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Abstract
Water pH and active ingredient concentration are two of the most important variables to consider in the manufacturing 
process of fungicides. If these variables do not meet the required standards, the quality of the product may be compromised 
and lead to poor fungicide performance when water is used as the application carrier, which is in most cases. Given the 
correlation between the variables, these kinds of manufacturing processes must be analyzed in multivariate settings. Thus, 
this paper analyzes the variables involved in the process using the multivariate control chart |S| introduced by J. A. Vargas. 
In the original chart, the arithmetic mean is used as the mean vector estimator. However, in this investigation the arithmetic 
mean was replaced by the Winsorized Mean for the purpose of evaluating the chart performance with a robust estimator. 
The results show that using the new estimator, the control chart is able to detect shifts in the variation of the mean vector 
that the traditional estimator did not. Furthermore, different subgroup sizes for the data were studied in order to examine 
the performance of the chart in each case. It was found that the proposed control chart is more sensible to changes when the 
subgroups consist of less observations, since it is able to better identify the outliers in the sample.

Keywords Fungicide · Variability · Determinant · Outliers

Introduction

The manufacturing process of a fungicide, or any pesticide, 
consists mainly of three phases. First, the active ingredi-
ent must be synthesized in a laboratory or chemical factory. 
Then, it is formulated either by mixing it with a carrier if it 
is to be prepared in liquid form or with a dry fertilizer if the 
intended result is a dust pesticide. Finally, a farmer or a cer-
tified applicator dilutes the pesticide before its application. 
In some cases, the final product might be stored for a short 
amount of time before it is sent to the farmer, who must then 
dilute the emulsified concentration before applying it to the 
field (Secrest n.d.).

The majority of large pesticide manufacturers test their 
products for important characteristics that influence their 
performance, such as potency, emulsification, density, color, 
pH and particle size or suspension depending on the for-
mulation process used (Secrest n.d.). Since most pesticide 
formulations are designed to be diluted using water as a car-
rier, the ideal pH range of the product is one of the most 
important variables for both manufacturers and farmers. A 
high level of pH creates alkaline conditions in which the 
pesticide will undergo a chemical process called hydroly-
sis (Deer and Beard 2001). During this process, the active 
ingredient breaks down into a less powerful formula and, 
consequently, the performance of the pesticide will be less 
effective.

The hydrolysis rate varies for each pesticide, depend-
ing on the active ingredient used. Generally, for each point 
increase in the optimal pH levels for a given pesticide, the 
hydrolysis rate will increase by approximately ten times 
(Deer and Beard 2001). However, there are other factors 
that play a role in the degradation of the pesticide such as its 
susceptibility, the temperature of the water and the amount 
of time it is in alkaline conditions. When using any pesticide 
in the industry of crop production, all of these agents must 
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be adequately handled to increase the chances of a success-
ful pesticide application.

It is the responsibility of the manufacturer to provide use-
ful information of the product on the labels, so that it can be 
applied correctly. In order to achieve this goal, the variability 
of the factors that affect this process must be controlled prior 
to the application, in the different phases of the manufactur-
ing process. Since there are many factors to consider when 
manufacturing pesticides, the quality control technique must 
be conducted in a multivariate setting. In this paper, two of 
the key variables involved in the manufacturing process of 
a pesticide, more specifically a fungicide, will be examined 
using a multivariate control chart.

Agrochemical companies and other economic sectors, 
must study and control the variables that affect their manu-
facturing processes to achieve total quality assurance and 
customer satisfaction, since it plays a critical role in the 
success of one manufacturing enterprise in today’s globally 
competitive marketplace (Du et al. 2012). An influential fac-
tor in manufacturing process quality is variability, which can 
affect product features and make them different from each 
other, even when they belong to the same production line. 
Process variability may have assignable or non-assignable 
causes. The latter does not have a dominant influence on the 
process and is subject to changes over time. On the other 
hand, assignable causes affect the process in either a sys-
tematic or a sporadic way and can be easily distinguished, 
isolated and eventually eliminated (Rogalewicz 2012).

