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ABSTRACT  

Sediment flushing of reservoirs is an operational technique, whereby previously accumulated 
sediments in the reservoirs are hydraulically removed by accelerated flow when the bottom de-
silting outlets of the dam are opened. In this research, the process of sediment flushing is simu-
lated by a three dimensional numerical model in which sediment and flow interaction are reflect-
ed in the reservoirs. Reynolds Averaged Navier-Stokes (RANS) equations are solved numerical-
ly by Finite Volume on a three dimensional grid and a standard ε−k turbulence model is used. 
The resulting flow analysis is used as an input data for the sediment model. The convection-
diffusion equation for the sediment concentration is solved. The concentration equation derived 
by Van-Rijn is adopted as a boundary condition, resulting in a calculation of bed material load. 
The depth integrated mass balance equation is applied to find the bed changes. The results from 
the numerical model are compared favorably with the data from physical model studies available 
in the literature. 
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1. Introduction

Reservoir sedimentation occurs worldwide 
at a rate of about 0.3 percent per year, but the 
sedimentation rate in many regions such as 
Asia is much higher estimated between 0.5 
and 1.0 percent per year (Olesen, Basson 
2004). Using an average rate, Palmieri esti-
mated the loss to be approximately 45km3 
per year (Palmieri 2003). The cost of replac-
ing the lost storage is significant; nearly 
US$13 billion per year would be needed, 
even without counting the environmental and 
social costs associated with new dams (Pal-
mieri 2003). Hence, reservoir sedimentation 
and the corresponding loss of storage capaci-
ty is a common problem, which has attracted 
more and more attention in recent years. 

An engineering measure to reduce the se-
dimentation problem is to remove sediment 

hydraulically by flushing the reservoirs regu-
larly; the effect of the flushing is highly vary-
ing in different reservoirs, and depends on 
the reservoir geometry, sediment size, magni-
tude of deposits, water discharge and water 
depth. In the planning of a dam and in dam 
operation it can be important to assess how 
much of the sediment can be removed, and 
how much flushing water is required. In most 
cases the effect of the flushing depends on 
the water discharge and the reservoir water 
level, which are functions of the capacity of 
the flushing gates. The design of the gates 
may include an optimization of the gate cost 
versus the economical value of the increased 
reservoir volume after flushing. Knowledge 
of the flushing process can therefore be im-
portant for the dam design. 
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The flushing of the sediments involves 
several complex processes. Water flow field 
is three-dimensional, with complex recircula-
tion zones and secondary currents. The turbu-
lence is non-isotropic and varies throughout 
the computational domain. The erosion and 
sediment transport processes are also com-
plex. 
The flushing process can be studied in a 

physical model. This method is, however, 
relatively costly and time-consuming. The 
alternative is to adopt a numerical model. 
Then it is necessary to make some modeling 
simplifications because of the complexity of 
the flushing processes. Previously, a few one 
and two dimensional numerical models have 
developed to describe flow and sediment in-
teraction during the flushing process. A one-
dimensional numerical model has been used 
for studying flushing processes (Holly, Ra-
huel 1990, Basson, Rooseboom 1997). This 
will only give reasonable results as long as 
the reservoir is fairly long and narrow in 
shape. For a more complex geometry it is 
necessary to use a two or a three-dimensional 
numerical model. In the last few years the 
numerical models have increased the capa-
bility of assessing sedimentation problems 
for hydropower purposes (Lysne et. al. 
1995). Ruland and Rouve used a two-
dimensional finite element model to assess 
the risk of erosion in a reservoir in Germany 
(Ruland, Rouve 1992). Three-dimensional 
models have been used previously to calcu-
late local scour (Olsen, Melaaen 1993), se-
diment deposition in a reservoir (Olsen et. al. 
1994), and in a sand trap (Olsen, Skoglund 
1994). A limited description of the two-
dimensional numerical simulation of the 
flushing process was also given by Olsen 
(Olsen 1997), in another study the numerical 
model solved the depth-averaged Navier-
Stokes equations on a two-dimensional grid 
and the resulting flow field was extrapolated 
to three-dimensions for solving the sediment 

concentration in a flushing process (Olsen 
1999). 

