A mathematical model for optimization of strength of concrete: A case study for shear modulus of Rice Husk Ash Concrete

Obam S. Ogah*
Lecturer, Dep. of Civil Engineering, University of Agriculture, Makurdi, Nigeria

Abstract

Rice Husk Ash (RHA) is natural Pozzolan containing reactive silica and/or aluminum. When the material is mixed with lime in powdered form and in the presence of water, it will set and harden like cement. This work uses Osadebe's optimization model to optimize the shear modulus of concrete made from RHA. The strengths predicted by the model are in good agreement with their corresponding experimentally obtained values. With the model, any desired strength of hardened concrete, given any mix proportions, is easily evaluated. The average Poisson ratio and mean shear strength for the concrete are found to be 0.26 and $5.5 \mathrm{~N} / \mathrm{mm}^{2}$ respectively.

Keywords: Shear modulus; Poisson ratio; Optimization; Rice-Husk-Ash; Pozzolan; Regression equation

1. Introduction

Concrete, a product of water, cement and aggregate, when sufficiently hardened, is used in various forms to resist load. The cost of one of its ingredients, Ordinary Portland Cement (OPC) is rising rapidly. Cheap and replaceable or complimentary substitutes are being developed [20].

Rice Husk Ash (RHA) is an agro-waste material, found in abundance in Nigeria and in many other parts of the world. RHA is one of the natural Pozzolanas. Pozzolanas are materials containing reactive silica and/or aluminum. When the material is mixed with lime in powdered form and in the presence of water, it will set and harden like cement [4]. The Indian ITDG [16], has it that Greeks and the Romans were the first civilization known to have used Pozzolanas in lime mortars. Udeala [23], produced RHA with 45 percent slaked lime mix. The IS 4098 [15], stipulates specific characteristics of different grades of lime-pozzolan mixture. The strength and other properties are affected by lime-pozzolan ratio. The shear modulus of concrete (G_{c}) is given by:

$$
\begin{equation*}
G_{c}=\frac{E_{c}}{2(\mu+1)} \tag{1}
\end{equation*}
$$

But

$$
\begin{equation*}
\mu=\frac{\sigma_{T}}{\sigma_{c}} \tag{2}
\end{equation*}
$$

where E_{c} is the modulus of elasticity of concrete over the linear range of deformation, σ_{T} is tensile stress at first cracking in flexure and σ_{c} is compressive stress at first cracking in compression specimen [20]. For normal aggregate concrete with OPC, Poisson ratio varies from 0.3 for low strength concrete to 0.15 for high strength concrete [20].

2. Osadebe's concrete optimization model

According to Osadebe's model [21], concrete is a four-component material, manufactured by mixing water, cement, sand and coarse aggregate. These ingredients are mixed in rational proportions to achieve desired strength of the hardened concrete.
Let us consider an arbitrary amount ' S ' of a given concrete mixture. Let the portion of the $\mathrm{i}^{\text {th }}$ component of the four constituent materials of the concrete be $\mathrm{S}_{\mathrm{i}}, \mathrm{i}$ $=1,2,3,4$. Then, in keeping with the principle of absolute volume (Mass):

[^0]\[

$$
\begin{equation*}
S_{1}+S_{2}+S_{3}+S_{4}=S \tag{3a}
\end{equation*}
$$

\]

or

$$
\begin{equation*}
S_{1} / S+S_{2} / S+S_{3} / S+S_{4} / S=1 \tag{3b}
\end{equation*}
$$

where S_{i} / S is the proportion of the ith constituent component of the considered concrete mixture. Let:

$$
\begin{equation*}
S_{i} / S=Z_{i} \quad i=1,2,3,4 \tag{4}
\end{equation*}
$$

Substituting Equation (4) into Equation (3b), we have:

$$
\begin{equation*}
Z_{1}+Z_{2}+Z_{3}+Z_{4}=1 \tag{5}
\end{equation*}
$$

where Z_{1}, Z_{2}, Z_{3}, and Z_{4} are proportions of water, cement, sand and coarse aggregate respectively.

In general, for any given concrete mixture, exists a vector $Z\left(Z_{1}, Z_{2}, Z_{3}, Z_{4}\right)$ whose elements satisfies Equation 5. In addition, for each Z_{i}, the following inequality holds:

$$
\begin{equation*}
Z_{i}>0 \tag{6}
\end{equation*}
$$

It is widely known that the proportions of its relative constituent ingredients govern the strength of hardened concrete. In other words, there exist a wide variety of strengths of hardened concrete in relation to the mix proportions of its constituent components: water, cement, sand and coarse aggregate. Consequently the compressive strength, y, of concrete can be expressed in a mathematical term as:

$$
Y=f\left(Z_{1}, Z_{2}, Z_{3}, Z_{4}\right)
$$

where $f\left(Z_{1}, Z_{2}, Z_{3}, Z_{4}\right)$ is a multi-variate response function whose variables Z_{i} are subject to the constraints as defined in Equations (5) and (6).