Statistical process control and specifically control charts 
are presented as a tool that helps monitor variability and 
process behavior. Moreover, its tools play an important role 
in controlling the quality of the products, which ultimately 
ensures that they will meet client needs and general require-
ments (Haridy and Wu 2009). In this sense, control charts 
allow manufacturers to determine whether the behavior of 
their processes is appropriate or non-assignable causes that 
affect its performance can be found. Manufacturing indus-
tries were a pioneer in control charts application, more 
exactly univariate control charts that were used to improve 
quality of products, particularly in the automobiles, techno-
logic, chemical and pharmaceutical sectors; nevertheless, 
service companies such as electrical energy, public transpor-
tation, banking, retailing and health care sector also make 
use of these charts to seek satisfaction and customer loyalty 
(Montgomery 2009).

A process is considered statistically unstable or out of 
control when the control chart shows one or more points 
that are higher (or lower) than the established control limits. 
This can also be said if the behavioral pattern of the chart is 
not random (Du et al. 2013). However, most processes have 
more than one variables causing disturbances in their per-
formance, leading to difficulties in the identification of main 
causes for variability. Furthermore, manufacturing processes 

are often highly correlated and univariate control charts are 
unable to display their interrelation (Stefatos and Hamza 
2009), since they can only be used to analyze isolated vari-
ables. Applying individual control charts to each variable 
independently has been proven an inefficient solution that 
can lead to distortions.

By applying multivariate control charts, out-of-control 
signals can be detected and this allows manufacturers to 
diagnose and identify the factors in the process that affect 
the behavior of these variables, as well as establish correc-
tive actions (Costa et al. 2015). There is a large number of 
published studies describing the role of control charts in 
industrial processes. Therefore, it is possible to find different 
approaches that can be more or less efficient in any given 
situation. In some cases, the effectiveness of any statistical 
analysis technique is influenced by the traditional assump-
tions about the distribution of the sample data.

When the normality and homoscedasticity (i.e., homoge-
neity of variance) of the sample data are assumed, the pres-
ence of outlying observations that challenge these assump-
tions may result in different types of errors (Goodwyn 2012). 
The justification for such assumptions is that if they cause 
insignificant errors in the model, the resulting errors in the 
conclusion will also be small, but this is not always the case. 
In the past decades, it has been observed that the most com-
mon statistical procedures are extremely sensitive to minor 
deviations originated from the traditional assumptions and 
many robust procedures have been proposed in order to 
obtain more accurate measures (Huber 1981).

Robust statistical methods are less influenced by outly-
ing scores in the sample data (Thompson 2006). An outlier 
is an observation that lie downs an abnormal distance from 
other values in a dataset (Al-Khazaleh et al. 2015). Such 
observations can lead to inaccurate results in the calculation 
of statistical measures, more specifically for this case study, 
central tendency measures, which look for a single value to 
represent the typical individual in a dataset (Wilcox 2001). 
In this sense, when the observations in a dataset are not 
homogenous (i.e., it contains extreme values), this measure 
tends to follow these outliers and the resulting single value 
does not represent adequately the sample data.

In the |S| control chart, the arithmetic mean is used as 
the central tendency measure, assuming the normality of 
the data distribution. In order to reduce the impact of the 
outlying observations in the sample, the usage of the Win-
sorized Mean will be presented as an alternative for a more 
robust estimation. The Winsorized Mean is the mathematical 
average of the Winsorized distribution (Goodwyn 2012) and 
when it is applied on normal data, it does not produce a large 
loss in efficiency (Rivest 1994). Since simply eliminating 
the outliers in the sample is not considered an estimation 
robust method and can cause the results of the analysis to 
be distorted, the Winsorized Mean is a better option because 
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it, rather than trimming the extreme values, replaces a per-
centage of the data with other values of the same set that are 
closer to its actual mean.