However, due to the complexity of the 
problem, researchers have been encouraged 
to conduct further studies for a better under-
standing of this sophisticated process three-
dimensionally. In the present study a three-
dimension hydrodynamic model was devel-
oped. In this model, the conservation equa-
tions are discretized in a three-dimensional 
Cartesian coordinates using a staggered grid 
in terms of primitive variables. The primitive 
variables are velocity components, pressure 
and components of the extra-stress tensor. 
Further on, a sediment transport function was 
added to the model to enable that to compute 
sediment transported during flushing 
processes. 

2. Water Flow Governing Equations  

The mean turbulent flow of a viscous, in-
compressible, Newtonian fluid is considered. 
To deal with the turbulent flow, the Reynolds 
decomposition is used, where the instantane-
ous variables for the velocity filed and the 
pressure filed are decomposed into the addi-
tion of mean and fluctuating parts. The equa-
tions governing the mean velocities 

iU and 

pressure P are obtained from the Reynolds 
averaged Navier-Stokes (RANS) equations� 
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whereν and ρ are the kinematics viscosity 

and the density of the fluid respectively� 

The quantity jiuu is the Reynolds stress 

tensor. Since these equations are not closed, 
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additional equations have to be written for 

jiuu . In order to develop such equations, 

most of the closure schemes assume the fol-
lowing functional form� 

)( txtxtxKtxUtxuu iijji ,),,(),,(),,(),( εΡ=  (3) 

In which k andε are the turbulent kinetic 
energy and the dissipation rate, respectively. 
This kind of closure implies that two addi-
tional transport equations are required, one 
for k and the other forε . Standard k -ε  model 
is selected for this study. 

The idea of Yakhot and Orszag was based 
on the infinite scale expansion inη , which is 

defined by the ratio of the turbulent time 
scale to the mean strain scale (Yakhot, Ors-
zag 1986)� 
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where�� 

ε
ν µ

2
k

Ct =  (6) 

and 

� ( ) 2ijjiij xUxUD ∂∂+∂∂=  (7) 

where the above coefficients are defined as� 

,30.1,00.1,09.0 === εµ σσ kC

92.1,44.1 21 == εε CC  
 

3. Sediment Transport Governing Equa-

tions  

Three modes of particle motion are distin-
guished: rolling and/or sliding particle mo-
tion, saltating or hopping particle motion and 
suspended particle motion. When the value 

of the bed shear velocity just exceeds the 
critical value for initiation of motion, the bed 
material particles will be rolling and/or slid-
ing in continuous contact with the bed. For 
increasing values of the bed shear velocity 
the particles will be moving along the bed by 
more or less regular jumps, which are called 
saltation. When the value of the bed shear 
velocity begins to exceed the fall velocity of 
the particles, the sediment particles can be 
lifted to a level at which the upward turbulent 
forces will be of comparable or higher order 
than the submerged weight of particles and as 
a result the particles may go into suspension� 

Usually, the transport of particles by roll-
ing, sliding and saltating is called bed load 
transport, while the suspended particles are 
transported as suspended load transport. Sum 
of bed and suspended load is called bed ma-
terial load (total load)� 

Generally, the first stage of the numerical 
flushing model consists of the analysis of the 
existing data. During the second stage, flow 
models are applied to determine the hydrau-
lic conditions in the existing and the future 
situation. The results of these models are 
then used as input data for the morphological 
model. Two different models can be distin-
guished� 
� initial or sediment transport models 

which compute the sediment transport rates 
and the bed level changes for one time step, 
resulting in a short-term prediction� 
� dynamic models which compute the flow 

velocities, the sediment transport rates, the 
bed level changes and again the new flow 
velocities, etc. In a continuous sequence 
(loop) resulting in long-term predictions, that 
this model was applied in this study. 