2.1. The regression equation

On the assumption that the response function is continuous and differentiable with respect to its variables, Z_{i}, it can be expanded in Taylor's series in the neighborhood of a chosen point $Z(0)=\left(Z^{(0)}{ }_{1}, Z^{(0)}{ }_{2}, Z^{(0)}{ }_{3}\right.$, $\left.Z^{(0)}{ }_{4}\right)^{T}$ as follows:

$$
f(Z)=f\left(Z^{(0)}+\sum_{i=1}^{4} \frac{\partial f\left(Z^{(0)}\right)}{\partial Z_{i}}\left(Z_{i}-Z_{i}^{(0)}\right)\right.
$$

$$
+\frac{1}{2}!\sum_{i=1}^{3} \sum_{j=1}^{4} \frac{\partial^{2} f\left(Z^{(0)}\right)}{\partial Z_{i} Z_{j}}\left(Z_{i}-Z_{i}^{(0)}\right)\left(Z_{j}-Z_{j}^{(0)}\right)
$$

$$
\begin{equation*}
+\frac{1}{2}!\sum \frac{\partial^{2} f\left(Z^{(0)}\right)}{\partial Z_{i}^{2}}\left(Z_{i}-Z_{i}^{(0)}\right)^{2}+\ldots \tag{7}
\end{equation*}
$$

For convenience, the point $Z^{(0)}$ can be chosen to be the origin without loss of generality of the formulation. Consequently, $Z^{(0)}=0$, implies that $Z_{l}^{(0)}=0$, $Z_{2}{ }^{(0)}=0, Z_{3}{ }^{(0)}$ and $Z_{4}{ }^{(0)}=0$. Let:

$$
\begin{aligned}
& b_{0}=f(0), \quad b_{i}=\frac{\partial f(0)}{\partial z_{i}}, \quad b_{i j}=\frac{\partial^{2} f(0)}{\partial z_{i} \partial z_{j}} \\
& b_{i i}=\frac{\partial^{2} f(0)}{\partial z_{i}^{2}}
\end{aligned}
$$

Equation (7) can then be written as follows:

$$
\begin{equation*}
f(z)=b_{o}+\sum_{i=1}^{4} b_{i} z_{i}+\sum_{i=1}^{3} \sum_{i=1}^{4} b_{i j} z_{i} z_{j}+\sum_{i=1}^{4} b_{i i} z_{i}^{2}+\ldots \tag{8}
\end{equation*}
$$

The number of constant coefficients N of the above polynomial (Equation 8) is given by:

$$
\begin{equation*}
N=C_{m}^{m+q} \tag{9}
\end{equation*}
$$

where m is the degree of the polynomial of the 1 response function and q is the number of variables, here $Z=4$. However, taken advantage of Equation (5), the number of coefficients can be reduced to:

$$
\begin{equation*}
N=C_{m}^{m+q-1} \text { or } C_{m}^{m+3} \tag{10a}
\end{equation*}
$$

But

$$
\begin{equation*}
C_{m}^{m+q-1}=\frac{q(q+1)(q+2) \ldots(q+m+1)}{m!} \tag{10b}
\end{equation*}
$$

Multiplying Equation (5) by b_{0} can do reduction of Equation 8 to equivalent polynomial with less number of coefficients. Thus we have:

$$
\begin{equation*}
Z_{1}+b_{0} Z_{2}+b_{0} Z_{3}+b_{0} Z_{4}=b_{0} \tag{11}
\end{equation*}
$$

Again multiplying Equation 5 by Z_{1}, Z_{2}, Z_{3}, and Z_{4} in succession and making $Z_{1}{ }^{2}, Z_{2}{ }^{2}, Z_{3}{ }^{2}$ and $Z^{2}{ }_{4}$ subject of formula and rearranging, we have:

$$
\begin{align*}
& Z_{1}^{2}=Z_{1}-Z_{1} Z_{2}-Z_{1} Z_{3}-Z_{1} Z_{4} \tag{12a}\\
& Z_{2}^{2}=Z_{2}-Z_{1} Z_{2}-Z_{2} Z_{3}-Z_{2} Z_{4} \tag{12b}\\
& Z_{3}^{2}=Z_{3}-Z_{1} Z_{3}-Z_{2} Z_{3}-Z_{3} Z_{4} \tag{12c}\\
& Z_{4}^{2}=Z_{4}-Z_{1} Z_{4}-Z_{2} Z_{4}-Z_{3} Z_{4} \tag{12d}
\end{align*}
$$