In this paper, the Winsorized Mean will be applied to 
the construction of the |S| control chart, more specifically, 
in the calculation of the variance–covariance matrix. The 
main objective of this modification is to reduce the influ-
ence of the largest observations in the dataset obtained from 
a fungicide manufacturing process. The rest of this paper 
is organized as follows. Firstly, the Problem Formulation 
will explain the effects of pH water and active ingredient 
concentration variation on the manufacturing process of a 
fungicide and the problems that the lack of monitoring can 
cause during the application. In the Building section, the 
proposed chart and the methodology of experimentation will 
be presented. In the Results section, the traditional and pro-
posed chart construction methods will be compared, as well 
as the results for different subgroup sizes. Finally, the last 
section contains the conclusion and future work.

Problem formulation

Fungicide is a type of pesticide that specifically kills or 
inhibits fungi, thus protecting plants against fungal dis-
eases. Managing fungal diseases is a very important part of 
crop production because of the impact they have on yield 
and quality (McGrath 2009). The application of a fungicide 
consists not only of the interaction between fungicide and 
fungus, but also between the plant and the fungicide (Smart 
2003). In other words, some environmental conditions can 
have an impact on the effectiveness of the fungicide such as 
temperature, type of plant and method of cultivation.

The majority of pesticides are commercialized in a con-
centrated form, which must be dissolved in water in order to 
activate its components. This is also the case for fungicides, 
since they are often sold in powder and granulated form. 
Considering the use of water in the application of fungicides, 
it is important to examine the way that the active ingredi-
ent reacts to its properties, such as hardness and pH level. 
If the pH of the water is higher than 7.5, it is considered 
alkaline and can affect the performance of some pesticides. 
The alkalinity of the water can degrade the active ingredient 
of the fungicide, thereby making it non-toxic and ineffective 
against fungal diseases (Schilder 2008).

The half-life is a measurement that indicates how long 
it takes for alkaline water to degrade the pesticide. For 
some active ingredients, a pH level of 5–7 is optimal 
and they become unstable if it is above 9 and below 4. In 
other instances, fungicides can be stable at pH = 10 and 
11, depending on the product and the active ingredient 
used. Overall, the half-life indicates the percentage of the 
active ingredient that is degraded in a certain amount of 

time. Dimethoate, for example, is reduced up to 50% in 
48 min at a pH = 9. This results in the application of half 
the acquired amount of the active ingredient and, there-
fore, poor pesticide performance.

Though farmers and certified applicators can fix the 
problem that hydrolysis supposes, by lowering and con-
trolling the pH levels of the water with buffering agents 
(Deer and Beard 2001), the susceptibility to degrada-
tion of a fungicide is a factor that manufacturers must be 
concerned with. It is their responsibility to offer quality 
products with standard characteristics that will respond 
to buffering agents utilized by the customer. The active 
ingredient concentration and optimal pH water play an 
important role in the performance of the fungicide during 
the application and therefore the homogeneity and cor-
relation between these variables are key factors to control 
during production.

Generally, manufacturers provide the information nec-
essary for the user to correctly apply the fungicide. This 
includes the level of pH at which the product performs best 
and the rate at which the fungicide hydrolyzes, among oth-
ers (McKie and Johnson 2002). In order to accurately pre-
sent this information, both the active ingredient concen-
tration and the water pH level that will cause the product 
to degrade must be controlled during the manufacturing 
process. If these characteristics are too variable, different 
units of the same product will perform differently for each 
costumer, which makes the fungicide unreliable.

The active ingredient concentration in a fungicide can 
influence its susceptibility to alkaline hydrolysis, since 
the latter is usually determined by the characteristics of 
the first. As mentioned before, depending on the active 
ingredient used, a fungicide may be resistant to pH levels 
above 7.0 for up to 10 days but this may vary in a product 
in this ingredient concentration is inconsistent throughout 
the production process. Thus, it is important for manufac-
turers to control the levels of both variables during pro-
duction as to determine whether they are liable to change 
for each unit.

In this case, the application of a multivariate control 
chart, more specifically the |S| control chart, allows the 
monitoring of the optimal pH and the concentration of the 
active ingredient at which the product performs best. For the 
purpose of analyzing the interaction between these variables 
and the impact of variations in the fungicide manufactur-
ing process, the |S| control chart uses the determinant of 
the variance covariance matrix as a measure of variability 
(Morales and Vargas 2008). However, the usage of the arith-
metic mean as the measure of central tendency leads to inac-
curate parameter calculations, especially in the presence of 
outlying observations. For this reason, robust estimates for 
the mean vector were necessary to enhance the performance 
of the control chart.
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Building section

This section is dedicated to a brief overview of existing stud-
ies about mean vector estimators and original multivariate 
control chart proposals. These investigations support the 
applied methodology in this paper.

