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Abstract
In this research, we study an optimal overhaul–replacement policy of a multi-degraded repairable system sold with a free 
replacement warranty. In the proposed replacement policy, a maintenance action and failure are dependent on a system 
degradation level and the system age, and hence the replacement model will provide more effective maintenance decisions. 
Failure of the system is modeled using a rate of occurrence of failure for the system, which is as a function of a degradation 
level of the system and its age. We develop the optimal replacement policy for a multi-degraded repairable system from the 
buyer’s point of view, who plans to use the system for a horizon planning T. The buyer conducts a periodic evaluation and 
selects an appropriate maintenance option based on the revealed system condition together with the system operational age. 
At each evaluation point, three alternative decisions are available, i.e., keep running the system, overhaul, or replace it with 
a new one. We formulate the sequential decision (keep, overhaul, or replace) problem as a dynamic programming model 
and obtain an optimal policy that minimizes total cost over T. Numerical examples are presented using several hypothetical 
data sets to illustrate the structure of optimal solution and its sensitivity against the change in parameter values. The main 
contribution of the paper is to offer a decision tool that will help in deciding the overhaul–replacement action based on the 
degradation level and the operational age of the system.

Keywords Multi-degraded repairable system · Warranty · Minimal repair/overhaul/replacement · Sequential optimal 
decision · Dynamic programming

Introduction

Maintenance is an activity to keep or to recover the perfor-
mance of a system to a functioning state to accomplish its 
intended function. For a system with an increasing rate of 
failure and a high failure cost (which is very much greater 
than a preventive maintenance cost), it is more efficient to do 
a preventive maintenance before failure occurs. The effec-
tive preventive maintenance (pm) for a production system 
will decrease the number of failures, and hence it minimizes 
the total maintenance cost and provides economic benefits. 

Many maintenance optimization models which consider the 
cost–benefit trade-off have been studied, and some of them 
have been widely applied in practice (see Pierskalla and Voe-
lker 1976; Valdez-Flores and Feldman 1989; Wang 2002; 
Chouhan et al. 2013 to name a few). The stages involved 
to study the preventive maintenance policies are generally 
(1) pm policy formulation, (2) failure and cost modeling,
(3) model formulation, and (4) analysis to find an optimal
solution with an objective function being the maximization
of reliability/availability or cost minimization.

A warranty is a contractual agreement between a manu-
facturer and a buyer to set up liability in case of a prema-
ture failure of an item or inability to perform its intended 
function. One type of warranty that is usually offered for 
repairable products is the free replacement warranty (FRW) 
(Blischke and Murthy 1994). Many products are sold with 
warranty in which the manufacturers agree to give free 
maintenance services or compensation to the buyer when 
the product fails during the warranty period (Shafiee and 
Chukova 2013). It followed that most research on warranty 
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and maintenance optimization studied is done from the 
manufacturer’s point of view (Jack and Dagpunar 1994; 
Jack et al. 2009; Wang et al. 2015), and some works con-
sider the interests of the manufacturer and the buyer (Wang 
et al. 2017; Iskandar et al. 2016). From the buyer’s point 
of view, especially those who buy assets and use them to 
support their businesses, after-sale services (such as war-
ranty, spare parts availability, and repair and maintenance) 
are important factors to attain their business performances. 
Among these, the warranty has been considered as an 
important means to influence the buyer’s decision at the 
time of purchase—more attractive warranty term will give 
more influence to purchase the product. However, the study 
of a replacement (or maintenance policy) policy with war-
ranty consideration from the buyer’s point of view is still 
relatively limited. Sahin and Polatoglu (1996) and Jung 
and Park (2003) propose maintenance strategy post-war-
ranty period; Pascual and Ortega (2006) consider optimal 
replacement and overhauls decision with imperfect main-
tenance; and (Soemadi et al. 2014) consider sequential do-
nothing, overhaul, and replacement decision for a repair-
able system. To our knowledge, warranty studies on the 
maintenance of multi-degraded systems from the buyer’s 
point of view have not been considered in previous works.

In many maintenance policies studied, it is considered 
that a system has one of two conditions, i.e., operating or 
fail state, while in a multi-degraded system, the system 
may in one of many different intermediate operating states 
between working perfectly gradually deteriorate until even-
tually breakdown states. Gradual system degradation over 
time can be caused by wear, fatigue, and corrosion (Zhang 
et al. 2016), different operating environment (Sidibe et al. 
2017), or internal and external shock (Yang et al. 2017). 
Furthermore, system failure can be classified based on its 
severity, for example critical failure and degraded fail-
ure. A critical state means loss of a major function, and a 
degraded state means that some degradation has started, but 
the overall system is still capable of performing its func-
tion. If a system has a degraded failure, it often follows that 
a critical failure is more likely to occur. The existence of 
any dependence on the occurrence of degraded and criti-
cal failures that affect the estimates of the system ROCOF 
(rate occurrence of failure) has been considered by Hokstad 
and Frovig (1996). Maintenance can be classified according 
to the degree to which the operating conditions of an item 
are restored by, i.e., perfect maintenance, minimal repair, 
and imperfect maintenance (Pham and Wang 1996). An 
overhaul represents an imperfect maintenance action. The 
system failure rate after overhaul is improved but not to as 
good as new condition (Pascual and Ortega 2006). Doyen 
and Gaudoin (2004) propose a reduction in system failure 
intensity and virtual system age reduction. Amari et al. 
(2006) and Moustafa et al. (2004) have considered imperfect 

maintenance for a multi-degraded system (written as minor 
maintenance or minimal maintenance) which improves the 
system degradation one level better.