Substitution of Equations (11) and (12a) to 12(d) into Equation (8) gives, in expanded form, the following expression:

$$
\begin{align*}
Y & =b_{0} Z_{1}+b_{0} Z_{2}+b_{0} Z_{3}+b_{0} Z_{4}+b_{1} Z_{1}+b_{2} Z_{2} \\
& +b_{3} Z_{3}+b_{4} Z_{4}+b_{12} Z_{1} Z_{2}+b_{13} Z_{1} Z_{3} \\
& +b_{14} Z_{1} Z_{4}+b_{23} Z_{2} Z_{3}+b_{24} Z_{2} Z_{4}+b_{34} Z_{3} Z_{4} \\
& +b_{11}\left(Z_{1}-Z_{1} Z_{2}-Z_{1} Z_{3}-Z_{1} Z_{4}\right) \\
& +b_{22}\left(Z_{2}-Z_{1} Z_{2}-Z_{2} Z_{3}-Z_{2} Z_{4}\right) \\
& +b_{33}\left(Z_{3}-Z_{1} Z_{3}-Z_{2} Z_{3}-Z_{3} Z_{4}\right) \\
& +b_{44}\left(Z_{4}-Z_{1} Z_{4}-Z_{2} Z_{4}-Z_{3} Z_{4}\right) \tag{13a}
\end{align*}
$$

Factorization of Equation (13a) gives:

$$
\begin{align*}
Y & =\left(b_{0}+b_{1}+b_{11}\right) Z_{1}+\left(b_{0}+b_{2}+b_{22}\right) Z_{2} \\
& +\left(b_{0}+b_{3}+b_{33}\right) Z_{3}+\left(b_{0}+b_{4}+b_{44}\right) Z_{4} \\
& +\left(b_{12}-b_{11}-b_{22}\right) Z_{1} Z_{2} \\
& +\left(b_{13}-b_{11}-b_{33}\right) Z_{1} Z_{3} \\
& +\left(b_{14}-b_{11}-b_{44}\right) Z_{1} Z_{4} \\
& +\left(b_{23}-b_{22}-b_{33}\right) Z_{2} Z_{3} \\
& +\left(b_{24}-b_{22}-b_{44}\right) Z_{2} Z_{4} \\
& +\left(b_{34}-b_{33}-b_{44}\right) Z_{3} Z_{4} \tag{13b}
\end{align*}
$$

Defining $\beta_{i}=b_{0}+b_{i}+b_{i i} \& \beta_{i j}=b_{i j}+b_{i i}+b_{j j}$, $i, j=1,2,3,4$, Equation (13b) becomes:

$$
\begin{align*}
Y & =\beta_{1} Z_{1}+\beta_{2} Z_{2}+\beta_{3} Z_{3}+\beta_{4} Z_{4}+\beta_{12} Z_{1} Z_{2} \\
& +\beta_{13} Z_{1} Z_{3}+\beta_{14} Z_{1} Z_{4}+\beta_{23} Z_{2} Z_{3}+\beta_{24} Z_{2} Z_{4} \\
& +\beta_{34} Z_{3} Z_{4} \tag{14a}
\end{align*}
$$

or

$$
\begin{equation*}
Y=\sum_{i=1}^{4} \beta_{i} Z_{i}+\sum_{1 \leq i \leq j \leq 4} \beta_{i j} Z_{i} Z_{j} \tag{14b}
\end{equation*}
$$

Equations (13) and (14) are equivalent, only that the coefficients of Equation (13) are fifteen in number while those of Equation (14) are ten. Equation (14) is the regression equation.

The response function is defined if the values of the unknown constant coefficients β_{i} and $\beta_{i j}$ are uniquely determined.

On the other hand, these coefficients are determined if the values of the response function are known for ($\mathrm{N}=10$) different points on the response surface through experimental observations (measurements).

2.2. The coefficients of the regression equation

Let the $\mathrm{K}^{\text {th }}$ response (compressive strength for the serial number k) be $y^{(k)}$ and the vector of the corresponding set of variables be (see Table 1):

$$
Z^{(k)}=\left[Z_{1}^{(k)}, Z_{2}^{(k)}, Z_{3}^{(k)}, Z_{4}^{(k)}\right]^{T}
$$

Substitution of the above vector in Equation (14) for $k=1,2, \ldots, 10$, generates the following system of ten linear algebraic equations in the unknown coefficients β_{i} and $\beta_{i j}$.

$$
\begin{align*}
& Y^{(k)}=\sum_{i=1}^{4} \beta_{i} Z_{i}^{(k)}+\sum_{1 \leq i \leq j \leq 4} \beta_{i j} Z_{i}^{(k)} Z_{j}^{(k)} \\
& k=1, \ldots, 10 \tag{15}
\end{align*}
$$