Vargas (2003) stated that the usual estimators are very 
sensitive to outliers in the sample. The T2 chart and other 
similar multivariate control charts are based on sensible esti-
mators. In these cases, the statistic plotted performs poorly 
and is ineffective in the detection of shifts in the mean vec-
tor. Under such circumstances, the |S| chart control limits 
become unreliable and the statistic may not represent the 
actual interaction between the variables of interest for a 
given process. With the objective of eliminating these limi-
tations, Vargas proposed using robust estimators that provide 
more statistical power than the traditional ones.

Morales and Vargas (2008) claimed that the EWMA con-
trol charts are very efficient when monitoring small changes 
in the variability. In their research, they studied different 
multivariate control charts, including EWMA, CUSUM and 
Shewhart-type control charts, whose measure of global vari-
ability is the generalized variance. This measure is defined 
as the determinant of the variance covariance matrix. The |S| 
chart, which is one of the Shewhart-type control charts, will 
be modified to include a robust estimator and will be applied 
to the manufacturing process of a fungicide.

Moreover, Dixon (1960) reviewed different approaches 
to the use of robust estimators of mean and standard devia-
tion. In his study, Dixon explained different methods for 
eliminating or censoring observations with magnitudes that 
are more extreme than the other observations in the sample. 
The approach called symmetrical censoring requires that the 
observations be organized in descending order to facilitate 
the replacement of outliers from each extreme of the sample. 
This way, the extreme values are not eliminated but rather 
the mean estimator is adjusted, thereby making it more reli-
able. Dixon concluded that for k observations censored at 
each extreme this estimator is

In the original |S| chart, for i random observation samples, 
let Si be the variance–covariance matrix of the ith sample 
and ||Si|| its determinant. According to Lee and Khoo (2016), 
where

With the purpose of reducing the influence of the outliers 
in the dataset, the Winsorized Mean will be defined as the 
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measure of central tendency for the proposed chart. Thus, 
let Simw be the variance–covariance matrix of the ith sample 
and |Simw | its determinant, where
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In the fungicide manufacturing process, the active ingre-
dient concentration and the optimal pH of the water are 
the most important quality characteristics. In this process, 
these variables are highly correlated, which requires that 
the analysis be conducted in a multivariate setting, using 
the |S| control chart. For the purpose of evaluating chart 
performance, the |S| chart proposed by Vargas (2006) using 
the mean vector and the model with Winsorized Mean were 
compared and analyzed. The analysis was organized in the 
following way.

A total of i subgroups were defined out of a hundred 
observations that followed a normal distribution. The sub-
groups were conformed by k observations for each of the p 
quality characteristics. Firstly, the arithmetic mean of each 
subgroup and the differences between each observation and 
the estimated mean were calculated. The latter were used to 
calculate the variance–covariance matrix of each subgroup 
and its corresponding |Si| determinant as shown in Eq. (2). 
Since ||�0

|
| is unknown, Eq. (5) was used to find the central 

limit of this control chart, which corresponds to |S̄i| . Upper 
and lower control limits are calculated with Eqs. (4) and (6), 
respectively.

On the other hand, Eq. (1) was used to calculate the Win-
sorized Mean of every subgroup, censoring 10% of each 
extreme by replacing the outliers with the magnitude of their 
lower or higher neighbor. Secondly, the differences between 
each observation and the new estimated mean were used to 
calculate the variance–covariance matrix and its correspond-
ing |Simw | determinant as shown in Eq. (3).

Furthermore, the central limit of this control chart was 
defined by the Winsorized Mean of the determinants, as 
shown in Eq. (8), while constants b1 and b2 are calculated 
with Eqs. (10) and (11), respectively. These values are used 
in Eqs. (4), (6), (7) and (9) to find the upper and lower con-
trol limits. Finally, the values of the determinants |Simw | were 
plotted to evaluate the performance of the process.