The study of maintenance for multi-degraded systems 
has often been raised in the condition-based maintenance 
(CBM) strategy literature where most of the models devel-
oped seek the optimal solution minimizing the total cost. 
Moustafa (2002) considers a multistate semi-Markovian 
deteriorating system under continuous inspection with no 
random failure. Amari et al. (2006) use semi-Markov deci-
sion process formulation to provide an optimal cost-effec-
tive maintenance policy that must be taken for each status 
encountered, as well as the next optimal inspection schedule. 
Kurt and Kharoufeh (2010) study a system that deteriorates 
according to a discrete-time Markov process with a limit on 
the number of repairs that can be performed before replace-
ment since each repair makes the system more susceptible 
to future deterioration. Caballé et al. (2015) propose a strat-
egy for a system subject to degradation and sudden shocks, 
with a certain degradation threshold, assuming the depend-
ence on the competing causes of failure. Zhang et al. (2016) 
consider inspection-based PM policy of a system with non-
stationary degradation feature and the state detection delay. 
Sidibe et al. (2017) consider second-hand systems with an 
uncertainty of their age and degradation levels and being 
operated in a secondary environment that is more severe 
than operating conditions of their first lifetimes. Yang et al. 
(2017) propose optimal preventive replacement interval, 
inspection interval, and number of inspections for a system 
with internal deterioration and sudden shocks. Some model 
has been developed to maximize the system performance. 
Soro et al. (2010) determine the inspection periodicity to 
maximize the overall production rate of the system. Khatab 
et al. (2012) propose imperfect maintenance strategy for a 
continuously monitored degrading system to maximize the 
average system availability. Soro et al. (2012) develop a 
model for evaluating the availability, the production rate, 
and the reliability function of systems subjected to minimal 
repairs and imperfect preventive maintenance. Kumar et al. 
(2018) propose semi-Markov process modeling on steady-
state availability analysis for a given maintenance strategy. 
Works in multi-degraded system consider that degradation 
can be represented by some conditions and can be identified 
by continuous monitoring (Moustafa 2002), or by inspec-
tion. Some works assumed that inspection can reveal the 
system condition perfectly (Amari et al. 2006; Yang et al. 
2017), only partially (Huynh et al. 2011; Moghaddass and 
Zuo 2014), or delayed (Zhang et al. 2016). Transition rate 
between two degradation states can be considered as con-
stant (Amari et al. 2006), or otherwise expressed as time 
increases and modeled as nonhomogeneous Poisson process 
(Moghaddass and Zuo 2014; Kumar et al. 2018). In addition 
to degradation failures, the system can also fail randomly 
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due to Poisson failure (Zhang et al. 2016; Kumar et al. 
2018), shock failure (Yang et al. 2017; Huynh et al. 2011; 
Caballé et al. 2015), or catastrophic failure (Moghaddass 
and Zuo 2014). These failures make the system stop working 
and can be considered as critical failures. The critical failure 
of any stage also has been modeled to have an exponential 
distribution that depends on the system degradation level 
(Zhang et al. 2016; Yang et al. 2017; Kumar et al. 2018).

To our knowledge, all replacement models discussed pre-
viously do not consider a system degradation level in select-
ing a maintenance action required and modeling failures. 
In general, a maintenance action (degree of maintenance 
needed to restore (or to maintain)) and a system failure are 
dependent not only on the degradation level experienced by 
the system (e.g., wear or corrosion level) but also on the age 
of the system. As a result, in this paper, we propose a new 
replacement model in which a maintenance action and fail-
ure are influenced by a system degradation level and the sys-
tem age. This model can be viewed as the extension of the 
replacement model developed by Soemadi et al. (2014)—to 
the case of a multi-degraded system. Our contribution to pre-
vious work in replacement policy multi-degradation system 
modeling is to integrate the observed degradation level of 
the system and the system age to provide more representa-
tive maintenance decisions (i.e., the maintenance action cho-
sen is not only based on the level of system degradation but 
also based on the age of the equipment). In addition, in terms 
of warranty study, the paper will provide the optimal main-
tenance and replacement policy for a multi-degraded war-
ranted product from the buyer’s point of view. As a result, 
the main contribution of the paper is to provide a decision 
tool that will help the owner of the equipment (or machine) 
in deciding the optimal replacement policy based on the 
degradation level and the operational age of the system. We 
use a dynamic programming model that has been applied 
by Hartman and Rogers (2006), Nodem et al. (2011), Cheng 
et al. (2013) and Okamura et al. (2014) to formulate the deci-
sion problem, and obtain an optimal sequential decision. The 
outline of the paper is organized as follows. The first section 
describes the background of the research and indicates the 
research gap. In the second section, we present the charac-
terization of the system, and model formulation and model 
analysis show the existence of the optimal solution in the 
third section. In the fourth section, we provide numerical 
examples illustrating the optimal solution and discuss the 
results. Finally, in the fifth section we give conclusions and 
provide extensions for further research.

