. 2011). 

Piratheepan et al. (2006) experimentally studied 

a compound sharp-crested weir composed of 

two triangular parts with different notch angles 

which proved to be accurate in measuring wide 

range of discharges without any discontinuity. 

Several methods have been also proposed to 

estimate the flow over the double ‘V’ notch 

compound sharp-crested weirs and one method 

has been experimentally validated as the most 

suitable one. 
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Because of the flow complexity over 

compound weirs, more practical tools are 

required to model the flow rate. Regressions 

have been most commonly used to estimate the 

flow over submerged compound sharp-crested 

weirs. However, regression analysis may have 

large uncertainties and the computed flow can 

be far from the actual ones. In addition, the 

regression analysis has some limitations caused 

by predefined equations for modeling. 

Recently, artificial neural networks (ANNs) 

and genetic programming (GP) have been used 

to model hydraulic processes. The methods 

have been used to estimate the scouring around 

piles by Kambekar and Deo (2003), and the 

scouring below spillways by Azmathullah et al. 

(2008). In addition, a combination of the fuzzy 

inference system (FIS) with ANNs, i. e. 

ANFIS, has been employed to estimate the 

wave characteristics by Mahjoobi et al. (2008). 

GP and ANNs have been successfully applied 

in maritime engineering (Kalra and Deo 2007; 

Singh et al. 2007; Gaur and Deo 2008). Given 

et al. (2009) predicted local scour downstream 

of hydraulic structures with genetic program-

ing. 

The purpose of this study was to investigate 

the flow rate over a submerged compound 

sharp-crested weir in a horizontal flume with 

different side construction ratios, b/B and 
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upstream hydraulic head, h using the ANN and 

GP methods. These soft computing tools can 

evaluate the relative effect of input parameters, 

such as crest width b, upstream head h, weir 

height P1, height of triangular opening P2, 

flume width B and tail water depth
 tY on flow 

rate, Q. 

2. Materials and methods 

2.1 Experimental setup 

The experimental setup consisted of two 

main flumes of A and B. The main flumes were 

0.2 m and 0.6 m wide, respectively and 0.50 m 

deep with a bed slope of 0.002. A subcritical 

approach flow was produced in the flume. The 

compound sharp-crested weirs were made of 

Plexiglas plates. The weirs were installed 

perpendicular to the flow direction in the flume 

and attached at the middle of the open channel 

with the help of the water sealant to prevent 

leakages. The ‘V’ notch weirs attached to the 

downstream collecting tanks of A and B were 

used to measure the actual discharge through 

the channel. For this purpose, they were first 

calibrated accurately by the volumetric method. 

Water depths were measured upstream and 

downstream of the weir along the center line of 

the main channel using two point gauges with 

an accuracy of 0.1 mm. The flow channel 

section is shown in Fig. 1. A total of 242 

experimental data were measured. Ranges of 

the variables are shown in Table 1. Reynolds 

number was in the range of 35000 to 64600. 
The discharge over the submerged 

compound weir, Q is influenced by the 

variables characterizing the flow. The following 

functional relationships describe the discharge 

over the compound weir as a function of its 

independent parameters in Eqs. (3) to (6): 

),,,,( 11 BbYPhfQ t                                              
(3) 

),,,( 12 bYPhfQ t                                                 
(4) 

),,,(3 BbYhfQ t                                                  
(5) 

),,( 14 tYPhfQ                                                     
(6) 

 

 

 

Fig. 1. Schematic view of the flow over the compound weir used in the experiments (Abbaspour and Yasi, 2001). 
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Table. 1. Ranges of the experimental data

2.2 Artificial neural network (ANN) 

An artificial neural network (ANN) is an 

information processing paradigm that is 

inspired by the way biological nervous systems, 

such as the brain, process information. It is 

composed of a large number of highly 

interconnected processing elements (neurons) 

working in unison to solve specific problems. 

Neurons are arranged in layers, including an 

input layer, hidden layers, and an output layer. 

