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Abstract: The Traveling Salesman Problem (TSP) is one of the most important and famous 

combinational optimization problems that aims to find the shortest tour. In this problem, the salesman 

starts to move from an arbitrary place called depot and after visiting all nodes, finally comes back to 

depot. Solving this problem seems hard despite of program statement is simple and leads this problem 

belonging to NP-hard problems. In this paper, the researchers present a modified Elite Ant System (EAS) 

which is different from common EAS. There is a linear function used here for increasing coefficient 

pheromone of the best route activated when a better solution is achieved. This process avoids the 

premature convergence and makes better solutions. The results on several standard instances show that 

this new algorithm gains more efficient solutions compared to other algorithms. 
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1. Introduction 

For many years, researchers have paid so much 

attention to the traveling salesman problem (TSP) 

while there are many problems developed out of 

it, like the vehicle routing problem and the 

multiple traveling salesmen problem and so on. 

Besides, it has many applications in other 

problems including the computer wiring, 

sequencing job, designing hardware devices and 

radio electronic devices in communications, 

architecture of computational networks, etc. 

(Kureichik and Kureichik, 2006). Therefore, many 

algorithms involving exact, heuristic and meta-

heuristic have been applied and so much effort has 

been made to find a better solution. There have 

been many papers proposing exact algorithms for 

solving the TSP. These algorithms are based on 

Lagrange relaxation (Qinghong and Zhang, 1999), 

branch-and-cut method (Cordeau et al., 2010) and 

branch and bound (Carpaneto and Toth, 1980).  

As the TSP is known to be NP-hard, (Garey 

and Johnson, 1979) exact algorithms are not 

capable of solving problems for large dimensions. 

On the other hand, heuristics are thought to be 

more efficient for complex TSPs and have 

become very popular for some researchers. There 

are three types of heuristics in the literature:  

Construction algorithms: these algorithms 

probably are the most well-known optimization 

strategies for solving the combinatorial 

optimization problems. Construction heuristics 

start from a null solution and generate feasible 

solutions by accomplishing sequences of simple 

steps. Some of the well-known tour construction 

procedures are the randomized gravitational 

emulation search (Balachandar and Kannan, 2007) 

and the partitioning approach (Karp, 1977).  

Improvement algorithms: perhaps one of the 

best known iterative improvement algorithms for 

the TSP is the branch exchanges such as the 2-opt 

and 3-opt heuristics (Lin, 1965) and the local 

search (Bianchi et al., 2005). The algorithm 

proposed by Lin and Kernighan (1973) made a 

great improvement in the quality of tours that can 

be obtained by heuristic methods. This algorithm 

is still widely used to generate initial solutions for 

other algorithms.  

Meta-heuristics algorithms: Other new kinds of 

popular approximate methods are meta-heuristics 

arisen in the last 20 years. In general, it is 

incredibly needed to use meta-heuristics 

algorithms to solve complex optimization 

problems when dealing with them. Since meta-

heuristic approaches are very efficient for 

escaping local optimum values (Fig. 1), they are 

one of the best algorithms for solving combina-

torial optimization problems. That is why the 

recent publications are all based on meta-heuristic 

approaches such as genetic algorithm (GA) (Choi 
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et al., 2003), neural network (Masutti and Castro, 

2009), memetic algorithm (Bontoux et al., 2010) 

and ant system (AS) (Ghafurian and Javadian, 

2011).  

The TSP in investigations is defined as 

follows; 

Let {1, ..., }V n= and {( , ) : , , }A i j i j V i j= ∈ ≠  

respectively be node and arc collection of 

complete indirection graph ( , )G V A=  (if the 

graph is not complete, we can instead lack of each 

arc with the arc that has an infinite size). In this 

problem, if ( )
ij

C c=  shows cost matrix on graph 

G, then aimed to minimize cost for a traveling 

salesman who starts from arbitrary node as depot 

and after visiting other nodes exactly and finally 

comes back to depot. 

Furthermore, TSP can be presented as several 

various states of integer linear programming 

problem. Then we only point formula presented 

by Dantzig in 1954. We use the following 

variables for modeling: 

C that shows cost matrix on graph G first is 

symmetric matrix and secondly it is true in 

triangle inequality. It means 
ij jk ik

c c c+ ≥  for 

each ( , , 1, 2, ..., )i j k n= . 

