
International Journal of Advanced Structural Engineering (2022) 12: 616–630 

 

ORIGINAL RESEARCH 

 

 

 

 

Evaluation of shape factor effect on hysteresis behavior of elastomeric 

rubber bearings  

 
Ehsan Kazeminezhad*1, Soroush safakhah2 

  

Base isolation is an appropriate approach to mitigate the seismic hazards. A common type of 

elastomeric rubber bearing is included rubber pads, intermediate steel plates and steel end plates 

(anchor plates). The hysteresis behavior of elastomeric rubber bearings is affected by vertical 

pressure and shape factor. In this study cyclic loading is applied and hysteresis behavior in the 

first and second cycles is evaluated. Finite element method with ABAQUS software is used and 

validation analysis was done. The results show that second cycle of force-displacement in the 

elastomeric rubber bearings is more stable than the first cycle and vertical pressure and shape 

factor influenced damping and hysteresis behavior. Also, elastomeric rubber bearings with lower 

shape factor have higher damping in comparison with larger shape factor and increase in vertical 

load led to increase in the damping. The innovation of this paper is adopted various hysteresis 

parameters in finite element analysis to achieve closest results in comparison with experimental 

work.  
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Introduction 2

Earthquakes are unpredictable phenomena 

that seriously threaten buildings, vital 

equipment and human lives. Hence, 

engineers have tried to decrease earthquake 

damages by new technologies. Base 

isolation is one of these approaches which 

can mitigate the seismic forces and prevent 

transmission to buildings and structures. In 

general, two different base isolators are 

existing: elastomeric rubber bearing (EB) 

and lead rubber bearing (LRB). EBs consist 

of rubber and steel layers. Steel layers are lie 

between rubber pads and in the top and 

bottom of EBs rubber layers are connected to 

anchor steel end plates. EBs behavior are 

dependent on several important properties 
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such as vertical stiffness, shear 

displacement, shape factor and vertical 

pressure. A lot of study were done on the 

elastomeric rubber bearings. In the past three 

decades, numerous studies have been 

addressed the base isolation technique with 

particular attention to the elastomeric 

bearings (EB) with a key role in supporting 

the structures, especially under the mutual 

effects of vertical and horizontal loads. 

Various theories have been also developed to 

describe the mechanical properties and basic 

behavior of EBs (elastomeric bearings). The 

first contribution to the issue of buckling was 

presented by Haring’s theory [1] which was 

based on the column buckling theory to 
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account for shear deformation. Kelly [2] 

developed a theory to find relationships for 

critical loading and proposed a new isolator 

calculation. On the other hand, several 

experimental tests have been conducted ([3]-

[13]) demonstrating that vertical and 

horizontal stiffnesses are related to the 

increase of lateral displacement. Moreover, 

numerical simulations have been carried out 

as an approach to assess the role of nonlinear 

effect in critical and post-critical 

mechanisms of EBs ([14]-[19]). Numerical 

studies have been conducted on EBs using 

several platforms, such as Abaqus/ CAE and 

Opensees ([20]-[24]). Recently [25-27] 

proposed a comparison between numerical 

findings and the theoretical equation by [28] 

which illustrated the influence of large 

deformations on the interaction between 

horizontal and vertical loads and assessed 

the post-buckling behavior of EB by 

extending the original two-spring model of 

the bearing, developed by [2] and [29]. 

Applications of EB to buildings were also 

the subject of research contributions and 

showed that EBs led to decrease in spectral 

acceleration by lengthening the main period 

of buildings [30-35]. In particular, [36] 

investigated the lateral stability and shear 

failure limit states of isolated bridge. A 3D 

 numerical simulation was conducted 

on elastomeric bearings for use in the 

bridges  [37]. Bhuiyan et al. [48] presented a 

rheology model of high damping rubber 

bearings for seismic analysis and identify the 

nonlinear viscosity. In this study cyclic 

loading is applied and hysteresis behavior in 

the first and second cycles is evaluated. 

Finite element method with ABAQUS 

software is used and validation analysis was 

done. The results show that second cycle of 

force-displacement in the elastomeric rubber 

bearings is more stable than the first cycle 

and vertical pressure and shape factor 

influenced damping and hysteresis behavior. 