System description

The following notations will be used to formulate the pro-
posed model.

c1  Minimal repair cost charged per system failure dur-
ing the warranty

c2  Minimal repair cost charged per system failure after 
the warranty expires

c3  Overhaul cost
c4  Replacement cost
ei(t)  Salvage (or trade-in) value of system at degradation 

levels i and age t
hi(t)  Expected number of failures during s for a system 

with operating age t and degradation level i
i  Degradation level at j
i′  Degradation level at j + 1
j  Evaluation point at the beginning of any operation 

interval, j = 0, 1, …N
K  Keep operated until next evaluation point
k  Minimum level of degradation for replacement 

decision
N  Number of system evaluations during the respective 

planning period (N integer)
O  Overhaul
R  Replace
Sj  System state at j, Sj = (i, t) , i = 0, 1,…m, and 

t = 0, s,… js

Sjxj  New system state at j, after decision xj is chosen
s  Operation interval between two evaluation points 

(s = T/N)
T  Planning horizon
t  System operational age at an evaluation point j, 

t = 0, s,… js

p(i,i’)  Transition probability from i to i′
w  Warranty period, w = n ⋅ s (n = 1, 2, …)
xj  Decision alternatives at j, xj = {K, O, R}
�(t)  Minimal repair cost charged per system failure at 

age t
�i(�)  System ROCOF at degradation level i.

System degradation and system failures

We consider a repairable revenue generating system, e.g., 
production machine that is planned to operate for finite 
horizon planning T  and evaluated periodically. During T, 
there are N evaluation points between operating intervals s 
as shown in Fig. 1. Accordingly, s = T∕N (N takes integer 
values) and j (j = 1,2, …, N) are the evaluation points. At the 
beginning of the planning horizon, a new system begins to 
run and at j = N the system operation is stopped.

We assume that the system is subjected to degradation i 
{i = 0,1,2, …m}, where i = 0 is the best condition as that of 
a new system and i = m is at the worst level. An example of a 
system being considered is a heavy equipment or truck used 
in mining or plantation fields that is planned to be operated 
during certain planning horizon and periodically evaluated 
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to maintain its performance. The equipment is used to serve 
a very large operating area, with variations either in work-
load, field location, driver’s skills, or in the condition of 
road and weather. These operating environments simulta-
neously trigger the degradation of the system and can be 
revealed at evaluation points. The equipment may not always 
be operated on the same site. Consequently, these variations 
in operating environments may result in the change in equip-
ment degradation. At the same time, due to usage and aging, 
various system components experience wear and tear that 
may lead to failure during system operation. In this paper, 
the change in degradation level is modeled by the difference 
in the system ROCOF. We define a system degradation level 
at j, given by its ROCOF �i(�) , and the corresponding age at 
j and expected number of failures are shown in Fig. 2. We 
assume that the levels of degradation are finite and the tran-
sition probabilities of the various levels are known, and the 
system can still be operated at any levels of degradation. In 
other words, a production equipment with the highest level 
of degradation can still be used technically, but the probabil-
ity to fail while it is in operation will be very high. In some 

cases, the equipment is forced to run in order to achieve 
a delivery date, even if it is under the highest degradation 
condition. The degradation level of the system i is revealed 
only at the point of evaluation j; therefore, we assume that 
the occurrence of a system transition is viewed as a discrete 
random event. Throughout the operating period s, the system 
experiences failures that can be minimally repaired so that 
the system is restored immediately after the failure. The time 
required to conduct minimal repair is assumed negligible; 
then, the occurrence of failures during any operation interval 
s follows a nonhomogeneous Poisson process (Nakagawa 
2005). If the system age is t and its degradation level is 
i, then the expected number of failures during (j, j + 1) is 
given by (1):

System state and state transition

We define Sj as system states at j that represented by the 
system degradation level i and the system age t  . Thus, 
Sj = (i, t), i = 0, 1,…m, and t = 0, s,… js . We model the 
rate of occurrences of failure at (j, j + 1) represented by a 
point process with a ROCOF �i(�) , an increasing function 
of � (Hokstad and Frovig 1996). The higher the system 
degradation level means the more possibility of failure to 
occur, so 𝜌i+1(𝜏) > 𝜌i(𝜏) . The probability of transit from
i to i′ is denoted by transition probability p

(
i, i′

)
 . During

any operation interval (j, j + 1), the degradation level i may 
stay to the same level or move to the worse one i′ . Then, 
p
(
i, i�

)
> 0,∀i� ≥ i and 

∑m

i�=i
p
�
i, i�

�
= 1.

Decision alternatives

Based on the degradation level revealed at an inspection 
point, one of the following maintenance actions is taken, 
i.e., (1) do nothing and keep the system running until
next inspection point; (2) an overhaul is performed which
incurred some cost but improve the system degradation to
one level better (Moustafa et al. 2004); (3) replacement is
performed which requires a notable cost but significantly
reduces minimal repair costs during the warranty period.