1

0 .
ij
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x
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Figure 1: Local and general optimums. 
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In this formulation, Constraint (1) means that 

only one arc can be entered into each node; 

however, Constraint (2) shows that only one arc 

can be exited from each node. Generally, these 

two constraints guarantee gaining a solution that 

is true in Hamilton circle. 

Constraint (3) is the standard sub-tour 

elimination constraint to prevent from creating 

sub tour (Dantzig et al., 1954). Finally, Constraint 

(4) defines binary condition for
ij

x .   

In the following parts of this paper, history of 

TSP is presented in Section 2. In Section 3, we are 

going to explain the main idea of ant colony 

algorithm (ACO) and review briefly the works 

performed on this algorithm. Then we especially 

explain EAS and express its weakness in Section 

4. In Section 5, the proposed idea will be 

explained in detail and its efficiency and 

performance reasons will be described. In Section 

6, the proposed algorithm will be compared with 

some of the other algorithms on standard 

problems, which are included in TSP library, and 

finally in Section 7, the conclusions are presented. 

2. Literature review 

The TSP is one of the most popular classical 

problems, which is important in most of the 

sciences, while many of scientific problems can 

be converted to TSP and be solved. Although this 

problem has simple and understandable 

formulation, it is one of the elements of NP-hard 

problems. In other words, when the problem size 

grows, the exact methods cannot solve it, so we 

have to use heuristic methods and settle for the 

suboptimal solutions. Another feature that attracts 

more attention to this problem is the usage of this 

problem as a standard instance for testing and 

comparing the efficiency of new algorithms. It is 

noted that the algorithms successfully used in this 

problem can usually perform efficiently in other 

problems as well. 

At first, Euler and Vandermonde formally 

discussed the TSP as the Knight’s Tour problem 

in the mid-1700s. In the 1800s, this problem was 

recognized as one of the graph theory problems 

and was studied by Irish and British 

mathematicians Sir William Rowan Hamilton and 

Thomas Penyngton Kirkman, respectively. 

Specifically, Hamilton was the creator of the 

Icosian Game in 1857 based on TSP. At almost 
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the same time as Hamilton, the problem was also 

acknowledged by the mathematician Thomas 

Penyngton Kirkman. 

The German manual published first presented 

TSP in 1832, entitled "The Traveling Salesman", 

how he should be and what he should do to get 

commissions and to be successful in his business 

by a veteran Traveling Salesman. It was also 

followed by several applied appearances of the 

problem in the late 19th century and early 20th 

century. 

However, the general form of TSP was first 

studied by Karl Menger in Vienna and was the 

first to introduce it to the Unites States in the late 

1920’s or early 1930’s when visiting as a lecturer 

at Harvard University. Another mathematician 

called of Whitney was doing his PhD research in 

graph theory coincidently with Karl Menger. A 

few years later, a presentation was made by him at 

Princeton University where he posted the problem 

of finding the shortest route among the 48 states 

of America.  

Beginning in 1954, researchers such as 

Dantzig, Fulkerson, and Johnson were able to find 

a solution to the TSP for a maximum of 49 cities 

(that is, Washington D.C. and the 48 capitals of 

the 48 states of the USA) (Dantzig et al., 1954). 

At this time, they introduced a new method for 

solving the TSP, the cutting plane method, which 

became a prototype in integer linear program-

ming. Since that time TSP has been considered as 

one of the classic models in combinatorial 

optimization, it is used as a test case for virtually 

all advancements in solution procedures. TSP 

problem for 120 cities is solved with only 13 

iterations without using a branch and bound 

techniques.  

Over the past 29 years, the record for the 

largest nontrivial TSP instance solved to 

optimality has increased from 318 cities by 

Crowder & Padberg (1980) to 532 cities by 

Padberg & Rinaldi (1987) to 666 cities by 

Grötschel & Holland (1991) to 1002 and 2392 

cities by Padberg & Rinaldi (1991) to 3038, 4461, 

7397, 13509, 15112 and 24978 cities by 

Applegate et al. (1995) to 33810 by Concorde 

Team, which is the most recent ‘TSP world 

record’ that has been published so far. 

