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ABSTRACT 

DHI-Mike Software is one of best softwares describing water wave diffraction in 

onshore/offshore concepts. Diffraction happens due to obstacles along wave direction and has an 

important role in designing structures. The scope of this study is to show the relation between 

Porosity Coefficient and its effects on Diffraction Coefficient (Cd) by means of a suitable and 

verified numerical model. Porosity Coefficient is one of the breakwaters’ characteristics that 

describe the reflection quantity of the wave that influences on Diffraction Coefficient. This 

parameter determines the quantity of obstacles porosity and helps in implementing the 

sensitivity analysis. A calibrated Model helps as a suitable background to examine different 

Porosity Coefficients. Reputed "Wave Diffraction Diagrams" has been used for model 

calibration and will be discussed in detail in an appropriate section. It has been concluded that by 

increasing the Porosity Coefficient, wave height and Diffraction Coefficient increase. 
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1.Introduction 

Diffraction refers to various phenomena 

which occur when a wave encounters an 

obstacle. It is described as the apparent 

bending of waves around small obstacles 

and the spreading out of waves past small 

openings (Boussinesq 1872)�� 

While diffraction occurs propagating 

waves encounter obstacle, its effects are 

generally seen like changes on wavelength, 

wave height and wave propagating direction. 

Based on obstructing object size, type, 

porosity and other characteristics, provides 

multiple variety of diffraction intensity 

(Sorenson 2006). 

Parameters that may influence the 

diffraction phenomenon vary. Reflection 

Coefficient (Rf) describes the amount of 

wave height that a substance reflects. 

Meanwhile, Porosity Coefficient (Pc) has 

same meaning in reverse order. Porosity 

Coefficient is the substance characteristics 

which describes its porous mood. Usually, 

by increasing the reflection ability of a 

substance its Porosity Coefficient will 

decreases and vice versa. 

Diffraction occurs because of the way in 

which waves propagate; this is described by 

the Huygens–Fresnel lemma. The propa-

gation of a wave can become tangible by 
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considering every point on a wave front as a 

node in computer modeling (Kim and lee 

2009). The subsequent propagation and 

addition of all these waves form the new 

wave. When waves added together, the 

result is determined by the relative phases 

as well as the amplitudes of the individual 

waves. The summed amplitude of the 

waves can have any value between zero and 

the sum of the individual waves. Thus, 

diffraction patterns usually have a series of 

maxima and minima. 

The form of a diffraction pattern can be 

resulted from the summation of the phases 

and amplitudes of the Huygens wavelets at 

each point in space. There are various 

analytical models which have the ability of 

doing this, including the Fraunhofer Diff-

raction Equation for the far zone and the 

Fresnel Diffraction Equation for the near 

shore. Most formations including what 

mentioned in this paper could not be solved 

analytically easily, but can yield numerical 

solutions through FEM (Finite Element) 

and Boundary Elements Methods. 

Boussinesq approximation for water waves 

is a valid one for nonlinear and long waves. 

The approximation name "Boussinesq", who 

first derived this (1872) in response to the 

observation by John Scott Russell, and named 

it as the Boussinesq equations (Boussinesq 

1872; Sorenson et al. 2004; Sorenson et al. 

1998; Madsen et al. 1997a). Subsequently, in 

1872, Boussinesq derived the equations 

known nowadays as the Boussinesq equations 

(Madsen et al. 1991). 

The Boussinesq approximation for water 

waves consider as the vertical structure of 

the horizontal and vertical flow velocity. 

This results in nonlinear partial differential 

equations which incorporate frequency. In 

coastal engineering, Boussinesq type 

equations are frequently used in computer 

models for the simulation of water waves in 

shallow waters: (Abbott et al. 1984; 

Gierlevsen et al. 2003). 

The most important idea in Boussinesq 

approximation is the elimination of the 

vertical coordinate term from the flow 

equations, while hold some of the influences 

under water flow at vertical situation. As the 

waves propagate in the horizontal plane, this 

is useful and have a different -not usual- 

behavior in the vertical direction. Often the 

interest is primarily in the wave propagation: 

(Madsen et al. 1997b; Madsen et al. 1992). 

2. Boussinesq Equations 

Boussinesq approximation has different 

default assumptions that can be explained as:  

A Taylor expansion in this appro-ximation 

is made of vertical and horizontal flow 

velocity in certain elevation. For approxi-

mation, the mentioned Taylor expansion 

truncated to have a finite number of terms. 

To replace vertical partial derivatives of 

quantities in the Taylor expansion with 

horizontal partial derivatives, Continuity 

Equation for incompressible flow and the 

zero curl condition for an irrotational flow 

are assumed (Boussinesq 1872; Madsen et 

al. 1992). 