(1)
hi(t) = �

t+s

t

�i(�)d�

t ≤ � ≤ t + s, for t = s, 2s,… js.

Fig. 1  Planning horizon, opera-
tion intervals, and evaluation 
points

Fig. 2  Illustration of ROCOF, operational age, evaluation point, and 
corresponding system failures
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At each point of evaluation j, a decision xj can be cho-
sen based on system state Sj . It is assumed that overhaul 
and replacement decisions are meant only for a relatively 
worse degradation level ( i > k ) and after the system war-
ranty expired t > w so xj can be written as (3):

Let Sj be the system state at any stage j. We assume that 
once a decision at j is chosen the time needed to execute 
xj is very small (and hence it is ignored). By this assump-
tion, the benefit of decision chosen at j is at once obtained 
as well in the operation period (j, j + 1). The reveal system 
state at evaluation point j is Sj , and after xj is chosen the 
new system state is written as Sj,xj . At the next evaluation 
point j + 1, Sj,xj may shift to Sj+1 as shown in Fig. 3.

Considering the limitation of xj in relation to system 
states as given in (2), the relationship between Sj , decision 
xj and post-decision state Sj,xj is shown in Table 1.

(2)xj =

⎧
⎪⎨⎪⎩

K ∶ keep operating the system ∀(i, t)

O ∶ overhaul the system i ≥ k, t ≥ w

R ∶ replace the system i ≥ k, t ≥ w

Benefit of warranty

There are several costs of interest to buyers over the lifetime 
of revenue generating system, i.e., purchase, maintenance, 
and repair costs, following the expiration of the warranty 
period, operating costs, and disposal costs (Blischke and 
Murthy 1994). The important role of the warranty is to pro-
tect buyers from purchasing defective products. Warranty 
policies offered by the manufacturer can be grouped into two 
types—i.e., one- and two-dimensional warranty policies. In 
one-dimensional policy, the warranty is characterized by time 
interval named the warranty period, and the two-dimensional 
policy is characterized by a region in the two-dimensional 
plane where one axis stands for age and the other for usage. 
The warranty benefits to the buyer are protective, since 
within the warranty period if the product fails the manufac-
turer agrees to repair or replace the failed product at no cost, 
such that the buyer only suffers the cost due to system inter-
ference caused by repair activity. Once this period expires, 
the buyer will be charged for spare parts, maintenance, and 
other services to keep the system’s availability (Wang et al. 
2017). The system considered is sold under a one-dimension 

Fig. 3  Illustration of system 
state at the beginning of j, new 
state at j due to xj , and possible 
state at j + 1

x j = K

x j = O

x j = R

j j +1

i = i, i+1, ...

i = i -1, i, ...

i = 0, 1, ...

S j +1
=(i , t+s)

S j,xj=(0,0)

S j,xj=(i-1,t)

S j,xj=(i,t)

S j =(i,t)

S j +1
=(i , s)

S j +1
=(i , t+s)

Initial 
state at j

Decisionxj

New state 
at j

Initial state 
at j+1

Table 1  Relationship of Sj , 
possible xj, new state Sj,xj , and 
Sj+1

Sj xj Sj,xj Sj+1

i t i t i′ t

< k t < w K i t 1, …m (t + s)
≥ k t ≥ w K i t i,…m (t + s)

O i − 1 t i − 1,…m (t + s)
R 0 0 0, 1, …m s
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free replacement warranty with period w. For simplification, 
w is an integer multiplication of s (w = n·s). Any failure that 
occurs during w will be repaired with no charges, but in such 
situation, there is still acquired some cost to buyer, c1 due to 
disturbances in the system operation, e.g., disruptions of the 
system activity, change in planned production schedule, less 
desirable system performance after reparation which might 
affect availability and product quality. Although the seller 
still bears the cost of repairs during the warranty period, these 
various losses incurred by system failure are suffered by the 
buyer. After the warranty expired (t > w) in case of system 
failure, total minimal repair cost and another cost due to dis-
turbances in the system operation c2 should be paid by the 
owner, where c1 < c2. Let γ denote the minimal repair cost per 
failure incurred, then depending on the warranty status of the 
system the value of γ is written as follows:

Dynamic programming formulation 
and analysis

Evaluation points j (j = 1, …N) are decision points. At the 
last evaluation point, the system operation is ended, and then 
the number of decision period in our model is N − 1. Evalu-
ation and decisions are made throughout planning horizon 
T. At any j, the system state is evaluated, and based on the
revealed state a decision xj is selected that may change the
system state at once. While it is being run, the system state
transition is occurred corresponding to a certain probability.
The combinations of system states and alternative decisions
produce many possible policies. Using dynamic program-
ming, the problem can be solved efficiently. The objective
of the model is to minimize the total expected costs over T.

(3)𝛾 =

{
c1, t < w

c2, t ≥ w.