Let:

$$
\begin{aligned}
& {\left[y^{(k)}\right]=\left[\begin{array}{c}
y(1) \\
y(2) \\
\cdot \\
\cdot \\
\cdot \\
y(10)
\end{array}\right]} \\
& {[Z]=\left[\begin{array}{cccc}
Z_{1}^{(1)} & Z_{1}^{(2)} & \ldots & Z_{1}^{(10)} \\
Z_{2}^{(1)} & Z_{2}^{(2)} & \ldots & Z_{2}^{(10)} \\
Z_{3}^{(1)} Z_{4}^{(1)} & Z_{3}^{(2)} Z_{4}^{(2)} & \ldots & Z_{3}^{(10)} Z_{4}^{(10)}
\end{array}\right]}
\end{aligned}
$$

and

$$
[B]=\left[\beta_{1}, \beta_{1}, \ldots, \beta_{34}\right]
$$

The explicit matrix form of Equation (15) can be written as:

$$
\begin{equation*}
\left[y^{(k)}\right]=[B][Z] \tag{16a}
\end{equation*}
$$

Since the vector (Z) values are known (easily determined), we can re-arrange (16a) as:

$$
\begin{equation*}
[Z]^{T}[B]^{T}=\left[Y^{(k)}\right] \tag{16b}
\end{equation*}
$$

Solution of Equation (16b) gives the values of the unknown coefficients of the regression equation. The matrix Z^{T} based on Table 1 is shown in Table 2

3. Materials and methods

The main material for this research is the Rice Husk Ash (RHA)-slaked lime mix.

The mix ratios used for the simplex design points were as a result of preliminary research findings about the concrete made from the Pozzolan.

3.1. Preparation of samples

a. The RHA was used as supplied,
b. Aggregates,
i. Sand.

The sand was collected from River Benue, Makurdi-Nigeria. It was prepared to

BS 1017: parts 1 and 2 [14] and BS 882: [8]. The grading was carried out to BS 812:103: [6]. The sand belongs to grading zone C [20].

Coarse aggregate (crushed granite). The crushed granite chippings were collected from Kwande, Benue State-Nigeria. The maximum size of aggregate used was 20 mm .

3.2. Poisson Ratio and Shear modulus of the concrete

Concrete cylinders of size 150 diameter by 300 mm height (length) were cast from pre-determined proportions of water, cement, sand and crushed granite chippings according to BS 1881:part 110: [9]. The cylinders were demoulded after 3 days (72 hours) and immediately transferred to the curing tank at room temperature for 56 days.

The cylinders were then tested for compression and tensile strengths according to BS 1881: part 116 [12] and part 117 [13] respectively. The Poisson ratio is calculated using Equation (2) while the shear strength is calculated using Equation (1).

4 Results and analysis

4.1 Poisson ratio

The results of the Poisson ratio test are shown in Table 3.

4.2 Shear modulus test results, based on Osadebe's second-degree polynomial.

The results of the Shear modulus test results, based on Osadebe's [21] second-degree polynomial are shown in Table 4.

Legend:

$\breve{y}=\frac{\sum_{i=1}^{m} y_{i}}{m_{i}}$
$S_{i}^{2}=\frac{1}{m_{i-1}}\left[\sum_{r=1}^{m i} y_{r}^{2}-\frac{1}{m_{i}}\left(\sum_{r=1}^{m_{i}} y_{r}\right)^{2}\right]$

Table 1. Selected mix ratios and component's fraction based on Osadebe's second-degree polynomial.

\mathbf{S} / \mathbf{N}	$\mathbf{M i x}^{\prime}$ Ratios				Component's Fraction			
	$\mathbf{S}_{\mathbf{1}}$	$\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{3}}$	$\mathbf{S}_{\mathbf{4}}$	$\mathbf{Z}_{\mathbf{1}}$	$\mathbf{Z}_{\mathbf{2}}$	$\mathbf{Z}_{\mathbf{3}}$	$\mathbf{Z 4}$
	0.88	1	$21 / 2$	4	0.1050	0.1193	0.2983	0.4773
2	0.86	1	2	4	0.1094	0.1272	0.2545	0.5089
3	0.855	1	2	$31 / 2$	0.1162	0.1360	0.2719	0.4759
4	0.86	1	2	3	0.1254	0.1458	0.2915	0.4373
5	0.855	1	$21 / 2$	$31 / 2$	0.1088	0.1273	0.3183	0.4456
6	0.865	1	3	4	0.0976	0.1128	0.3384	0.4512
7	0.87	1	3	$41 / 2$	0.0929	0.1067	0.3202	0.4803
8	0.86	1	$11 / 2$	3	0.1351	0.1572	0.2358	0.4717
9	0.86	1	$23 / 4$	$32 / 5$	0.1074	0.1248	0.3433	0.4245
10	0.865	1	2	$41 / 4$	0.1066	0.1232	0.2465	0.5237
				$\mathbf{C o n t r o l}$				
11	0.858	1	$23 / 7$	4	0.1036	0.1207	0.2931	0.4827
12	0.86	1	$13 / 4$	3	0.1301	0.1513	0.2648	0.4539
13	0.855	1	$22 / 5$	$31 / 2$	0.1103	0.1289	0.3095	0.4513
14	0.86	1	2	$41 / 3$	0.1050	0.1221	0.2441	0.5289
15	0.862	1	$21 / 4$	$31 / 8$	0.1191	0.1382	0.3109	0.4318
16	0.858	1	2	$25 / 6$	0.1282	0.1495	0.2989	0.4234
17	0.858	1	$22 / 3$	$32 / 7$	0.1129	0.1314	0.3505	0.4318
18	0.86	1	3	$41 / 8$	0.0957	0.1113	0.3339	0.4730
19	0.855	1	2	3	0.1247	0.1459	0.2918	0.4376
20	0.8595	1	$23 / 4$	4	0.0998	0.1162	0.3194	0.4646