Thus, the Boussinesq approximation is 

applied to the remaining equations to eliminate 

the dependence on the vertical coordinate.  

Therefore, the resulting Partial Differential 

Equations (PDE) are in terms of some 

functions that consist of the horizontal coor-

dinates and also time (Sorenson et al. 2004; 

Madsen and Sorensen 1992). 

As an example, consider potential flow 

over a horizontal datum in the (x,z) plane. 

Consider x (the horizontal) and z (the 

vertical coordinate). Consider z = -h the 
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As seen in fig. 2, the L0 and B 

determined to get a verified model just 

like ‘’Diffraction Diagram’’ mentioned in 

(USACE-CERC 1984) and (USACE-

CEM 1998), with minimal inconstancy. 

Verification of the model for Running 

period tested for 15, 20, 25, 30, 35 and 40 

minutes runs, and results are shown in 

fig. 3. 

3.2.  Running Verified Models 

The models contain similar situations 

except the Porosity Coefficient to shows 

sensitivity to this parameter: 

- Diffraction Coefficient calculation will be 

done by measuring specific nodes as shown 

in fig. 4. 

- Results related to the Porosity of 0.85 are 

shown in fig. 5, as an example. 
 

 
Fig. 2. Contours of equal Diffraction Coefficient gap width = 1  

wavelength (B/L = 1), (SPM, 1984) and (CEM, 1998). 

Table 1. Model Characteristics 

 Details 

Internal Wave Generation JOHNSWAP Spectrum 

Tp (Rayleighdistribution) 5.9581 Sec. 

Run Period 15 min 

Intervals 

Max Courant No. 

0.2 Sec. 

0.396384 

No. of Sponge Layers 10 

Base Value 7 

Power Value 0.7 

Number of Porosity Layers 

Value of Porosity 

3 

Varies (0.5~1.0) 

Warm-up Period 

L0 

Ts 

B (Breakwater opening width) 

d (Depth) 

283 Steps 

50 m 

5.66 Sec. 

50 m 

-10 m 
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These nodes have "L0 related" dimension in 

horizontal and vertical coordinates. "A" series 

determine zero distance from middle of the 

breakwater opening. "B" Series determine L0 

distance from the middle, "C" Series determine 

2�L0, and finally "D" Series represent 3� L0. 

In the same way, there are five horizontal 

series show 0�L0, 1�L0, 2� L0, 3� L0, 4� L0 

distance from the breakwater arm.The model 

will be run with specific characteristics shown 

in tables 1 and 2, and gives us raw data of each 

model. By obtaining Diffraction Coefficients 

from the result files, the phenomenon becomes 

more tangible (table 3). 
 

 

 
Fig. 3. Model Verification for Run Period 

 
Fig. 4. Specific Measuring Nodes 
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Table 2.Values of Porosity 

Model Values of Porosity (0.5~1.0) 

1 0.5 
2 0.55 
3 0.6 
4 0.65 
5 0.7 
6 0.75 
7 0.8 
8 0.85 
9 0.9 
10 0.95 
11 1.0 

Table 3.Models Raw Data 
Porosity Coeff� Distance from the Opening A Series B Series C Series D Series 