Using dynamic programming terminologies, stages in this 
problem refer to evaluation points j, j = 1,2…N − 1, that have 
some possible states Sj = (i, t) and xj denote the decision 
chosen at the jth stage. We define minimal repair cost during 
warranty as c1 , and after the warranty expired as c2 . Decision 
cost depends on xj , i.e., no cost for do-nothing, c3 for over-
haul, and c4 for replacement, and we assumed that 
c1 < c2 < c3 < c4 . At j = 0, a new system starts to run, and 
then S0 = (0, 0) . Let Fj(i, t) be the expected total cost from j 
to N. It follows that Fj(i, t) is the summation of decision costs 
at j, the associated minimal repair cost during (j, j + 1) , and 
the best expected total costs for the remaining stages (stage 
j + 1 onwards). Let F∗

j
(i, t) be the best value of Fj(i, t) given 

by optimal decision x∗
j
 , and let any system at state (i, t) can 

be sold for ei(t) ; it follows that the associated costs at j for 
each xj can be obtained as given in Table 2.

We assumed that degradation levels i can be observed at 
any j. Keeping the system to operate until the next evaluation 
point will not change the degradation level as well as the 
system age and give rise to the number of failures during (j, 
j + 1). Conducting overhaul will create a cost of c2 and 
reduces system degradation one level better, so the expected 
number of failures in the next interval operation is relatively 
decreasing. Conducting replacement requires a cost of c3 
which is higher than the overhaul cost, but it gives signifi-
cant benefits both from decrease in system failures and from 
reduction in minimal repair costs due to warranty services. 
The model is developed to find the best sequential decision 
x∗
j
 (j = 1, …N − 1) that minimizes the total expected cost over 

T. We seek the optimal sequential decisions (keep, overhaul,
or replace) that minimize F∗

0
(0, 0) . From Table 1, we develop

F∗
j
(i, t) costs equation at stage j for any state (i, t) that mini-

mizes the total ownership costs at stage j and onward by 
choosing xj. The recursive equations of dynamic program-
ming formulation for j = 0, …, N − 1 are then given by:

(4)F∗
j
(i, t) = min

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

xj = K �hi(t) +
m∑
i�=i

p
�
i, i�

�
F∗
j+1

�
i�, t + s

�
,∀(i, t)

xj = O c3 + �hi−1(t) +
m∑

i�=i−1

p
�
i − 1, i�

�
F∗
j+1

�
i�, t + s

�
, i ≥ 2, t ≥ w

xj = R c4 − ei(t) + �h0(0) +
m∑

i�=0

p
�
0, i�

�
F∗
j+1

�
i�, s

�
, i ≥ 2, t ≥ w

Table 2  Costs at j and the 
remaining stages due to 
decision x

j

x
j

Decision cost Minimal repair costs over the 
current period

Expected costs for the remaining 
stages Fj+1(i, t)

K 0 hi(t)
∑m

i�=i
p
�
i, i�

�
× F∗

j+1

�
i�, t + s

�
O c3 hi−1(t)

∑m

i�=i−1
p
�
i − 1, i�

�
× F∗

j+1

�
i�, t + s

�
R c4 − ei(t) h0(0)

∑m

i�=0
p
�
0, i�

�
× F∗

j+1

�
i�, s

�
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At the end of the planning period (j = N), F∗
N
(t) , the sys-

tem operation is ended and the buyer gets the salvage value 
that is given by:

Using backward approach, we obtain the optimal total 
costs at j and its optimal decision x∗

j
 from j = N − 1, j = N − 2, 

up to j = 1. Possible combinations of degradation level and 
system age of our proposed model result in a quite a lot of 
possible states in each stage. By using backward induction, 
the problem is solved efficiently without tracking every pos-
sible policy. The more the level of system degradations, and 
the longer the planning horizon period results in the larger 
dimension of the problem to solve. In such situations, we 
need to develop solution method that is supported by a com-
puter program. For a small dimension problem, we can solve 
the model by using Microsoft Excel. In the following sec-
tion, we carry out model analysis to prove the existence of 
an optimal solution and some required condition for a 
replacement decision.

Existence of optimal solution

For F∗
j
(i, t) , given by (4), there exists an optimal solution that 

minimizes F∗
0
(0, 0) , given by the decision policy 

�∗ =
{
x∗
0
, x∗

1
,… , x∗

N−1

}
 . We use an induction proof to show 

the existence of an optimal solution for our model. First, we 
denote at any stage j the space states Sj , i.e., the system’s
degradation level and system’s age as Sj =

(
ij, tj

)
 , 

ij ∈ I.I = {1, 2,…m} ,  tj ∈ Tj  .  Tj = {s, 2s,… js} .  Let 
Gj,xj

(
ij, tj

)
 is the current stage’s costs, i.e., cost due to deci-

sion xj and the expected minimal repair cost of (j, j + 1).