Table 2. Z^{T} matrix, based on Table 1.

$\mathbf{Z}_{\mathbf{1}}$	$\mathbf{Z}_{\mathbf{2}}$	$\mathbf{Z}_{\mathbf{3}}$	$\mathbf{Z}_{\mathbf{4}}$	$\mathbf{Z}_{\mathbf{1}} \mathbf{Z}_{\mathbf{2}}$	$\mathbf{Z}_{\mathbf{1}} \mathbf{Z}_{\mathbf{3}}$	$\mathbf{Z}_{\mathbf{1}} \mathbf{Z}_{\mathbf{4}}$	$\mathbf{Z}_{\mathbf{2}} \mathbf{Z}_{\mathbf{3}}$	$\mathbf{Z}_{\mathbf{2}} \mathbf{Z}_{\mathbf{4}}$	$\mathbf{Z}_{\mathbf{3}} \mathbf{Z}_{\mathbf{4}}$
0.1050	0.1193	0.2983	0.4773	0.01253	0.03132	0,05012	0.03559	0.05694	0.14238
0.1094	0.1272	0.2545	0.5089	0.01139	0.02784	0.05567	0.03237	0.06473	0.12952
0.1162	0.13600.	0.2719	0.4759	0.01580	0.03159	0.05530	0.03698	0.06472	0.12940
0.1254	0.1458	0.2915	0.4373	0.01828	0.03655	0.05484	0.04250	0.06376	0.12747
0.1088	0.1273	0.3183	0.4456	0.01385	0.03463	0.04848	0.04052	0.05672	0.14183
0.0976	0.1128	0.3384	0.4512	0.01101	0.03303	0.04404	0.03817	0.05090	0.15269
0.0929	0.1067	0.3202	0.4803	0.00991	0.02975	0.04462	0.03417	0.05125	0.15379
0.1351	0.1572	0.2358	0.4717	0.02124	0.03186	0.06373	0.03707	0.07415	0.11123
0.1074	0.1248	0.3433	0.4245	0.01340	0.03687	0.04559	0.04284	0.05298	0.14573
0.1066	0.1232	0.2465	0.5237	0.01313	0.02628	0.05583	0.03037	0.06452	0.12909

Table 3. The results of the poisson ratio test.

Expt. No.	Compressive Strength $\left(\boldsymbol{\sigma}_{\mathbf{c}}\right)$ $\mathbf{N} / \mathbf{m m}^{\mathbf{2}}$	Tensile Strength $\left(\boldsymbol{\sigma}_{\mathbf{T}}\right)$ $\mathbf{N} / \mathbf{m m}^{\mathbf{2}}$	Poisson's Ratio							
1	0.57	0.23	0.40							
2	0.79	0.23	0.29							
3	0.68	0.23	0.34							
4	1.02	0.23	0.23							
5	1.58	0.36	0.23							
6	1.70	0.34	0.20							
7	1.36	0.30	0.22							
8	2.38	0.35	0.15							
9	1.24	0.28	0.23							
10	0.79	0.23	0.29							
									\sum	$\mathbf{2 . 5 8}$

Table 4. The results of the Shear modulus test results, based on Osadebe's second-degree polynomial.