Also, elastomeric rubber bearings with lower 

shape factor have higher damping in 

comparison with larger shape factor and 

increase in vertical load led to increase in the 

damping. The innovation of this paper is 

adopted various hysteresis parameters in 

finite element analysis to achieve closest 

results in comparison with experimental 

work then based on achieved hysteresis 

parameters, isolators with various shape 

factor and vertical pressure subjected to 

cyclic loading and their damping were 

evaluated. 

1. Numerical modeling 

ABAQUS [39] is used in this research to 

perform numerical simulation adopting three 

dimensions finite element (FE) approach. 

Models are built as layered systems with 

alternating steel and rubber layers.  Rubber 

and steel layers have nonlinear and linear 

performance, respectively [24]. They are 

connected together via vulcanization 

process. Steel end plates are used on the top 

of first rubber and in the bottom of the end 

rubber. Full 3D models are used to illustrate 

the geometry and loading conditions of each 

EBs. Full integration solid hybrid element 

(C3D8H) and full integration solid element 

(C3D8) is employed to model the rubber and 

steel layers, respectively. Fixed boundary 

condition is considered at the bottom and 

boundary condition at the top is similar to the 

bottom but only allows to move freely in 

lateral and vertical directions. Various 

material behavior such as hyper-elastic and 

viscoelastic can be used to define properties 

of rubber-like materials in ABAQUS. The 

hyper-elastic behavior is described with 

strain energy potential function. Several 

forms of stain energy potentials are existing 

in ABAQUS. Three types of hyper-elastic 

models are more common: Neo-Hookean 

[42] Rivlin [43] and Ogden [44]. The Neo-

Hookean material model is the simplest 

method for modeling the hyper-elastic 

materials and works based on initial shear 

modulus and incompressibility. Kim et al. 

[45] comprehensively compared Neo-

Hookean, Rivlin, and Ogden models in 

describing rubber materials. The Rivlin 

model is usually used for structural 

components with local strain values up to 

~ 200%, while the Ogden hyper-elastic 

model is successful in numerical analysis for 

cases with strain values as high as 700% 
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[45]. The exponents of the stretch ratio are 

real numbers for the Ogden model and 

integers for the Rivlin model. Accordingly, 

the Ogden model offers better performance 

and flexibility than the Neo-Hookean and 

Rivlin model [45]. Thus, the Ogden hyper-

elastic model is selected in this study. 

Consideration of a strain energy density 

function is important in seismic bearings 

because the high pressures involved in their 

loading can lead to volumetric strain in the 

rubber as high as 10% [44]. The strain 

energy density function is defined in Eq. (1):
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where 1λ
−

, 2λ
−

 and 3λ
−

 are the principal 

values of right stretching tensor and J is the 

elastic volume ratio. αi and μi denote the 

empirically-determined material constants. 

 

2. Validation analysis 

The numerical model is validated by 

comparing the results with the experimental 

findings of Yamamoto et al. [40] and 

Minewaki et al. [41]. They reported 

experimental results for an elastomeric 

rubber bearing with geometric properties 

that showed in Table 1. The cyclic horizontal 

force-displacement behavior predicted by 

the finite element model is compared with 

those reported by Yamamoto et al. [40] and 

Minewaki et al. [41]. Fig.1 shows validation 

model, loading and boundary condition. 

                                                                                          Table1 properties of validation model 

                                 
                Fig.1 validation model

 

3.1 Material properties 

In this research material properties for 

rubber and steel extracted from experimental 

work [40]. Ogden function used for rubber 

simulation and parameters are α1 = 1.6, α2 = 

6.2, μ1 = 0.41 MPa, μ2 = 0.0012 MPa, and β 

= 1/3 [45]. These parameters can be obtained 

from the experimentally-measured stress-

strain curves under different pressure levels. 

The bulk modulus was K = 1000 MPa [45]. 