At any operation interval (j, j + 1) , the degradation levels i 
only can change into the same or the worse level i′ with prob-
ability pii′ . Depending on the decision taken at the current 
stage xj , all possible states at stage (j + 1) are (Sj+1):

Using (6) and (7), we can rewrite (4), the best total costs 
at a particular stage j onward, as:

(5)F∗
N
(i, t) = −ei(t)

(6)Gj,xj

�
ij, tj

�
=

⎧⎪⎨⎪⎩

�hi
�
tj
�
, xj = K

c3 + �hi−1
�
tj
�
, xj = O

c4 + �h0(0), xj = R

(7)

�
Sj+1

�
=

⎧⎪⎨⎪⎩

�
i�, tj + s

�
, i� =

�
ij, ij + 1,…m

�
, for xj = K�

i�, tj + s
�
, i� =

�
ij − 1,…m

�
, for xj = O�

i�, s
�
, i� = {0, 1,…m}, for xj = R

Using the principle of optimality, we can show that for 
any j (j = 0,1, 2, …N − 1) if there exists a decision xj for a 
certain Sj that satisfies (8), then we can find x∗

j−1
.

For j = N;
At the last stage, the system is sold. The possible states

at N, i.e.,
(
SN

)
=
(
iN , tN

)
 , are finite, iN = {1, 2,…m} and

tN = {s, 2s,…Ns} . The salvage value of the system depends
on its state 

(
SN

)
 , and we can rewrite (5) as:

Using F∗
N

(
iN , tN

)
 , we proceed to show the existence of an

optimal solution at j = N − 1.
For j = N − 1;
At j = N − 1, the finite states space is 

(
SN−1

)
=
(
iN−1, tN−1

)
 , 

iN−1 = {1, 2,…m} and tN−1 = {s, 2s,…(N − 1)s} . Using (8), 
the optimal expected cost of stage N − 1 can be expressed as:

From any state 
(
SN−1

)
 , there exists at least one feasible

xN−1 ∈ {K,O,R} that facilitates movement to one SN in the 
subsequent stage. Hence, it follows that from all feasible 
solutions xN−1 there is at least one x∗

N−1
 that gives the mini-

mum total costs for the last period to go. As a result, at 
j = N − 1 the optimal solution x∗

N−1
 can be obtained for all (

iN−1, tN−1
)
∈ SN−1 which represent all possible states in 

stage N − 1. Continuing the backward process until stage 0,
we will certainly obtain F0x∗

0

(
S0
)
 and optimal decision

sequences  fo r  t he  r ema in ing  s t age s ,  i . e . , 
�∗ = {x∗

0
, x∗

1
,… , x∗

N−1
} that minimizes F∗

0
(0, 0).

Necessary condition for replacement decision

For any j and t (t ≥ w), we can perform replacement with cost
c4, which reduces the system degradation level from i to 0.
We assumed that replacement is only conducted after the
warranty expired and the system salvage value is zero. The
necessary condition at j where replacement is better than
do-nothing can be obtained using Eq. (4) as follows:

(8)

F∗
j

�
Sj
�
= Fjx∗

j

�
Sj
�
= min

xj∈{K,O,R}

⎛
⎜⎜⎝
Gj,xj

�
Sj
�
+

m�
ij+1

pijij+1F
∗
j+1

�
Sj+1

�⎞⎟⎟⎠

(9)F∗
N

(
ij, tj

)
= FN

(
iN , tN

)
= −eiN

(
tN
)

(10)

FN−1x∗
N−1

(
SN−1

)
= min

xj∈{K,O,R}

(
GN−1,xN−1

(
SN−1

)
+

m∑
iN

piN−1iNF
∗
N

(
SN

))

(11)

c2(hi(t) − h0(t)) +

[
m∑
i�=i

p
(
i, i�

)
× F∗

j+1

(
i�, t + s

)

−

m∑
i�=0

p
(
0, i�

)
× F∗

j+1

(
i�, t + s

)]
> c4
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We analyze conditions required to satisfy (11). Since 
hi(t) and Fj(i,t) are increasing functions in i and t, both LHS 
terms of (11) are also increasing in i and t. The first term 
shows minimal repair cost reduction in j due to replacement, 
and the second term stands for the additional benefit of the 
remaining stages. The first term becomes large if failure rate 
gaps between system levels are significant. The second term 
will increase if there is a great system tendency to move to 
the worse level. Thus, to accomplish (11), both gaps between
(λi − λi−1) and 

(
p
(
i, i�

)
− p

(
i − 1, i�

))
 must be sufficiently

large to yield cost reduction either at j or at the remaining 
stages. From (4), we also obtain that the necessary condition 
for replacement is better than overhaul at j as follows:

The first term of the LHS of (12) is overhaul cost. The 
second term stands for the disparity of minimal repair cost 
at j between overhaul and replacement decisions. This term 
always has a positive value since hi−1(t) never approaches 
h0(0) , i.e., the performance of the post-overhaul system can-
not be as good as the new system. The third term stands for 
cost disparities in the remaining stages between overhaul 
and replacement decisions. This value will increase as the 
probability of transition to the worse degradation level is 
increased. Then, there are two conditions needed for the 
decision to replace. First, physical requirements, i.e., deg-
radation level of the system, are more likely to get worse, 
and failure rate gaps between the degradation levels are sig-
nificant. Secondly, economic requirements, i.e., replacement 
cost, are not extremely high compared to overhaul cost.