Expt. No.	Replicat- ion	$\begin{gathered} \hline \text { Response } \\ \mathrm{N} / \mathrm{mm}^{2} \\ \hline \end{gathered}$	Response Symbol	$\sum \mathbf{Y}_{\mathbf{i}}$	ў	$\left(\sum y_{i}\right)^{2}$	$\mathrm{S}_{\mathrm{i}}{ }^{2}$
1	$\begin{aligned} & 1 \mathrm{~A} \\ & 1 \mathrm{~B} \\ & \hline \end{aligned}$	$\begin{aligned} & 3.32 \\ & 3.34 \\ & \hline \end{aligned}$	Y_{1}	6.66	3.33	44.36	-0.0020
2	$\begin{aligned} & 2 \mathrm{~A} \\ & 2 \mathrm{~B} \end{aligned}$	$\begin{aligned} & \hline 4.29 \\ & 4.20 \\ & \hline \end{aligned}$	Y_{2}	8.49	4.25	72.08	0.0041
3	$\begin{aligned} & 3 \mathrm{~A} \\ & 3 \mathrm{~B} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3.72 \\ & 3.71 \\ & \hline \end{aligned}$	Y_{3}	7.43	3.72	55.21	-0.0025
4	$\begin{aligned} & 4 \mathrm{~A} \\ & 4 \mathrm{~B} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2.64 \\ & \hline \end{aligned}$	Y_{4}	5.28	2.64	27.88	0.0000
5	$\begin{aligned} & \text { 5A } \\ & 5 \mathrm{~B} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 5.47 \\ & 5.35 \end{aligned}$	Y_{12}	10.82	5.41	117.07	0.0084
6	$\begin{aligned} & 6 \mathrm{~A} \\ & 6 \mathrm{~B} \end{aligned}$	$\begin{aligned} & 6.36 \\ & 6.28 \end{aligned}$	Y_{13}	12.64	6.32	159.77	0.0030
7	$\begin{aligned} & 7 \mathrm{~A} \\ & 7 \mathrm{~B} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 8.16 \\ & 8.20 \\ & \hline \end{aligned}$	Y_{14}	16.36	8.18	267.65	0.0006
8	$\begin{aligned} & 8 \mathrm{~A} \\ & 8 \mathrm{~B} \\ & \hline \end{aligned}$	$\begin{aligned} & 3.88 \\ & 3.91 \end{aligned}$	Y_{23}	7.79	3.90	60.68	0.0025
9	$\begin{aligned} & \text { 9A } \\ & 9 \mathrm{~B} \end{aligned}$	$\begin{aligned} & \hline 5.47 \\ & 5.46 \end{aligned}$	Y_{24}	10.93	5.47	119.46	0.0025
10	$\begin{aligned} & 10 \mathrm{~A} \\ & 10 \mathrm{~B} \end{aligned}$	$\begin{aligned} & 4.61 \\ & 4.46 \end{aligned}$	Y_{34}	9.07	4.54	82.27	0.0087
Control							
11	$\begin{aligned} & \hline 11 \mathrm{~A} \\ & 11 \mathrm{~B} \\ & \hline \end{aligned}$	$\begin{aligned} & 10.90 \\ & 10.88 \end{aligned}$	C_{1}	21.78	10.89	474.37	-0.0006
12	$\begin{aligned} & 12 \mathrm{~A} \\ & 12 \mathrm{~B} \end{aligned}$	$\begin{aligned} & \hline 6.80 \\ & 6.86 \\ & \hline \end{aligned}$	C_{2}	12.86	6.43	165.38	0.0956
13	$\begin{aligned} & 13 \mathrm{~A} \\ & 13 \mathrm{~B} \end{aligned}$	$\begin{aligned} & 2.88 \\ & 3.12 \\ & \hline \end{aligned}$	C_{3}	6.00	3.00	36.00	0.0288
14	$\begin{aligned} & 14 \mathrm{~A} \\ & 14 \mathrm{~B} \end{aligned}$	$\begin{aligned} & 3.00 \\ & 3.01 \\ & \hline \end{aligned}$	C_{4}	6.01	3.01	36.12	0.0001
15	$\begin{aligned} & 15 \mathrm{~A} \\ & 15 \mathrm{~B} \end{aligned}$	$\begin{aligned} & 0.62 \\ & 0.60 \end{aligned}$	C_{5}	1.22	0.61	1.49	-0.0006
16	$\begin{aligned} & \hline 16 \mathrm{~A} \\ & 16 \mathrm{~B} \end{aligned}$	$\begin{aligned} & \hline 3.98 \\ & 4.10 \end{aligned}$	C_{6}	8.08	4.04	65.29	-0.0054
17	$\begin{aligned} & 17 \mathrm{~A} \\ & 17 \mathrm{~B} \end{aligned}$	$\begin{aligned} & \hline 0.50 \\ & 0.52 \\ & \hline \end{aligned}$	C_{7}	1.02	0.51	1.04	0.0004
18	$\begin{aligned} & 18 \mathrm{~A} \\ & \text { 18B } \end{aligned}$	$\begin{aligned} & 15.36 \\ & 15.04 \end{aligned}$	C_{8}	30.40	15.20	924.16	0.0512
19	$\begin{aligned} & 19 \mathrm{~A} \\ & 19 \mathrm{~B} \end{aligned}$	$\begin{aligned} & 6.01 \\ & 6.00 \end{aligned}$	C9	12.01	6.01	144.24	0.0001
20	$\begin{aligned} & \text { 20A } \\ & 20 \mathrm{~B} \end{aligned}$	$\begin{aligned} & 12.86 \\ & 12.82 \end{aligned}$	C_{10}	25.68	12.84	659.46	0.0020
						Σ	0.2077