There is no specific rule that dictates the 

number of hidden layers. The function is 

established largely based on the connections 

between the elements of the network. In the 

input layer, each neuron is designated for one 

of the input parameters. The network learns by 

applying the back-propagation algorithm, 

which compares the neural network simulated 

values with the actual values and calculates the 

estimation errors. The data set in the network is 

divided into a learning data set, which is used to 

train the network, and a validation data set, 

which is used to test the network performance. 

In the present study, the neural network fitting 

tool (nftool) of MATLAB 7.5 was used. 

After training the network, verification is 

conducted until the success of the training can 

be established. In the simulation of discharge 

over weirs, characteristic data were investigated 

with the neural network using the Levenberg-

Marquardt algorithm, which is an 

approximation of Newton’s method. In order to 

check the sensitivity of the neural networks, a 

simulation study was carried out with hidden 

nodes of different numbers of 5, 10, 15, and 20. 

The parameters considered in the study are 

hydraulic head h, crest width b, weir height P1, 

height of the triangular opening P2, and flume 

width B. The parameters of h, b, P1, tY  and B 

were used as inputs to the ANN model to 

estimate the discharge over the submerged 

compound weir. Two hundred and forty two 

experimental data sets were used for the ANN 

simulations. They were divided into three parts, 

i.e. 80% for training, 10% for validation, and 

10% for testing. 

 

 

 

 

 

Fig. 2. Feed-forward neural network model 

(Anonymous, 2007) 

The correlation coefficient (R), the root 

mean square error (RMSE), the mean absolute 

error (MAE), and the Nash-Sutcliffe efficiency 

coefficient (NSE) statistics were used to 

evaluate the model accuracy. R shows the 

degree to which two variables were linearly 

related. Different types of information about the 

predictive capabilities of the model are 

measured through RMSE and MAE. An 

efficiency of 1 (NSE = 1) corresponds to a 

 

Flume 
P1 (m) P2 (m) b (m) B (m) Yt (m) h (m) Q(m3/s) Re            

 

A 0.1-0.16 0.1 0.2 0.2 0.13-0.33 0.1-0.38 0.002-0.03 10000 -61000 

 

B 
0.1-0.2 0.1-0.2 0.2-0.4 0.6 0.1-0.35 0.1-0.28 0.003-0.05 11000 -64600 
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perfect match of the modeled values to the 

observed data. 
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where 
iX  is the observed value, X  is the 

mean of 
iX , 

iY  is the estimated value, Y  is the 

mean of 
iY , and n is the number of data sets. 

From the simulation study that was carried 

out on different numbers of hidden nodes, it 

was found that good estimation accuracy was 

achieved with 10 neurons in the hidden layer in 

four trials. The sigmoid,    1 1 e xf x   and 

linear activation functions were used for the 

hidden and output nodes, respectively. 

2.3 Genetic programming (GP) 

In artificial intelligence, genetic programing 

(GP) is an evolutionary algorithm-based 

methodology inspired by biological evolution 

to find computer programs that perform a user-

defined task. GP initializes a population 

consisting of random members known as 

chromosomes, and the fitness of each 

chromosome is evaluated with respect to a 

target value. The principle of Darwinian natural 

selection is used to select and reproduce fitter 

programs. GP creates computer programs that 

consist of variables and several mathematical 

functions sets as the solution. The function set 

of a system can be composed of arithmetic 

operations (+, −, ×, ‚), function calls (such as 

e
x
, x, sqrt, and power), even relational operators 

(>, <, =) or conditional operators, and a 

terminal set with variables and constants (

1 2, , , nx x x ). An initial population is randomly 

created with a number of individuals formed by 

nodes (operators, variables, and constants) and 

previously defined according to the problem 

domain. An objective function must be defined 

to evaluate the fitness of each individual. 

Selection, crossover, and mutation operators are 

then applied to the best individuals and a new 

population is created. The whole process is 

repeated until the given generation number is 

reached [11]. 