3. Ant colony optimization 

One of the most important algorithms which 

proved its performance for TSP is the ACO that is 

used by Dorigo et al. to solve the combinational 

optimization problems in 1991 and 1992 (Dorigo, 

1992). This population-based approach has been 

successfully applied to several NP-hard 

combinatorial optimization problems such as 

vehicle routing problem (Bullnheimer et al., 1999) 

and communications networks (Di Caro and 

Dorigo, 1998). The ACO, inspired by the nature, 

simulates the natural ant treatment for food 

finding and applies it for solving the 

combinational optimization problem for which 

has not been found any effective algorithm yet. 

Studies on real ant show that despite the ants do 

not have the sense of seeing; they can find the 

shortest path from the food sources to the nest 

(Figure 2). Some evaporated material called 

pheromone, secreted by the ants when they move 

from one place to another to find the shortest path. 

Ants secrete this chemical material first for 

guiding other ants, which are going to exit the nest 

later, secondly, for recognition of the return path 

to the nest. Hence the route that ants travelled is 

marked by this chemical material so after a few 

times, at the same time, more ants pass this 

shorter path and remain much more pheromone on 

this shorter path. In addition, the ants' instinct with 

more probability select the route, which has more 

pheromone than others. 

This experience shows that the simple swarm 

intelligence, which is used by ants for finding 

food, leads to solve the hard combinational 

problems and reach a solution, which is near to 

the optimal situation. 

The ACO has been developed well lately; 

modifying the method of updating the local and 

global pheromones, and the distribution of ants on 

the nodes, are some examples. These 

developments lead to more efficient algorithms 

like EAS, ant colony system (ACS), rank based 

ant system (RAS), and max-min ant system 

(MMAS). On the other hand, application and 

efficiency of these algorithms have gained more 

attention, compared to some other meta-heuristic 

algorithms including GA, Simulated Annealing, 

etc. Despite good advantages of ACO algorithm 

compared to the other methods, the large distances 

between the solutions cause difficulties in 

developing better solutions. 

Many researchers have tried to modify this 

algorithm as much as possible to overcome these 

difficulties. The investigations by Qinghong and 

Zang (1999), Bin and Zhongzhi (2001) and 

Yousefikhoshbakht et al. (2009; 

Yousefikhoshbakht and Zafari, 2008) are some 

examples of these efforts. 
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Figure 2: (A) Real ants follow a path between nest and food source, 

(B) An obstacle appears on the path: Ants choose whether 

to turn left or right with equal probability, 

(C) Pheromone is deposited more quickly on the shorter path, 

(D) All ants have chosen the shorter path. 
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Figure 3: Comparison between the EAS and new EAS for solving Eli51. 

4. Elite ant system 

The first algorithm of ACO family was the AS 

used for solving small scale TSP instances. In the 

face of developing good solutions for small scale 

problems of TSP type, AS algorithm failed to 

reach an acceptable efficiency in large scale probl-

ems in comparison with the famous algorithms of 

that time. Much effort was performed to solve the 

problem; the first modification applied on the AS 

algorithm was the usage of elitist strategy, 

published by Dorigo et al. (1996). Based on this 

algorithm, in addition to the local releasing of 

pheromone on the arcs which the ants have passed 

through, the arcs belonging to the best route (
*

T ) 

are released with pheromone and are encouraged 

with the constant coefficient e in the following 

way;  

*

*

/ ( ) ( , )
( ) (5)

0 ( , )

gb

gb

ij

e L t i j T
t

i j T
τ

∈
∆ =

∉



  

This process causes that the arcs belonging to 

the best route in any iteration are more 

highlighted, and to be updated according to the 

value of the best route
gb

L . Note that, the above 

operator indicates; the less the value of
gb

L , the 

more pheromone released on the arcs. 

In spite of better results obtained by EAS 

algorithm, premature convergence occurred 

during the calculation process. In other words, 

releasing global pheromone with constant 

coefficient leads to a very fast and early 

concentration of searching procedure around 

suboptimal solutions. In addition, this will cause 

an early stagnation of premature search and 

settling for a local optimal. Premature 
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convergence makes ants trail similar route and 

gains similar solutions after several times. In this 

way we cannot get to better solutions. It shows 

that system stops from finding possibly better 

routes and cannot gain a better tour. 