Warranty effect to replacement decision

Considering zero system salvages value and w = 1, we 
develop that the necessary condition at j for replacement is 
better than overhaul using (4) and (2) as follows:

Both LHS terms of (13) are nonnegative, since h(t) and 
Fj(t) are increasing functions in t, and c2 > c1. The first term 
of LHS is the current stage benefit, and the second term 
is the remaining stage benefits. The necessary condition to 
choose the replacement at j can be satisfied with the accom-
plishment of (13) by either or both terms. We examine 
effects of overhaul and warranty benefits to obtain buyer’s 
sequential overhaul–replacement decisions. Corresponding
to replacement decision, there is a saving, 

(
c2 − c1

)
 for any

(12)

(c3) +
(
c2hi−1(t) − c1h0(0)

)

+

(
m∑

i�=i−1

p
(
i − 1, i�

)
F∗
j+1

(
i�, t + s

)
+

m∑
i�=0

p
(
0, i�

)
F∗
j+1

(
i�, s

))
> c4

(13)

(
c2hi−1(t) − c1h0(0)

)

+

(
m∑

i�=i−1

p
(
i − 1, i�

)
F∗
j+1

(
i�, t + s

)
−

m∑
i�=0

p
(
0, i�

)
F∗
j+1

(
i�, s

))
> c4 − c3

failure during warranty period. The first term value will 
increase as the difference between c2 and c1 increases which 
represents the greater warranty benefits the buyer receives in 
the warranty period. For w = 1, this saving is obtained simply 
in the current stage. Then, to analyze the buyer’s underlying 
decision to replace by j we only consider accomplishment of 
(13) by the current benefits shown in Eq. (14).

Satisfaction of (14) depends on the gap between c2 
and c1 that is associated with how significant is the repair 
cost reduction during the warranty period, and differ-
ences between hi−1(t) and h0(0) that show the disparities 
of expected number of failures between the overhaul deci-
sion and the replacement decision. The decline gives in 
the RHS of (14) similar contribution. This situation shows 
necessary conditions to choose replacement, i.e., a signifi-
cant repair cost reduction during warranty period, and a 
moderate price of a new system. This situation shows nec-
essary conditions to choose replacement, i.e., a significant 
repair cost reduction during warranty period, and a moder-
ate price of a new system. In addition to the more general 
situation where w > 1, we can see also that the second term 
value of (13) also increases for a longer warranty period. 
Thus, it is seen that the benefits obtained by the buyer 
affect the choice of a decision to make a replacement.

Numerical examples

To obtain the optimal solution, we need data including tech-
nical characteristics of system degradation, i.e., its possible 
levels m, the transition probability P, and system failure 
intensity at any level of degradation �i(�) . Economic data 
include the cost of system minimal repair, both within the 
warranty period and after the warranty expired, system over-
haul costs, and system replacement costs. We also need data 
given by the seller/manufacturer, i.e., the price of the new 
system, the length of the warranty period, and the various 
repair costs that will be borne by him in the warranty period.

In the following numerical examples, we consider a sys-
tem which will be used for the next 15 years and evalu-
ated each year. With the system aging, the deterioration 
gets worse. Based on the available data over the system life, 
there are three degradation levels. Overhaul decision will 
reduce system degradation one level better. Hence, we have 
T = 15, N = 15, s = 1, m = 2. We assumed that each deteriora-
tion level is represented by an increasing intensity function 
�i(�) = ��i ⋅ �

�i−1 , where � = 2 , and �i = (1.25, 1.5, 1.75) , 
i = 0,1,2, where i = 0 is the best state. During warranty 
period, part of minimal repair cost is borne by the seller, so 
we model warranty parameters by its length w and percent-
age of minimal repair cost r = c1∕c2.

(14)
(
c2hi−1(t) − c1h0(0) > (c4 − c3

)



S161Journal of Industrial Engineering International (2020) 16 (Suppl 1):S153–S164 

1 3

We consider combination aspects of our model, i.e., 
system degradation, warranty, and also the model analysis 
in the previous section, and developed some data set as 
follows. First, to analyze behavior of optimal solutions to 
different failure parameters we ignore the warranty (w = 0 
and r = 1) and create set data 1 with three scenarios of 
probability transition matrix (P,P�, and P��) , and set 2 with 
another scenarios value of intensity functions parameter, 
(�� and ���) . To test solution behavior toward different 
replacement cost (c4�

and c4
��

) , set data 3 is developed. 
Lastly, to present the influence of system warranty on the 
model solution we create set data 4 with r = 50% for two 
scenarios warranty length (w�,w��) . Table 3 presents all 
the scenarios.