Case study

The object of study is a product manufactured by an agro-
chemical plant, specialized in crop protection, with a product 
portfolio designed to increase productivity and help produc-
ers protect their fields against weeds, insects and diseases. 
Primary data were collected from the manufacturing process 
of a fungicide whose active ingredient is propiconazole. This 
active ingredient protects the plant from within and is effec-
tive against a wide spectrum of diseases that affect banana, 
coffee and rice crops.

Let the variables p1 and p2 be the optimal water pH and 
the propiconazole concentration, respectively. The two 
building models described in the previous section were exe-
cuted in order to evaluate their performance and capability 

of shift detection in the mean vector. Additionally, three dif-
ferent subgroup sizes were studied with the proposed control 
chart, using the Winsorized Mean as the central tendency 
measure.

The analysis was conducted as follows. First, the set of 
a hundred observations was divided into i = 10 subgroups 
with k = 10 observations each. Both the traditional and the 
proposed control charts were constructed with these param-
eters. Then, the performance of the proposed control chart 
was analyzed with different values for these parameters: 
i = 5 subgroups with k = 20 observations and i = 20 sub-
groups with k = 5 observations each. Note that only when 
k = 10 was the traditional chart constructed; the variations 
in the subgroup sizes were only considered for the proposed 
chart to evaluate the results of the robust estimator for dif-
ferent construction methods. The graphics were compared 
to assess the sensibility of the chart for each case.

Table 1 shows the determinants of the variance covari-
ance matrices for both the traditional and the proposed con-
trol chart. These results correspond to the i = 10 subgroups, 
and it is possible to observe the differences in the calcula-
tions when the traditional and robust estimators are used.

For the proposed control chart, constants b1 and b2 calcu-
lated using Eqs. (10) and (11) are 0.8889 and 0.4170, respec-
tively. The three values for upper, central and lower control 
limits are 0.1263, 0.0397 and 0.0000. The central limit is 
the Winsorized Mean of determinants set |Simw | , and Eq. (3) 
was used to calculate this value. The values for constants b1 
and b2 are the same for the traditional chart, while the cor-
responding upper, central a lower control limits, using the 
mathematical average, are 0.1371, 0.0431 and 0.000 and are 
obtained using Eqs. (4), (5) and (6), respectively.

In Fig. 1, it can be observed that determinant |S6mw | is an 
out-of-control point. This value is higher than the upper con-
trol limit with a difference between both values of 0.0108. 
Moreover, the chart shows high variability with determi-
nants that are considerably higher or lower than the central 

Table 1  Determinants of i = 10 subgroups

Subgroup |S| control chart with m
w

|S| control
chart with x̄

1 0.0401 0.0401
2 0.0271 0.0281
3 0.0810 0.0802
4 0.0506 0.0508
5 0.0397 0.0353
6 0.1371 0.1251
7 0.0066 0.0042
8 0.0531 0.0481
9 0.0053 0.0053
10 0.0140 0.0141
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line value but do not represent out-of-control signals. These 
signals, combined with the non-random pattern observed in 
the behavior of the control chart, are indicators of an alarm 
sign that describes a statistically unstable process.

In order to analyze the out-of-control signal shown in 
Fig. 1, it was necessary to study the composition of the 
subgroup that caused |S6mw | to be higher than the UCL of 
the chart. Such analysis helps determine whether the alarm 
signal is a result of high process variability or it can be con-
sidered a false alarm. The standard deviation for the i = 10 
subgroups of |Smw| chart is illustrated in Fig. 2. This graphic 
shows that |S6mw | has the second highest deviation in the 
active ingredient concentration values, which is an indica-
tor of heterogeneity in this variable. However, that is also the 
case for many of the other subgroups in this chart configura-
tion. The determining factor for the out-of-control signal in 
subgroup six is the high deviation value in the pH variable 
of the subgroup.