Initial shear modulus (G) and Poisson’s ratio 

(ν) can be obtained from Eq. (2) and Eq. (3), respectively [45]: 

 

1 1 2 2 0.6634 PG 4M a+ ==             (2)                  
3K 2

2 0.49989
6KG

G

 = − − =
 
 
 

                               (3) 

The steel shim layers do not enter to the nonlinear region during analysis and elasticity modulus 

is E=205 GPA, Poisson’s ratio is ν = 0.3 and yield stress is σy= 235 MPa [45].  
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3.2 Hysteresis behavior 

Hysteresis parameters (stress scaling factor, 

S, creep parameter, A, effective stress 

exponent, m, and creep strain exponent, C) 

were taken from Bergström and Boyce [46]. 

Given that in this study the cyclic behavior 

of the isolator is evaluated, the inclusion of 

hysteresis parameters is essential. In other 

words, in the finite element analysis, the 

hysteresis loop is formed upon the 

introduction of these parameters for the 

rubber material. The stress scaling factor 

defines the ratio of the stress tolerated under 

instantaneous loading and affects the isolator 

damping ratio. The creep parameter refers to 

the expression for the effective creep strain 

rate. This constant also maintains the 

dimensional consistency in the equation. The 

effective stress exponent is generally greater 

than 1, characterizing the effective stress 

dependence of the effective creep strain rate. 

These parameters are listed in Table 2. It 

should be noted that these parameters are 

dimensionless. In the work of Kalfas et al. 

[20], stress scaling factor, creep parameter, 

effective stress exponent, and creep strain 

exponent were taken as S=1.6, A = 0.56, m 

= 4, and C = -1, respectively. Rahnavard and 

Thomas [24] considered the following 

parameters: stress scaling factor, S=1.6, 

creep parameter, A = 0.56, effective stress 

exponent, m = 4, and creep strain exponent, 

C =0. In this regard, various values of S, A, 

m, and C were considered for validation and 

the closest values to the experimental result 

will be considered. For loading procedure, 

uniform vertical load (14 MPa) was applied 

then laterally displaced with a cyclic pattern 

(displacement was applied at the top of the 

isolator). Shear force-displacement is shown 

in Fig.2.

 

 

 
Fig.2 Cyclic loading 

 

 
Table 2 Hysteresis parameters 

Various types 
Stress 

scaling factor (S) 

Creep parameter 

(A) 

Effective stress 

exponent (m) 

Creep strain 

exponent (C) 

Type 1 1.6 0.56 4 0 

Type 2 1.6 0.56 4 -1 

Type 3 1.6 1.67 2 -1 

Type 4 1.6 2.89 1 -1 

Type 5 2.0 1.67 2 -1 

Type 6 2.0 2.89 1 -1 

Type 7 1.1 1.67 2 -1 
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As shown in Fig.3-a to Fig.3-e, various 

hysteresis parameters were adopted and 

isolator force-displacement response was 

compared with experimental work.  

 

 

 

 

 

 

 

                          
                                   Fig.3-a                                                                                     Fig.3-b 

           
Fig.3-c                                                                           Fig.3-d 

 

 
Fig.3-e 

         Fig3 Comparison between experimental and numerical results with various hysteresis parameters 
 

As indicated in Fig3, hysteresis parameters 

related to Type 4 in Table 2 led to closest 

result to experimental work. 

Except the hysteresis validation analysis 

simple shear displacement analysis is done 

and compared with experiment result. In this 

analysis vertical load (14MPa) is applied on 

isolator then laterally displaced. This 

analysis with various mesh size is 

performed. Mesh properties and elements 

number was defined in Table 3. 
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Table 3 Mesh properties 

Mesh ID 
Seed size 

(mm) 

No. of rubber 

elements 

No. of steel 

elements 

No. of anchor 

elements 

Total 

elements 
Result 

Mesh 1 200 24 12 16 1100 Not converge 

Mesh 2 150 32 16 36 1496 Completed  

Mesh 3 100 72 36 90 3384 Completed 

Mesh 4 90 112 56 100 5184 Completed 

Mesh 5 70 180 90 168 8520 Completed 

Mesh 6 60 264 132 240 12228 Not converge 

Mesh 7 60 264 132 100 11948 Not converge 

Mesh 8 60 264 132 340 12428 Completed 

Mesh 9 40 540 270 896 25822 Not converge 

 

Fig.4 shows the validation results and 

indicated that acceptable accuracy is exist 

between  

experimental and finite element analysis. 