The fitness of a GP individual may be 

computed using Eq. (11): 

1

n

j j

j

f X Y


 
                                      

(11)

 
where jX  is the value returned by a chrom-

osome for the fitness case j, and jY  is the 

expected value for the fitness case j. 

In the GP model, many operators like sin, 

cos, and log as well as mathematical functions 

were used, and it was found that the functions 

of the proposed GP model were complex. In 

addition, the GP model using more operators 

has larger estimated difference. In this study, 

six arithmetic operators (+, −, ×, ‚, sqrt, and 

power) were used for simplicity. The functional 

and operational parameter settings used in the 

GP model are shown in Table 2. Performance 

of the GP model in training and testing sets was 

validated in terms of the common statistical 

measures of R, RMSE, MAE, and NSE. 

Table 2. Parameters of GP Model 

Parameter 
Parameter 

description 
Setting of parameters 

p1 Function set +, −, ×, ‚ ,sqrt, power 

p2 Generation number 50 000 

p3 Mutation 

frequency (%) 

50 

p4 Number of 

chromosomes 
30 

p5 Number of 

generations 
3 

p6 Linking function Multiplication 

http://en.wikipedia.org/wiki/Artificial_intelligence
http://en.wikipedia.org/wiki/Evolutionary_algorithm
http://en.wikipedia.org/wiki/Bio-inspired_computing
http://en.wikipedia.org/wiki/Biological_evolution
http://en.wikipedia.org/wiki/Computer_program
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3. Results and discussion 

In order to investigate the discharge over the 

submerged compound weirs, the flow and 

geometry characteristics, such as hydraulic 

head h, crest width b, weir height P1, tail water 

depth Yt and flume width B, were evaluated. 

During model development in this study, 

discharge (Q) was selected as an output and 

five parameters of h, B, b, P1 and Yt as inputs 

for ANN and GP1 models. Also four parameters 

for models of GP2 (h, b, P1 and Yt), GP3 (h, b, B 

and Yt) and three parameters for GP4 (h, P1 and 

Yt) were used as inputs. 

3.1 Discharge estimation using ANN model 

Different ANN structures were investigated 

in terms of hidden layer node numbers. In this 

study, the number of neurons in the hidden 

layer was obtained by trial and error. From the 

simulation study, which was carried out using 

the ANN model, it was found that with 10 

neurons in the hidden layer, the estimation 

accuracy increased to some extent. 

For a better understanding of the model 

performance, plots of Q simulation taken from 

the training, validation, and testing data sets are 

given in Fig. 3. In general, an R and NSE values 

greater than 0.9 and 0.7, respectively indicate a 

very satisfactory model performance. 

Comparison of the estimated values of Q 

with measured data (Fig. 3) showed that an 

excellent estimation using the ANN model 

could be achieved. 

3.2 Discharge estimation using GP model 

Figs. 4 to 7 show the estimated values of Q 

for the training and testing data. An almost 

perfect agreement between the measured values 

and the GP estimations was clearly observed. 

For the GP model, referring to Figs. 4 to 7, the 

GP models have a good ability in estimating Q 

values, as reflected in low values of RMSE and 

MAE and a high value of R. 

Comparison between the estimated and 

measured values of Q (Fig. 8) showed that 

using the GP1 model an excellent estimation 

could be achieved. 

 

 

 
Fig. 3. Comparison of the measured and estimated values of Q using ANN model for training, validation, and testing 

data 
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Fig. 4. Comparison of the measured and estimated values of Q using GP1 model for training and testing data  

 

 

   

Fig. 5. Comparison of the measured and estimated values of Q using GP2 model for training and testing data 

  

   

Fig. 6. Comparison of the measured and estimated values of Q using GP3 model for training and testing data  
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Fig. 7. Comparison of the measured and estimated values of Q using GP4 model for training and testing data 

 

 

 

Fig. 8. Comparison of the measured discharges with the estimated ones using GP1 for training and testing data 