High variability in both of the studied variables results 
in greater differences between the observations of any given 
subgroup and the robust mean estimator used. This is also an 

indicator that the manufacturing process is failing to main-
tain the specification values and their variability within the 
tolerance interval and, therefore, can lead to uneven produc-
tion batches and affect the reliability in the product. Note 
that other subgroups have higher deviation values in one 
of the variables but they do not represent an out-of-control 
signal because the other variable is more stable. Since the 
|S| control chart focuses on the correlation between the p
variables included, an alarm signal is presented when this
correlation indicates disperse characteristic values that fall
outside the control limits of the manufacturing process,
thereby making it easier to identify efficiency problems in
the production system.

Figure 3, in contrast, corroborates that the traditional 
method of construction, i.e., using the arithmetic mean, 
does not detect out-of-control signals, since all the points 
in the graphic stay within the limits of the control chart. 
In this case, the highest determinant value is also ||S6|| but 
the upper control limit is higher by 0.012 points. Although 
both charts show a similar behavioral pattern, the traditional 
method is proven to be less sensitive to the largest observa-
tions in subgroup six. The results obtain from both charts, 
albeit fairly similar, provide different information about the 
same process. In fact, the absence of out-of-control signals 
in the traditional chart may be enough for manufacturers to 
ignore the variability in their processes.

For the second scenario analyzed, the observations were 
divided into i = 5 subgroups of k = 20 observations each. 
Table 2 shows the determinants for each variance–covari-
ance matrix calculated from the sample. The control limits 
of the chart were found using the corresponding equations 
and are equal to 0.1163, 0.0478 and 0.000 for the upper, 
central and lower control limit, respectively. In this scenario, 
constant b1 = 0.9474 and constant b2 = 0.2047 ; note that 
these values are different from those obtained earlier with a 
smaller subgroup size because the parameter k changed in 
Eqs. (10) and (11).

Fig. 1  Proposed ||Smw
|
| chart for i = 10

Fig. 2  Standard deviation for each subgroup when i = 10 Fig. 3  Traditional |S| chart for i = 10
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Figure 4 shows that the multivariate control chart does 
not detect out-of-control signals. The determinant of sub-
group ||

|
S4mw

|
|
|
 is the highest plotted point in the chart. How-

ever, the difference between this point and the UCL has a 
magnitude of 0.0679, which is very significant considering 
the performance of the control chart when each subgroup 
had fewer observations. Furthermore, all the determinants 
are close to the value of the process mean vector indicating 
that under these new conditions, the control chart is far more 
centered than the previous scenario analyzed, as shown in 
Table 3. 

Lastly, a third scenario was analyzed, where k = 5 obser-
vations per subgroup. Using Eq. (1), the Winsorized Mean 
was calculated for each one of the 20 subgroups defined. 
Only one of the top and bottom values of the observations 
were censored, which means that three out of the five origi-
nals observations in each subgroup were included in the cal-
culation of its mean value. Since the parameter k changed 
in Eqs. (10) and (11), the resulting b1 and b2 were 0.7500 
and 0.8437, respectively. The values for the control limits, 
obtained using the corresponding Eqs. (7), (8) and (9), are 
 UCLmw = 0.1840;  CLmw = 0.0394; and  LCLmw = 0.000.

In Fig. 5, it can be observed that the control chart detected 
two out-of-control signals in the process, ||

|
S6mw

|
|
|
 and ||

|
S11mw

|
|
|
 . 

Although this chart was constructed using different param-
eters, its behavior is congruent with the results of the other 

methods. ||
|
S11mw

|
|
|
 is the highest point in the chart, with a dif-

ference of 0.0518 between its value and the upper control 
limit; this point and the determinant for subgroup six when 
k = 10 are analogous, which substantiates that the robust 
estimator in the construction method helps identify the larg-
est observation in the dataset by indicating alarm signals in 
the subgroups in which they are included. In this case, there 
is a second out-of-control signals that the other charts had 
not detected. However, this point is consistently the second 
highest in every other chart, underlining the fact that the 
effect of the robust estimator intensifies as the subgroups 