 

 
Fig.4 Validation results of simple shear analysis 

 

4. Case study 

 

Full-scale elastomeric bearings are defined 

with the previously-described rubber and 

steel material properties (section 3.1). The 

validated hysteresis parameters (Type 4) and 

hyper-elastic behavior (Ogden function) are 

used to describe the rubber behavior. Ogden 

parameters are defined in Section 3 as 

presented in Table 4.  

 

 

 
Table 4 Rubber and steel material properties 

Rubber (Ogden parameters) Steel (elastic) 

μ1 

(MPa) 

μ2 (MPa) α1 α2 E 

(MPa) 

Poison 

ratio 

0.41 0.0012 1.6 6.2 200 000 0.3 

 

 

The elastomeric bearing is circular with the 

following geometrical features; diameter of 

circular rubber and steel layers: 500 mm, the 

diameter of the inner hole:10 mm, the 

diameter of steel end plates (anchor plates): 

700 mm and thickness of steel end plate: 25 
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mm. Various shape factors (S) is considered. 

As an important parameter with a key role in 

the shear behavior of elastomeric bearings, 

shape factor can be defined as the ratio of the 

loaded area to free loaded area of rubber pad 

(Eq. (4)). Mordini and Strauss [47] 

investigated the cyclic behavior of 

elastomeric bearing and introduced Eq. (5) 

and Eq. (6) for calculating the horizontal 

stiffness and damping, respectively.  

  

                                                                      

                                                                                                                                       o i

r

D D
S

4t

−
=        (4) 
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max min
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                (5)                                       
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K
 =

  −
              (6) 

 

In Eq. (5) and Eq. (6), Fmax and Fmin are 

maximum and minimum forces in every 

cycle in hysteresis behavior, respectively. 

Ws shows the area of each hysteresis cycle, 

Kh denotes the horizontal stiffness and max

and min  represent the maximum and 

minimum lateral displacements, 

respectively. Fig.5 shows force-

displacement behavior of elastomeric rubber 

bearing (isolator). 

 
Fig.5 Force-displacement behavior of EB 

 

Various models of elastomeric bearing 

through using different shape factors are 

introduced in Table 5. The total height of 

elastomeric bearings in all models is 

constant. Fig.6 shows the various models. 

 

 
Fig.6 EBs with various shape factors 
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Table 5 various models of elastomeric bearing and shape factor 

Model ID 

Thickness 

of rubber layers              

(mm) 

Number 

of rubber layers 

Thickness     of 

steel layers 

(mm) 

Number          of 

steel layers 
Shape factor 

Model 1 5 20 3 19 24.5 

Model 2   5.89 17 3.563 16 20.8 

Model 3 8.333 12 5.182 11 14.7 

Model 4 12.5 8 8.143 7 9.8 

 

The cycling loading pattern is depicted in Fig.7.  

 

 
Fig.7 loading pattern 

 

 

4.1 Numerical analysis  

As the shape factor is a key parameter in 

elastomeric bearing design, four various 

shape factors have been defined in Table 5. 

These four models will be under various  

 

 

vertical pressures (10, 6, 2, and 0MPa) and 

then hysteresis loadings will be applied as 

shown in Fig.7.  Figs.8 to 11 are indicating 

the hysteresis behavior of models under 

various vertical pressures. 

 

 
Fig.8 Hysteresis behavior of Model 1 
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Fig.9 Hysteresis behavior of Model 2 

 
Fig.10 Hysteresis behavior of Model 3 

 
Fig.11 Hysteresis behavior of Model 4 

 

 

4.2 Results 

Hysteresis damping is calculated for models 

1 to 4 in cycle #1 and cycle #2 of loading and 

effect of various shape factor and vertical 

pressure on hysteresis damping are 

evaluated. Fig.12 shows the effect of shape 

factor and vertical pressure on hysteresis 

damping. An increase in vertical pressure led 

to enhance the hysteresis damping of 

elastomeric bearings with various shape 

factors. Table 5 shows the variation 

percentage of damping in cycle #2 compared 

to cycle #1. Table 6 also lists the amount of 

damping increment for different shape 

factors and vertical pressures compared with 

model 4 which had no vertical pressure.  
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Fig.12-a cycle #1                                                     