Superior performance of the GP models 

compared with the other methods is attributed 

to the powerful artificial intelligence 

techniques for computer learning inspired by 

natural evolution to find an appropriate 

mathematical model to fit a set of points. GP 

employs a population of functional expressi-

ons and also numerical constants, based on 

how closely they fit to the corresponding data 

[11]. 
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The simplified analytical forms of the 

proposed GP1, GP2, GP3 and GP4 models for 

Q with different hydraulic parameters may be 

expressed as shown in Eqs. (12) to (15), 

respectively: 

  * (  
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where C0, C1, C2, C3, C4 and C5 are 

constant coefficients, which are determined 

by the GP models (Table 3). 

3.3 Comparison of the ANN and GP 

models 

The ANN and GP models are compared in 

Figs. 3 to 8. It can be seen from the fit line 

equations (the equations are assumed to be as 

y = ax + b) in the scatter plots of the GP 

models that the coefficients a and b with a 

higher R value are closer to 1 and 0, 

respectively for the ANN model than the GP 

model. This can be clearly observed from the 

ANN model fit line equation coefficients. 

 

Table 3. Constant coefficients of the GP model 

Models Parameter 

Constant coefficient 

C0
 C1

 C2
 C3

 C4
 C5 

GP1 
),,,,( 11 BbYPhfQ t

 

 2.702423 1.924164 2.702423 -4.829712 2.702423  -1.922852 

GP2 
),,,( 12 bYPhfQ t  4.091858 -1.061676 4.091858 -5.8219 5.150756 -0.082305 

GP3 
),,,(3 BbYhfQ t

  
 1.06784 3.484894 8.150818  -9.96933 4.008239 -5.241699 

GP4 
),,( 14 tYPhfQ   -6.001678 -4.044921 -0.224731  4.098266 -9.877045 -2.272949 

 

Table 4. RMSE, MAE, R, and NSE statistics of the training and testing data of the ANN and GP models 

Parameter Model 
RMSE MAE R NSE   RMSE MAE R NSE 

Training  Testing 

),,,,( 11 BbYPhfQ t ANN 0.0005 0.0002 0.999 0.99 0.0004 0.0003 0.999 0.99 

),,,,( 11 BbYPhfQ t GP1 0.0017 0.0011 0.982 0.97 0.0013 0.0009 0.993 0.99 

),,,( 12 bYPhfQ t
 

GP2 0.0013 0.0008 0.989 0.98 0.0011 0.0008 0.996 0.99 

),,,(3 BbYhfQ t
 

GP3 0.0017 0.0011 0.981 0.96 0.0015 0.001 0.990 0.98 

),,( 14 tYPhfQ   GP4 0.0019 0.0013 0.977 0.95 0.002 0.0015 0.984 0.96 
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Table 4 compares the ANN and GP models, 

with all the statistical measures of R, RMSE, 

NSE, and MAE of the training and testing 

data. According to Table 4, the ANN model 

has a lower absolute error as compared with 

the GP models showing that the proposed 

ANN models are much more accurate than the 

GP models for water engineering purposes. 

4. Conclusions 

In general, performance of the ANN and 

GP models are superior to the statistical 

regression schemes. The ANN and GP 

models were developed to determine the 

discharge over the weir. The input parameters 

used for the ANN and GP simulations 

included hydraulic head h, crest width b, weir 

height P1, tail water depth Yt and flume width 

B. These models can be successfully used in 

computation of the discharge. The optimum 

ANN model was obtained after different 

structures were investigated in terms of 

hidden layer node numbers. Estimations of 

the ANN model were compared with those of 

the GP models. According to Table 4, model 

performance can be evaluated as satisfactory 

if NSE > 0.7 and R > 0.9, with low values of 

RMSE and MAE. The proposed ANN models 

were much more accurate than the GP 

models. In addition, the GP models were 

much more practical than the ANN models 

because they provide nonlinear mathematical 

equations. Estimated values of Q using GP2 

model were in a good agreement with the 

measured data compared to GP1, GP3 and GP4 

models. 
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