Table 2  Determinants of i = 5 subgroups

Subgroup Determinants for |S| control 
chart with m

w

1 0.0551
2 0.0243
3 0.0431
4 0.0841
5 0.0429

Fig. 4  ||Smw|| chart for i = 5

Table 3  Determinants for i = 20 subgroups

Subgroup Determinants for |S| control chart 
with m

w

1 0.0342
2 0.0190
3 0.0044
4 0.0323
5 0.0813
6 0.1985
7 0.0293
8 0.0740
9 0.0014
10 0.0851
11 0.2358
12 0.0007
13 0.0105
14 0.0033
15 0.1274
16 0.0001
17 0.0131
18 0.0001
19 0.0029
20 0.0122

Fig. 5  ||Smw|| chart for i = 20
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size decreases. Besides the out-of-control signals, the 
graphic when k = 20 shows the lowest points found in the 
analysis across the cases, with ||

|
S16mw

|
|
|
 and ||

|
S18mw

|
|
|
 being nearly 

the same value as the lowest control limit.

Conclusions

This paper focused on the analysis of two important vari-
ables involved in the manufacturing process of a fungicide, 
using a multivariate control chart with a robust mean estima-
tor. Three separate cases were created from the same case 
study by changing the parameters established for structuring 
the chart. The charts were presented in order to test their 
accuracy in performance and effectiveness. In addition, the 
original control chart introduced by Vargas was compared to 
one of the cases of the proposed chart to determine whether 
or not differences can be found when using robust estimators 
in the mean calculation.

The information available in the control chart shown in 
Fig. 1 indicates that the process is mostly unstable (i.e., the 
majority of the points are not centered) but the statistic plot-
ted stays within the control limits. There is, however, an 
out-of-control sign that represents existing problems in the 
process. In terms of fungicide manufacturing, this means 
that the final product does not meet the requirements and 
could be subject to hydrolysis when mixed into water. On 
the other hand, Fig. 3 presents a control chart obtained by 
using the traditional construction method, which does not 
detect out-of-control signals in the process.

Notwithstanding the similarities between the proposed 
and traditional methods, it was found that if the latter is 
used, the resulting chart is less sensitive to small shifts in 
the mean vector. This serves as evidence that the usage of 
robust estimators in the construction method of the chart, 
such as the Winsorized Mean, leads to a more effective 
process variability diagnosis. Furthermore, there are great 
differences between the control limits for the proposed and 
traditional chart, namely the central control limit. Since the 
CL is defined by the central tendency measure used, it can 
be expected that these values influence the behavior of the 
plotted statistic. In this instance, the value of the central 
limit for the traditional chart caused the upper control limit 
to be higher and ,consequently, no points move outside the 
limits established.

Although they were based on the same set of observa-
tions, Figs. 1 and 4 are drastically different. With 20 obser-
vations for each subgroup, the third control chart does not 
present out-of-control signals and the determinants are less 
dispersed. This does not necessarily imply that the process 
is in control but rather serves as a sensitivity measurement 
for the second subgroup arrangement. Figure 5 presents the 

opposite scenario, with more out-of-control signals than the 
previously studied cases. Nevertheless, this is not enough 
justification to claim that the chart performs better under 
these conditions because the quantity of censored data with 
smaller subgroup sizes may sacrifice a significant part of the 
original collected data.

With k = 5 , it is not possible to symmetrically censure 
less than 20% off each tail. This means that in each subgroup 
two values were replaced, causing the sample to have fewer 
original data. By using these parameter values, 40 out of 
100 observations are censored, which can cause the results 
to be less reliable. Moreover, in cases where there is extreme 
variation among the data, fewer data per subgroup size will 
result in a control chart similar to a traditional Shewhart-
type one because extreme values will remain in each sub-
group and the mean estimator will still be influence by large 
observations. On the other hand, when the subgroups have 
more observations, the control chart is unable to effectively 
detect the outliers in the sample, and the censored data may 
not be enough to obtain an effective mean estimator. Conse-
quently, conclusions based on this chart can also be mislead-
ing and inaccurate.