1.0 

0 L 0.7034 0.6034 0.3686 0.2416 

1 L 0.5424 0.4835 0.3822 0.2816 

2 L 0.4179 0.4012 0.3662 0.3223 

3 L 0.3483 0.3407 0.3246 0.3025 

4 L 0.0140 0.0138 0.0134 0.0127 

0.95 

0 L 0.9279 0.8628 0.5758 0.3761 

1 L 0.7316 0.6422 0.4950 0.3591 

2 L 0.5805 0.5530 0.4951 0.4254 

3 L 0.4885 0.4763 0.4489 0.4099 

4 L 0.0193 0.0190 0.0184 0.0174 

0.90 

0 L 0.8028 0.7028 0.4467 0.2896 

1 L 0.6099 0.5414 0.4243 0.3103 

2 L 0.4770 0.4566 0.4139 0.3609 

3 L 0.3992 0.3900 0.3701 0.3420 

4 L 0.0160 0.0157 0.0152 0.0145 

0.85 

0 L 0.7034 0.6034 0.3686 0.2416 

1 L 0.5424 0.4835 0.3822 0.2816 

2 L 0.4179 0.4012 0.3662 0.3223 

3 L 0.3483 0.3407 0.3246 0.3025 

4 L 0.0140 0.0138 0.0134 0.0127 

0.80 

0 L 0.6341 0.5341 0.3154 0.2102 

1 L 0.5012 0.4470 0.3547 0.2634 

2 L 0.3802 0.3657 0.3353 0.2970 

3 L 0.3158 0.3091 0.2955 0.2769 

4 L 0.0126 0.0125 0.0121 0.0116 

0.75 

0 L 0.5829 0.4829 0.2764 0.1874 

1 L 0.4754 0.4232 0.3364 0.2519 

2 L 0.3550 0.3419 0.3144 0.2798 

3 L 0.2940 0.2879 0.2758 0.2597 

4 L 0.0117 0.0116 0.0112 0.0107 

0.70 

0 L 0.5434 0.4434 0.2465 0.1697 

1 L 0.4599 0.4080 0.3248 0.2453 

2 L 0.3381 0.3259 0.3004 0.2684 

3 L 0.2792 0.2735 0.2624 0.2482 

4 L 0.0110 0.0109 0.0106 0.0102 

0.65 

0 L 0.5120 0.4120 0.2227 0.1550 

1 L 0.4522 0.3996 0.3183 0.2459 

2 L 0.3273 0.3157 0.2914 0.2614 

3 L 0.2694 0.2641 0.2536 0.2409 

4 L 0.0106 0.0105 0.0102 0.0098 

0.60 

0 L 0.4865 0.3865 0.2031 0.1422 

1 L 0.4569 0.3995 0.3165 0.2441 

2 L 0.3212 0.3102 0.2866 0.2581 

3 L 0.2636 0.2587 0.2486 0.2370 

4 L 0.0103 0.0102 0.0099 0.0095 

0.55 

0 L 0.4650 0.3650 0.1864 0.1304 

1 L 0.4450 0.3982 0.3151 0.2337 

2 L 0.3191 0.3085 0.2854 0.2580 

3 L 0.2610 0.2564 0.2466 0.2360 

4 L 0.0101 0.0100 0.0097 0.0093 

0.50 

0 L 0.4464 0.3464 0.1716 0.1190 

1 L 0.4355 0.3802 0.3054 0.2267 

2 L 0.3204 0.3101 0.2874 0.2607 

3 L 0.2611 0.2570 0.2472 0.2376 

4 L 0.0100 0.0099 0.0096 0.0092 
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4. Data Analysis 

Data analysis on table 3 is in two chart 

series. In both series there is the Diffraction 

Coefficient in vertical coordinate, and in first 

series horizontal coordinate represents vertical 

distance from breakwater in number of L0 for 

every "A", "B", "C" and "D" series (fig. 6). In 

Second chart, horizontal coordinate reveals the 

Porosity Coefficient (fig. 7), (Madsen et al. 

1983a and b; Ming et al. 1987) 

 

Fig. 5. Sample Run Result for Porosity Coefficient of 0.85 
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Fig. 6. A to D Data Analysis 
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Fig. 7. Second Data Analysis 
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5. Conclusion 

By means of suitable and verified 

numerical model the relation between 

Reflection Coefficient and the effects on 

Diffraction Coefficient has been revealed. 

Porosity Coefficient is what shows quantity 

of obstacles porosity which helps to 

determine this sensitive analysis and either 

is a one of breakwaters’ characteristics than 

describes the reflection quantity of the wave 

that has influence on Diffraction 

Coefficient. Using these 11 models and 

analyzing their data a few conclusions can 

be made. By increasing of Reflection 

Coefficient (Rf) the Diffraction Coefficient 

(Cd) will reduce (for specific node). It 

means that by using materials which has 

more porous characteristics, Diffraction 

Coefficient will increases. This is a 

predictable result that shows this relation 

between these two integers. 

Naturally for each series (A, B, C and 

D), Cd will reduce by increasing the distance 

from the middle of opening. Then by going 

forward from the opening to the shore, 

quantity of wave height and its index (Cd) 

will decrease.  

For parameter less than 0.60 (for B 

Series), 0.85 (for C Series) and 0.90 (for D 

Series), there is different behavior of Cd. It 

means before these nodes there is usual 

mood for chart, but in the first node (0L, 

which is in the middle of the opening) it has 

ascending mood and in next node it 

becomes as usual. 

In D series, the nodes set onto have 

ascending behavior instead of former 

descending estate. That shows because of 

more horizontal distance from the opening 

the effect of the parameter changes and 

instead of going toward less Cd it grows up.  

It is easily deducted, by increasing the 

Porosity Coefficient (Pc) and decreasing 

Reflection Coeff. (Rf), the Cd, will increases 

in all horizontal profiles. That means that in 

the constant distance from the opening by 

increasing Pc, increasing of Cd has been 

observed.  

The only different is in Porosity Coeff. =1 

that cause the model quite a bit reduction in 

Cd in all Models. This reduction is because of 

natural effect of this quantity. 
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