 

 
Fig.12-b cycle #2 

 

Fig.12 Hysteresis damping in various shape factor and vertical load 

 
Table 6 Relative change in damping of cycle #2 to cycle #1 (%) 

Vertical 

pressure 

(MPa) 

S=24.5 S=20.8 S=14.7 S=9.8 

10 5 14.3 7.7 8.9 

6 5.3 4 10.2 11.8 

2 -8.7 -3.6 -26.5 16.3 

0 15.4 15.4 36.5 -1.2 

      (+: Increase and -: Decrease) 
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Table 7 Effect of vertical load on damping 

Vertical 

pressure 

cycle #1 cycle #2 

S=24.5 S=20.8 S=14.7 S=9.8 S=24.5 S=20.8 S=14.7 S=9.8 

Relative change in damping under specified vertical load to without vertical load of EBs (%) 

10 MPa 94.2 101.9 125 62.7 76.7 100 77.5 79.3 

6 MPa 82.7 92.3 88.5 32.5 66.7 73.3 52.1 50 

2 MPa 76.9 61.5 96.2 3.6 40 35 5.6 22 

 

Table 8 indicates the effect of shape factor 

on hysteresis damping. As can be seen, 

higher hysteresis damping was observed in 

lower shape factors. For example, in cycle 

#2, under 10 MPa vertical load, hysteresis 

damping was increased by 38.7% for S=9.8 

as compared to S=24.5. This increase in 

hysteresis damping was 22.5% for the case 

with S=9.8 as compared with shape factor of 

20.8. The hysteresis damping increase of the 

model with S=9.8 was 16.7% compared to 

the one with S=14.7. Under 6 MPa vertical 

pressure, however, the hysteresis damping 

increased by 23% for the model with S=9.8 

relative to the model having S=24.5 and 

incremented by 18.3% in the model with 

S=9.8 to the one with S=20.8 and increased 

by 13.9% in the model via S=9.8 to the 

model with S=14.7. Under 2 MPa vertical 

load, hysteresis damping raised by 19% in 

the model with S=9.8 compared with S=24.5 

and increased by 23.5% in the model with 

S=9.8 to the model with S=20.8 and 

increased by 13.4% in the model with S=9.8 

to the model with S=14.7. In 0 MPa vertical 

load (no pressure), hysteresis damping 

increased by 36.7% in the model with S=9.8 

relative to the model with S=24.5 and 

increased by 36.7% in the model via S=9.8 

to the one having S=20.8 and increased by 

15.5% in the model via S=9.8 relative to the 

one with S=14.7. 
 

Table 8 Percentage of damping variation for various shape factor ratio  

Vertical pressure 

(MPa) 

Damping variation of 

model 4 to model 1 

Damping variation of 

model 4 to model 2 

Damping variation of 

model 4 to model 3 

Cycle #1 Cycle #2 Cycle #1 Cycle #2 Cycle #1 Cycle #2 

10 33.7 38.7 28.6 22.5 15.4 16.7 

6 15.8 23 10 18.3 12.3 13.9 

2 -6.5 19 2.4 23.5 -15.7 13.4 

0 59.6 36.7 59.6 36.7 59.6 15.5 

5. Conclusion  

 

In this research, two main goals were 

pursued. The first goal was to determine the 

appropriate parameters for modeling the 

cyclic behavior of isolators in finite element 

analysis, and the second goal was to 

investigate the effect of shape factor and 

vertical load on the hysteresis damping of 

isolators. The results obtained are 

summarized as follows: 

- The hysteresis parameters such as 

stress scaling factor =1.6, creep 

parameter=2.89, effective stress 

exponent= 1, and creep strain 

exponent=-1 led to closest results in 

comparison with experimental work.  

- Decrease in the shape factor led to 

increase in damping. 

- Damping increases with the increase 

in the vertical pressure. 
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