Generally speaking, the outlying observations stand out 
more in smaller subgroup sizes when the Winsorized Mean 
is used. As a result, the control chart in Fig. 1 can provide 
more meaningful information about the fungicide manufac-
turing process and its performance than Fig. 3. Even though 
subgroups with fewer observations may be more effective for 
outlier detection, many of the original data are lost and the 
veracity of the conclusions might be questioned. The com-
parative results show that variations in the chart construction 
method affect the conclusions about process performance 
and out-of-control signals. Therefore, it is recommended that 
the collected data be analyzes prior to applying the control 
chart, with the objective of establishing parameter values 
that might be more appropriate for the situation.

In terms of the fungicide manufacturing process, out-of-
control signals indicate that there is not homogeneity in the 
production batch. If the determinant of a subgroup causes 
an out-of-control point in the control chart, it means that 
the products included in the subgroup sample had a high 
variation in the propiconazole concentration and optimal pH 
water levels from unit to unit. As a consequence, some of 
the units will hydrolyze more rapidly than others because 
of their lower active ingredient concentration and lower pH 
water resistance. In this highly competitive market, manu-
facturers are required to not only apply statistical process 
control tools to their production systems but also choose cor-
rect methods to identify alarm signs that may not be detected 
with inadequate measures. This will directly affect the qual-
ity of their products and customer satisfaction levels.

Lastly, future studies may compare the proposed multi-
variate control chart with an already existing multivariate 
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control chart, such as MEWMA in order to assess the effec-
tiveness of each method for a given manufacturing process. 
Furthermore, non-symmetrical censuring methods may be 
applied to small subgroup sizes to decrease the number of 
original observations censored while still applying robust 
estimators for central tendency measures. This would reduce 
the impact seen on the control chart when the Winsorized 
Mean was used.

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat iveco 
mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.

Appendix: Table of parameters

Sign Description

b1, b1 Constant values used to calculate 
the control limits

i Index; number of subgroups into 
which the dataset was divided

j Index
k Index; number of observations per 

subgroup i
m

w
Winsorized Mean

N Count of numbers of the Win-
sorized Mean

p Number of variables included in 
the multivariate analysis

Si Variance–covariance matrix
S
i
mw

Variance–covariance matrix calcu-
lated using the Winsorized Mean

|
|Si

|
| Determinant of the variance–

covariance matrix
|
|
|
S
i
mw

|
|
|

Determinant of the variance–
covariance matrix calculated 
with the Winsorized Mean

Sign Description

UCL Upper control limit
CL Central control limit
LCL Lower control limit
UCL

mw
Upper control limit calculated 

with the Winsorized Mean
CL

mw
Central control limit calculated 

with the Winsorized Mean
LCL

mw
Lower control limit calculated 

with the Winsorized Mean
|
|�0

|
| Determinant of the variance–

covariance matrix of a statistical 
population

Figure 6 shows the behavior of the variables when the con-
trol chart introduced by Vargas is used with i = 5 subgroups. 
It can be observed that, in comparison with the proposed 
control chart, the performance follows a similar pattern since 
there are no out-of-control signals. However, there are vari-
ations in the values of determinants ||S3|| and ||S5|| between 
one control chart and the other, which is caused by fluctua-
tions in the behavior of the variables involved in the analy-
sis. For ||S3|| , the value of this determinant with the original 
control chart is the lowest of the determinants set, while in 
the proposed chart with the Winsorized Mean, the value of 
this determinant is considerably closer to the central con-
trol limit. On the other hand, the value of determinant ||S5|| 
is greater than the central control limit in the control chart 
introduced by Vargas but in the proposed chart, it is lower 
than this limit.

In Fig. 7, it can be observed that the original control chart 
is able to detect one out-of-control signal in the manufactur-
ing process of fungicides. Although this value is greater than 
the upper control limit, it is relatively close to its value with 
a difference of 0.0048 between them. In comparison, the 
control chart proposed using the Winsorized Mean detected 
two out-of-control signals in the manufacturing process ana-
lyzed indicating more sensibility. Lastly, both control charts 
present a similar behavior and follow the same pattern.

Fig. 6  |S| chart for i = 5 Fig. 7  |S| chart for i = 20

http://creativecommons.org/licenses/by/4.0/
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