Updating the pheromone simulates the changes 

in values of pheromone in any iteration and 

mainly it is one of the reasons that algorithms are 

different. Generally, two operations motivate this 

updating procedure in EAS algorithm: 

First, releasing new pheromone on the arcs, 

locally and globally; this operation leads to 

increase pheromone on the arcs. Second, 

evaporation of pheromone; this operation leads to 

decrease pheromone on the arcs with constant 

rate ρ , in other words, at the end of each iteration 

of algorithm, the value of pheromone left on the 

arcs is decreased by the constant coefficient ρ . 

Thus, the new footprint of pheromone has an 

average weight between the value of the 

pheromone left on the arcs, and the value of new 

pheromone released in the arcs. Thus the formula 

of updating pheromone in the EAS algorithm is: 

1

( 1) (1 ). ( ) ( ) ( ) (6)
ij ij ij ij

m
k gb

k

t t t tτ ρ τ τ τ
=

+ = − + ∆ + ∆∑
 

where ρ is the evaporation rate, which is a 

constant value in [0,1] domain. It regulates the 

decrease of phermone on arcs. 

1 / ( ) ( , )
( ) (7)

0 ( , )
ij

k k

k

k

L t i j T
t

i j T
τ∆

∈
=

∉





 

:k
T The collection of arcs passed over by the ant 

‘k’. 

( ) :
ij

k
tτ∆  As mentioned above, is the formula of 

updating the pheromone. Thus ants passing over 

the arc between nodes i and j, release some 

pheromone on it. The value of released 

pheromone is one over the value passed yet. 

5. Presented algorithm 

In EAS algorithm, the probability of 

movement from node i to node j – which is not 

visited yet - by ant ‘k’ is presented as follows: 

*

*

( ) ( )

( ) ( )( ) (8)

0

k

i

ij ij

k

ij ijr Jij

t t
j j

t tP t

j j

α β

α β

τ η

τ η
∈

∈
=

∉







∑

 

Where 
* :j Collection of nodes that has not been visited 

by ant ‘k’ yet. 

( ) :
ij

tτ  The value of phermone on the arc joining i 

to j. 

( ) :
ij

tη
 
The heuristic information for the ant 

visibility measure (e.g., defined as the reciprocal 

of the distance between node i and node j for the 

TSP). 

, :α β  The controling parameters by user, which 

determine the ratio of importance of ant’s visiblity 

measure, compared to the value of pheromone 

releaseed on arc (i,j) on one hand, and compared 

to the heuristic information on arc (i,j) on the 

other hand.     

So, the value of pheromone released on an arc 

is important in selecting it by an ant. On the other 

hand, the construction of ACO algorithm is such 

that the precision of early solutions are low but it 

increases gradually by the increase of iterations 

and releasing pheromone by ants. Therefore, a 

constant coefficient like e cannot be the 

appropriate formula for encouraging the best route 

that has been gained so far, because it does not 

signify in which iteration and in which level of 

precision, we get to the best result. In developing 

and modifying EAS algorithm, the researchers 

found that the usage of an increasing linear 

function like e+n/2, when a better solution is 

gained, in addition to small value like e in 

beginning of algorithm, has better conclusions. In 

the next section, an extensive comparison in 

efficiency and performance of modified algorithm 

to the previous algorithms is presented. 

Moreover, the linear function seems to be a 

good choice because first, it is an increasing 

function and second, it has a constant gradient. In 

other words, as the iterations increase and better 

results are obtained, the corresponding function 

grows linearly and appreciates the best route 

obtained.  

It is noticeable that the low value of the linear 

function at the beginning of algorithm, here e=1, 

lead to less influence of released pheromone on 

the selection of routes in the next algorithm 

iteration. In other words, if ants gain weak 

solutions, they forget them, but as the algorithm 

proceeds and the solutions are more precise, the 

pheromone is increased and this causes the best 

solution to be encouraged more powerfully. 