In this study, the total load is computed by 
coupling convection-diffusion equation and 
Van-Rijn reference concentration equation�  

The suspended load is calculated by solv-
ing the convection-diffusion equation for the 
sediment concentration� 
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The fall velocity of the sediment particles 
is denoted �, the diffusion coefficient, �, is 
assumed to be equal to the eddy viscosity, tυ , 

described previously in equation (4), and for 
laminar flow it can assumed equal cinematic 
viscosity� 

The first term on the left side of the top 
equation is the transient term. The next term 
is the convection of sediments, i.e. the sedi-
ment flux through the walls of the finite vo-
lume because of the velocity of the water at 
the wall. The third term on the left side is due 
to the fall velocity of the sediments. This is 
an extra convective term, added to the veloci-
ties in the vertical direction. The index 3 de-
notes the vertical direction. The right hand 
term in equation (3) is the diffusion of sedi-
ment. For this study, Γ is the diffusion coef-
ficient due to the mixing by turbulence in the 
water. The term therefore tells how much 
sediments are transported through the sides 
of the finite volume because of turbulence 
and the concentration gradient� 

By solving the convection-diffusion equa-
tion, sediment concentration for an individual 
cell is satisfied. Van-Rijn reference concen-
tration equation was applied for all cells in 
the bed as a boundary condition. Therefore 
the convection-diffusion equation was not 
used for the cells in the bed. This was initial-
ly suggested by Einstein as an equilibrium 
concentration in the cells to the bed�(Einstein 
1950).  

Hence Van-Rijn equation is (Van-Rijn 
1987)� 
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The parameter a is the reference level 
above the mean bed , the mean sediment par-

ticle diameter is denoted d50,    ccT τττ /)( −= , 

where τ is the shear stress, τc is the critical 
shear stress for movements of sediment par-
ticles according to Shield’s formula, and 

*D  
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where, Gs is specific density and � is the ki-
nematics viscosity of water� 

Bed level changes were obtained from the 
depth-integrated mass-balance equation 
(Van-Rijn 1993), yielding� 
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Where Zb is bed level with respect to a ho-
rizontal datum, p is porosity factor, qb,x and 
qb,y are volumetric bed load transport rates 
and qs,x , qs,y are volumetric suspended load 
transport rates. The suspended load transport 
rates are given by� 
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Where a is the reference level above the 
mean bed and h is the water depth� 

4. Numerical Method� 

The method used to solve the set of equa-
tions is of the classical finite volume type. 
The conservation equations are integrated 
over a control volume, and then the Gauss 
theorem is used to transform the volume in-
tegrals into surface integrals. The method 
uses a staggered mesh; the pressure and the 
normal Reynolds stress components are 
treated in the center of the control volume; 
the velocities are computed in the center of 
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the faces and the cross components of the 
Reynolds tensor are attached to nodes located 
at the mid-edges. The quadratic upstream in-
terpolation scheme for the convective kine-
matics (QUICK) from Leonard (1979) is 
used to evaluate the advection terms for the 
momentum equation� 

The stationary solution was obtained by a 
time-marching algorithm. The convective, 
diffusive, production and dissipation terms of 
the different transport equations are treated 
by an explicit Euler scheme. The advection 
terms in the K-ε  equation are discretized in 
space using the first order upwind scheme. 
The diffusion terms are discretized with a 
second-order cell centered scheme. The de-
coupling procedure for the pressure is de-
rived from the Mark and Cell (MAC) algo-
rithm proposed in Harlow and Welch (Har-
low, Welch 1965). 