4.3. The regression equation

The solution of Equation (16b), given the responses in Table 4, gives the unknown coefficients of the regression equation (Equation 14) as follows:
$\beta_{1}=421987.5, \quad \beta_{2}=8238.0, \quad \beta_{3}=-319.5$,
$\beta_{4}=261.7, \beta_{12}=-793265.6, \beta_{13}=-475248.6$,
$\beta_{14}=-488849.6, \beta_{23}=35769.5, \beta_{24}=44916.9$, $\beta_{34}=1244.5$

Thus, from Equation (14) the regression is given by:

$$
\begin{align*}
\widehat{Y} & =421987.5 Z_{1}+8238.0 Z_{2}-319.5 Z_{3} \\
& +261.7 Z_{4}-793265.6 Z_{1} Z_{2}-475248.6 Z_{1} Z_{3} \\
& -488849.6 Z_{1} Z_{4}+35769.5 Z_{2} Z_{3} \\
& +44916.9 Z_{2} Z_{4}+1244.5 Z_{3} Z_{4} \tag{17}
\end{align*}
$$

Equation (17) is the mathematical model for the optimization of shear modulus of the Rice Husk Ash Pozzolan concrete, based on Osadebe's seconddegree polynomial.

4.4. Test of the adequacy of the model

Equation (17), the model equation, was subjected to statistical student's t - test and Fisher test for adequacy against the controlled experimental results. It was proved adequate. A typical result of an executed program is shown in appendix B.

5. Conclusion

The research showed that the Rice Husk Ash (RHA) produced an average value of shear modulus of $8.1 \mathrm{~N} / \mathrm{mm}^{2}$ with an average Poisson ratio of 0.26 . The model equation was tested for adequacy using the student's t-test and the Fisher test. The strengths predicted by the model are in good agreement with the corresponding experimentally obtained results. With the model, any desired strength of hardened concrete, given any mix proportions, is easily evaluated. Conversely, the various mix proportions matching any stipulated strength are also easily obtained using simple BASIC computer program. The
output of an executed program is shown in Appendix A. The program is presented in Appendix B.

References

[1] Akhnazarova, S. and K. Afarov, V., 1982, Experiment Optimization in Chemistry and Chemical Engineering, MIR Publishers, Moscow.
[2] ACI Standard 211:1-7:, Recommended Practice for Selecting Proportions for Concrete. American concrete Institute, Detroit.
[3] ASTMC 311-94a, 1994, Sampling and Testing Fly Ash or Natural Pozzolans for Use as a Mineral Admixture in Portland - cement concrete.
[4] ASTMC 618-94a, 1994, Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolona for Use as Mineral Admixture in Portland, cement concrete.
[5] Brooks, C.J. et al, 1977, Fundamentals of Mathematics and Statistics.
[6] BS 812: Part 1: 1975, Methods for Determination of Particle Size and Shape.
[7] BS 817: 1975, Methods of Mix Design.
[8] BS 882:1992, Spec. for Aggregates from Natural Sources for Concrete.
[9] BS 1881: Part 110, Methods for Making Test Cylinders from Fresh Concrete.
[10] BS 1881: Part 11, Methods of Normal Curing of Test Specimens.
[11] BS 1881: Part 115, Spec. for Compression Testing Machines for Concrete.
[12] BS 1881: Part 116, Method for Determination of Compressive Strength.
[13] BS 1881: Part 117, Methods for Determination of Tensile Splitting Strength.
[14] BS 1017: Part 1\&2, Specification for Aggregates from Natural Sources for Concrete.
[15] IS 4098: 1967, Indian Standard Specification for Lime-Pozzolana Mixture.
[16] ITDG, 2003, Intermediate Technology Development Group. http://www.gtz.de/basin.
[17] Jackson, N.1973, Civil Engineering Materials, RDC Artser Ltd., Hong Kong.
[18] Mehta, P.K. 1982, Rice husk ash - A unique cementing material. Advances in concrete Technology, MSL 92-6R, Canada, 407-31.
[19] Neville, A. M. and Brooks, J. J., 1990, Concrete Technology, Longman Ltd., Singapore.
[20] Neville, A. M., 1996, Properties of Concrete. Longman Ltd., England.
[21] Osadebe, N. N., 2003, Generalized mathematical modeling of compressive strength of normal concrete as a multi-variate function of the properties of its constituents components. A paper delivered at the Collage of Engineering, University of Nigeria, Nsukka .
[22] Scheffe, H., 1985, Experimental with mixtures. Royal Statistical Society Journal, Ser. B., 20, 344-60.
[23] Udeala, O. K, 1998, CEM 416 or Bethel Cement, 17B, Chikwe Street, Off Iguruta Road, Portharcourt-Nigeria.