The optimal solution obtained is sequential decisions that 
give minimum expected total cost over T. The jth decision 
depends on the revealed state at the jth evaluation point. Pos-
sible states that may occur at any stages depend on selected 

decisions on earlier stages and their transition probabilities. 
Actually, it is possible to present the whole optimal deci-
sions’ structure directly from the solution of dynamic pro-
gramming, but in order to ease the discussion, we choose 
to do the following two things. First, instead of showing up 
all sequential decisions along T, we represent them in terms 
of the age of the system at j + 1 due to decision choose at j. 
Keep decision can be detected from constantly increasing of 
system age in the next stage, while replacement decision on 
j − 1 will change the system age to one year in the next stage 
at j. Next, to ease discussion of decision behavior we limit 
to the relation of the system age and the decision choose at j 
for each level of system degradation. The solution obtained 
for each data set is presented in Figs. 4, 5, 6, and 7. Overhaul 
decision that changes the system degradation one level bet-
ter at j and does not affect the system age is marked with a 
circle. Figure 4a shows that when the system is not degraded 
(the system remains in its best condition) the decisions are 

Table 3  Set data for numerical examples

Set data Probability transition Shape parameter β Cost parameter Warranty parameter

1
P =

⎡⎢⎢⎣

0.4 0.3 0.3

0.0 0.5 0.5

0.0 0.0 1.0

⎤⎥⎥⎦
P� =

⎡⎢⎢⎣

0.2 0.3 0.5

0.0 0.3 0.7

0.0 0.0 1.0

⎤⎥⎥⎦

P�� =

⎡⎢⎢⎣

0.0 0.4 0.6

0.0 0.0 1.0

0.0 0.0 1.0

⎤⎥⎥⎦

� = (1.25, 1.5, 1.75) c2 = 150

c3 = 265

c4 = 1100

No warranty w = 0
r = 100%

2
P =

⎡⎢⎢⎣

0.4 0.3 0.3

0.0 0.5 0.5

0.0 0.0 1.0

⎤⎥⎥⎦

� = (1.25, 1.5, 1.75)

�� = (1.5, 1.95, 2.35)

��� = (1.65, 2.15, 2.45)

3
P =

⎡⎢⎢⎣

0.4 0.3 0.3

0.0 0.5 0.5

0.0 0.0 1.0

⎤⎥⎥⎦

� = (1.25, 1.5, 1.75) c4 = 1100

c
�

4
= 1250

c
��

4
= 1750

4
P =

⎡⎢⎢⎣

0.4 0.3 0.3

0.0 0.5 0.5

0.0 0.0 1.0

⎤⎥⎥⎦

� = (1.25, 1.5, 1.75) c2 = 150

c3 = 265

c4 = 1750

w = 0, r = 100%
w� = 1

w�� = 2

r� = 50%
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Fig. 4  System age at stage j under best decision at j − 1 for set data 1
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do-nothing until the last evaluation point. Once the system 
age reaches 2 years (or 4 years) and detected to shift to the 
worst state (or the medium state) replacement should be con-
ducted. Next, for the system remains at a medium level of 
degradation the optimal policies are to do system replace-
ment three times along T, i.e., when the system age reaches 
4 years, so we can see that in j = 5, 9, and 13 the system age 
is 1 year.

In the worst situation, system replacement should be 
done every two years and overhaul conducted just once at 
13th stages. From Fig. 4a–c, we observe that as the system 
is more likely to degrade, overhaul decision is suggested 
to be more often. Using this figure as a reference, we can 
do the same simple logical approach to choose the sub-
sequent best decisions for any state revealed on the next 
inspection points.
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Fig. 5  System age at stage j under best decision at j − 1 for set data 2
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Fig. 6  System age at stage j under best decision at j − 1 for set data 3
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Figure 5 shows the effect of increasing failure rate to the 
model solution, meaning that the model responds to a higher 
system failure rate by doing sequential overhaul–replace-
ment decisions more often. Figure 6 shows the sensitivity of 
the model solution toward the change of replacement cost. It 
can be seen that a higher replacement cost will decrease the 
frequency of replacement and is compensated by an increas-
ing frequency of overhaul. In Fig. 7, we see that the decision 
to replace is sensitive to the warranty benefit. The longer the 
warranty period, the more the replacement conducted at the 
end of the warranty period as shown in the medium and the 
high level of system degradation case.

We summarized the optimal solution of all scenarios in 
Table 4.

Conclusion

In this article, we propose the optimal replacement policy 
for a warranted repairable system in which both the main-
tenance action and the rate of system failure are affected by 
the level of degradation and its operational age. The dynamic 
programming formulation allows us to represent the system 
state as a combination of all possible degradation levels and 
its operational age throughout the evaluation points. In the 
same time, the model also can accommodate the different 
ROCOF for each system degradation level. The discussion 
has shown that there is a logical relationship between the 
system degradation level and its operational life to the opti-
mal maintenance decision. From the sensitivity analysis, the 
results show that an older system with a low degradation 
tends to be kept with an overhaul, while a relatively new 
system with a severe degradation level tends to be replaced. 
The structure of the optimal solution provides a dynamic 
maintenance schedule based on the state of the system which 
can be used to support maintenance decision-making prac-
tice. To use the model, one need data of system degradation 
levels and the system ROCOF, system degradation transi-
tion probability, as well as various cost parameters. Also, 
one needs a sound method for modeling system degradation 
levels and their effects to the system ROCOF. This study 

can be extended in the following ways by considering two-
dimensional warranty policy, the limitation of overhaul fre-
quencies (Kurt and Kharoufeh 2010), overhaul alternatives 
with respect to system degradation and system age (Pascual 
and Ortega 2006), etc. Maintenance policy optimization 
that takes into account the buyer’s benefit of warranty is an 
interesting topic to be researched. This indicates that further 
study in this area is still open for more development.
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