The method of solution consists in substi-
tuting the equation for the velocity at the new 
time within the discretized equation for mass 
conservation at the same time level. With this 
method, the pressure at the time   is obtained 
by the resolution of the discretized Poisson 
equation. Then, the velocities are calculated 
from the momentum equation. The solution 
consists in velocity and pressure fields that 
respect the conservation equations. The li-
near system for the pressure is solved using 
the Cholesky procedure because the matrix 
of this system is positive definite and sym-
metric. 

For the first time-step, at the inlet of the 
duct, a constant profile was given to U, K and
ε . The secondary velocities were initialized 
as nil (V = 0 and W = 0) all over the domain. 
The K andε  inlet values were obtained from 

the DNS data using the rmsu and the eddy 

viscosity, that was about four times the mo-
lecular viscosity� 

At the cutlet, a homogeneous Neumann 
boundary condition was used for all va-
riables. In the next time-step, the calculated 

outlet values were used for the inlet condi-
tion. The same procedure is used for the fol-
lowing time-steps up to the convergence� 

The boundary condition values for K andε
, at the first grid point near the wall, were 
calculated taking into account the fact that 
this point was in the viscous sub layer. Also, 
due to the use of a staggered grid, the value 
of K andε are not defined on the wall. At the 
wall, the boundary conditions for the equa-
tions of K andε  were (Patel et. al. 1984): 
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Initial water surface was used as a rigid lid, 
and it is an assumption where water level at 
the reservoir is lowered during flushing 
process in present study. Any way this lid 
was adjusted after each time step based out-
flow of sluice gate(s), inflow and actual vo-
lume of reservoir� 

The numerical method used to solve the 
convection-diffusion sediment concentration 
equation is a finite volume technique and the 
method uses a staggered mesh; the sediment 
concentration components are computed in 
the center of the control volume and the ex-
tra-stress components and the velocities that 
results of flow model, are attached similar 
above for water flow method�� 

To discrete the equation, the hybrid diffe-
rencing and the fully implicit schemes are 
used. The hybrid differencing scheme is 
based on a combination of central and up-
wind differencing scheme Spalding (Spald-
ing 1972). The central differencing scheme, 
which is accurate to second-order, is em-
ployed for small Peclet numbers (Pe<2) and 
the upwind scheme, which is accurate to first 
order but accounts for transportiveness is 
employed for large Peclet numbers (Pe≥2). 

For discretization the depth-integrated 
mass-balance equation by finite volume me-
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thod is used the integrated form of this equa-
tion over a tow-dimensional scalar control 
volume�� 

To specify the boundary conditions of the 
transport model, information of the bathyme-
try, water depths and sediment characteristics 
(size, density etc.) is required. The most fun-
damental boundary condition is the process 
that controls the exchange of sediment par-
ticles at the bed. In the present study Van-
Rijn equation was used (equation 9). 

Sediment concentrations at inlet boundary 
are given and the other boundary conditions 
that were applied are (Van-Rijn 1993)� 
Outlet and solids boundary : 
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5. Numerical model verification 

The accuracy of the numerical model was 
assessed by comparing with experimental 
data obtained from a physical model study by 
Lai and Shen (Lai, Shen 1995). The experi-
ments were conducted in the Hydraulic La-
boratory at the Richmond Field Station of the 
University of California at Berkeley. A con-
crete rectangular flume with dimensions 50 
m long, 2.44m wide, and 1.52m high was 
designed to model a reservoir. Part of the 
bottom of the flume was elevated up to 0.6m 
to avoid submerging the sluicing outlet. Se-
diment was paved in a 9m reach upstream 
from the dam. Three sluice gates (15cm in 
width) and eight sluice pipes were installed 
on the dam. In the present study results of 
two sluice gates were only used� 

The sediment material used in the experi-
ments was uniform size walnut shell grit. 
This non-cohesive lightweight material can 
satisfactorily simulate the relatively fine se-

diment particles transported in reservoirs and 
are light enough to be moved with slow ve-
locities. The walnut shell grit has a specific 
gravity of 1.39, a median diameter of 1.25 
mm, and its porosity is 0.55. In addition, the 
gradation coefficient is 1.18, and the angle of 
repose for submerged walnut shell grits is 
about 35 degrees. Eight runs were conducted 
by Lai and Shen (Lai, Shen 1995). 7 runs out 
of 8 were conducted with the central gate 
while the last one was undertaken with two 
central and right gates with 0.1m opening, 
0.59lit/sec inflow discharge, 0.122m initial 
water stage above dam and the gates were 
kept open for 30 minutes� However, herein 
this verification the latest was used. 