Appendix A: An executed program for shear modulus (Osadebe's)

	Desired strength? 5.0															
Counter	z1	z2	z3	z4	y	s1	s2	s3	s4							
1	0.080	0.098	0.551	0.271	4.999	0.859	1.000	2.040	3.453							
2	0.085	0.105	0.536	0.274	5.000	0.859	1.000	2.043	3.458							
3	0.085	0.119	0.643	0.153	5.000	0.858	1.000	2.043	3.525							
4	0.098	0.112	0.316	0.474	5.000	0.860	1.000	2.049	3.368							
5	0.098	0.220	0.356	0.326	5.000	0.860	1.000	2.049	3.496							

Appendix B: Program for Osadebe's model

10 REM A GW BASIC V2.02 program that computes the proportions of concrete mixes to a desired strength.
20 REM Osadebe's model
30 COUNT $=0$
40 GOSUB 100
50 END
100 REM procedure begins
110 PRINT "A Model for Computation of Concrete Mix Proportions to a Desired Strength"
120 PRINT
130 INPUT "Desired Strength"; YIN
140 GOSUB 400
150 FOR Z1 $=0.08$ TO 0.1 STEP .001
160 FOR Z2 $=0.09$ TO 1-Z1 STEP .001
170 FOR Z3 $=0.2$ TO 1-Z1-Z2 STEP .001
$180 \mathrm{Z4}=1-\mathrm{Z} 1-\mathrm{Z} 2-\mathrm{Z} 3$
190 REM Assign Coefficients
$200 \mathrm{~B} 1=$
$210 \mathrm{~B} 2=$
$220 \mathrm{~B} 3=$
2230 B4 =
240 B12 =
250 B13 =
260 B14 =
270 B23 =
280 B24 =
290 B34 =
300 YOUT $=\mathrm{B} 1 * \mathrm{Z} 1+\mathrm{B} 2 * \mathrm{Z} 2+\mathrm{B} 3 * \mathrm{Z} 3+\mathrm{B} 4 * \mathrm{Z} 4+\mathrm{B} 12 * \mathrm{Z} 1 * \mathrm{Z} 2+\mathrm{B} 13 * \mathrm{Z} 1 * \mathrm{Z} 3+\mathrm{B} 14 * \mathrm{Z} 1 * \mathrm{Z} 4+\mathrm{B} 23 * \mathrm{Z} 2 * \mathrm{Z} 3+\mathrm{B} 24$
*Z2*Z4+B34*Z3*Z4

310 IF (ABS (YIN-YOUT)<=0.001) THEN 320 ELSE 340
320 COUNT = COUNT+1
330 GOSUB 500
340 NEXT Z3
350 NEXT Z2
360 NEXT Z1
370 RETURN
400 REM print heading
410 PRINT
420 PRINT "COUNT $\begin{array}{llllllllll} & \text { Z1 } & \text { Z2 } & \text { Z3 } & \text { Z4 } & \text { Y } & \text { S1 } & \text { S2 } & \text { S3 } & \text { S4" }\end{array}$
430 RETURN
500 REM Outresults
$510 \mathrm{~S} 1=0.88 * \mathrm{Z} 1+0.86 * \mathrm{Z} 2+0.85 * \mathrm{Z} 3+0,84 * \mathrm{Z} 4$
$520 \mathrm{~S} 2=\mathrm{Z} 1+\mathrm{Z} 2+\mathrm{Z} 3+\mathrm{Z} 4$
$530 \mathrm{~S} 3=2.8 * \mathrm{Z} 1+2.0 * \mathrm{Z} 2+2.5 * \mathrm{Z} 3+2.2 * \mathrm{Z} 4$
$540 \mathrm{~S} 4=4.5 * \mathrm{Z} 1+4.0 * \mathrm{Z} 2+3.5 * \mathrm{Z} 3+3.0 * \mathrm{Z} 4$
550 PRINT TAB (1); COUNT; USING "\#\#\#\#.\#\#";Z1;Z2;Z3;Z4;YOUT;S1;S2;S3;S4
560 RETURN

[^0]: * Corresponding author. E-mail: obamso@yahoo.com