Most successful meta-heuristic methods the 

same as ACO have paid attention to global search 
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and search in the whole solution space as far as 

possible. As the algorithm proceeds, they move to 

better solutions and alter the global search for 

local. We have considered the point too and 

chosen this linear function. Note that encouraging 

new footprints if happened at the beginning of 

algorithm, might lead to an early stagnation and 

premature convergence to suboptimal regions. In 

other words, before the algorithm finishes a 

complete global search, tends to the local search 

and consequently relatively weak results are 

attained. Thus, as mentioned before, encouraging 

the best solution during the first steps of the ACO 

algorithm, where decisions are almost by chance, 

should be little but gradually increase.   

Moreover, in order to help local search during 

the algorithm steps, not leading to any stagnation, 

the researchers used a local searching algorithm 

when attaining a better solution compared to 

previous iterations. In fact, the probability of 

finding better solutions near a good solution is 

relatively high. There exist many algorithms for 

the local search and they have of course pros and 

cons. Here if we use the 2-opt local search, as not 

only it is simple, but also does not influence the 

algorithm’s complications.  

6. The numerical calculations 

   In this section, some numerical results of 

comparison between the proposed modified 

algorithm and some previous algorithms are 

presented. These algorithms are applied and tested 

on several instances from TSP problems of 

TSPLIB including Eli51, KroA100, KroB100, 

Pr152 and Krob200. The following number in 

these instances shows the number of related cities. 

Note that the EAS algorithm is selected as the 

basic algorithm. In these tests we compared the 

efficiency and performance of the EAS algorithm 

and the new EAS algorithm with GA, AS, ACS 

and mixed GA and ACO. As expected, the results 

of this comparison show that the EAS method 

gains better solutions than the GA, and it gains 

worse solutions than the ACS algorithm. But 

better solutions are developed applying this 

modification, and also the results are better 

 

compared to the ACS algorithm. Additionally, in 

order to recognize the performance of the method, 

the best solutions published in the literature and 

also on the web, are presented in table 1. The pack 

of optional parameters obtained through several 

tests is as follows: 

 = 1,  =5, =0.5,  Q=100, e=1 (9)α β ρ  

Furthermore, two solutions for Eli51 instance 

is presented in Figure 3 for better showing the 

difference between two mentioned algorithms. On 

the other hand, the new algorithm devotes more 

time than another algorithm for global searching 

based on presented analysis and employs local 

search with more powerful after that. For example 

in iteration 20, the old algorithm is completely 

stopped and then cannot gain a better solution and 

it is trapped in local optimum, but although the 

new algorithm has a less solution in this time, it 

can escape from local optimum because of using 

mentioned solution after this iteration. Thus, it can 

gain better solutions than the old algorithm can. 

So, albeit the proposed algorithm has less speed 

for finding solution compared to the old 

algorithm, it can overcome local optimums and 

tends to better solutions. 

7. Conclusion 

   In this paper, a new modification on the EAS 

algorithm is presented which is different from the 

common EAS algorithm in the updating method 

of the pheromone. In this algorithm, when the 

number of iterations of the algorithm is increased 

and better solutions are attained, the 

encouragement of the best route is performed 

more powerfully. Note that here the researchers 

have used a linear function to encourage the best 

route. Presenting other functions instead of this 

linear function, improving the algorithm more, 

and also applying this method in other 

combinational optimization problems including 

the vehicle routing problem, multiple traveling 

salesmen problem and the sequencing of jobs are 

postponed to the next papers. 

 

Table 1: Comparison of algorithms for standard problems of TSP (the best conclusions for 20 test has presented). 

 

Instance New EAS
 

EAS
 

GA+ACO ACS GA AS Best 

Eli51 426 430.35 427 427 431 441 426 

KroA100 21282 21740.78 21521 21521 21802 21799 21282 

KroB100 22141 22588.56 22170 22274 22641 23005 22141 

Pr152 73682 74135.10 74121 73988 74976 74429 73682 

Krob200 29437 30110 29576 29655 30277 30421 29437 



74                                                                                  M. Yousefikhoshbakht et al./ Journal of Industrial Engineering International 7(15) (2011) 68-75 

References 

Applegate, D.; Bixby, R.; Chvatal, V.; Cook, W., 

(1995), Finding cuts in the TSP (A 

preliminary report). DIMACS Technical 

Report 95-05, March 1995. 

Balachandar, S. R.; Kannan, K., (2007), 

Randomized gravitational emulation search 

algorithm for symmetric traveling salesman 

problem. Applied Mathematics and 

Computation, 192(2), 413-421. 