6. Comparison of experimental and pre-

dicted results 

In order to compare the results of the nu-
merical model with the described model, a 
reservoir by a computational domain of 35×

31× 11 grid points in longitudinal (x), lateral 
(y) and vertical (z) directions was used, re-
spectively. The characteristics of the simu-
lated reservoir as well as the sediment and 
flow conditions were nearly the same as the 
physical model (Fig. 1). Flushing duration of 
the intended physical model was 30 minutes 
with the first 7-10 minutes of the flushing 
duration was under pressure flushing. Then, 
the flushing condition approached the free 
flow or empty condition where water level 
drops below the apex of the deposition in the 
vicinity of the dam. In fact, water surface 
elevation is variable along the profile, while 
the bottom outlets are kept consistently sub-
merging (Lai, Shen 1995). Since the numeri-
cal model assumes the water surface as a ri-
gid lid, it was impossible to truly simulate the 
free flow flushing. To simulate free flow 
flushing, while keeping the outlets sub-
merged, the water level was assumed to be 
over the sediment deposition by a small 
depth. Fig.(1) show the computed and meas-
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ured values for sediment outflow in numeri-
cal and physical models�� 

In an experimental model, the phenome-
non of mass movement of the sediments is 
highlighted in the early stages of the physical 
and numerical models. In fact, there is a rea-
sonable agreement between observed and 
predicted outflow sediment discharge 
throughout the experiment (Fig. 1)� 

Bed level variations were displayed by 
drawing contour lines for observed and pre-
dicted results (Fig. 2). In these figures the 
predicted contour lines were not exactly the 
same as the observed ones. This is reflected 
by the simulation of free flow flushing. As 
free flow flushing occurs in nature and can 
easily be simulated in laboratories, however, 
its numerical simulation dose not appears just 
as easy. Nevertheless, is free flow flushing 
numerical simulated by decreasing water sur-
face elevation to small depth above the sedi-
ment deposition and water surface slope var-
iations were considered negligible and as-
sumed to be rigid lid. As it is noticed in Fig. 
(2), the observed flushed eroded channel de-
veloped longitudinally upstream by head cut-
ting as a result of retrogressive erosion, whe-
reas the predicted flushed channel developed 
laterally more and longitudinally less than 
that of the experimental. This may be justi-
fied by taking water surface as a rigid lid in 
the numerical model. In Fig. (2), this appears 
approximately the same as before for the ob-
served results and skewed towards second 
bottom outlet for the predicted results which 
seems to be more realistic. Another reason 
for results discrepancy is due to the fact that 
in the experimental model retrogressive ero-
sion was initialed in the small channel that 
was cut through the sediment deposited in the 
flume before the start of the experiments�� 

7. Conclusion 

The numerical model was able to simulate 
the flushing of a reservoir. This included  

 

Fig.1: Numerical results in comparison with 
experimental results 

 

Fig.2: Contour maps of final reservoir bed profile for ex-
perimental and numerical models 

complex phenomena such as drawdown of 
water surface duration of flushing. Compari-
son with the physical model study showed 
that sediment flushed in two models are 
same. The main features of the erosion pat-
tern had been reproduced, chiefly in pressure 
flushing. The main deviation between meas-
ured and calculated in bed level profiles was 
most likely due to rigid-lid assume for water 
surface. Future research on sediment flushing 
from reservoirs with complex geometries 
should therefore include an actual water sur-
face profiles� 
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