Bianchi, L.; Knowles, J.; Bowler, N., (2005), 

Local search for the probabilistic traveling 

salesman problem: Correction to the 2-p-opt 

and 1-shift algorithms. European Journal of 

Operational Research, 162(1), 206-219. 

Bin, W. U.; Zhongzhi, SHI., (2001), A kind of 

subsection algorithm based on ACO solving 

the TSP problem. Computer transaction, 

1328-1333. 

Bontoux, B.; Artigues, C.; Feillet, D., (2010), A 

memetic algorithm with a large 

neighbourhood crossover operator for the 

generalized traveling salesman problem. 

Computers & Operations Research, 37(11), 

1844-1852. 

Bullnheimer, B.; Hartl, R. F.; Strauss, C., (1999), 

An improved ant system algorithm for the 

vehicle routing problem. Annals Operations 

Research, 89, 319-328. 

Carpaneto, G.; Toth, P., (1980), Some new 

branching and bounding criteria for the 

asymmetric traveling salesman problem. 

Management Science, 26, 736-743. 

Choi, I. C.; Kim, S. I.; Kim, H. S., (2003), A 

genetic algorithm with a mixed region search 

for the asymmetric traveling salesman 

problem. Computers & Operations Research, 

30(5), 773-786. 

Cordeau, J. F.; Dell’Amico, M.; Iori, M., (2010), 

Branch-and-cut for the pickup and delivery 

traveling salesman problem with FIFO 

loading. Computers & Operations Research, 

37(5), 970-980. 

Crowder, H.; Padberg, M. W., (1980), Solving 

large-scale symmetric traveling salesman 

problems to optimality. Management 

Science, 26, 495-509. 

Dantzig, G. B.; Fulketson, D. R.; Johnson, S. M., 

(1954), Solution of a large-scale traveling-

salesman problem. Operations Research, 2, 

393-410. 

Di Caro, G.; Dorigo, M., (1998), Ant net: 

Distributed stigmergetic control for 

communications networks. Journal of 

Artificial Intelligence Research, 9, 317-365. 

Dorigo, M., (1992), Optimization, learning and 

natural algorithms. PhD thesis, Dipartimento 

di Elettronica, Politecnico di Milano, Italy, 

140. 

Garey, M. R.; Johnson, D. S., (1979), Computers 

and intractability: A guide to the theory of 

NP-completeness. San Francisco: W. H. 

Freeman. 

Ghafurian, S.; Javadian, N., (2011), An ant colony 

algorithm for solving fixed destination  

multi-depot multiple traveling salesmen 

problems. Applied Soft Computing, 11(1), 

1256-1262. 

Grotschel, M.; Holland, O., (1991), Solution of 

large-scale symmetric traveling salesman 

problems. Mathematical Programming, 51, 

141-202 

Hashemi, S. M.; Yousefi Khoshbakht, M.; Zafari, 

A., (2009), Solving multiple traveling 

salesman problem by a modified elite ant 

colony system. The 40th Annual Iranian 

Mathematics Conference (AIMC), Sharif 

University of Technology, Tehran, Iran.  

Karp, R. M., (1977), Probabilistic analysis of 

partitioning algorithms for the traveling 

salesman problem in the plane. Mathematics 

of Operations Research, 2, 209-224. 

Kureichik, V. V.; Kureichik, V. M., (2006), A 

genetic algorithm for finding a salesman’s 

route. System Analysis and Operations 

Research, 45(1), 89–95. 

Lin, S., (1965), Computer solutions of the 

traveling salesman problem. Bell System 

Technical Journal, 44, 2245-2269. 

Lin, S.; Kernighan B. W., (1973), An effective 

heuristic algorithm for the traveling salesman 

problem. Operations Research, 21, 498-516. 

Malandraki, C.; Dial, R. B., (1996), A restricted 

dynamic programming heuristic algorithm 

for the time dependent traveling salesman 

problem. European Journal of Operation 

Research, 90, 45–55. 

Masutti, T. A. S.; Castro, L. N. D., (2009), A self-

organizing neural network using ideas from 

the immune system to solve the traveling 

salesman problem. Information Sciences, 

179(10), 1454-1468. 



M. Yousefikhoshbakht et al./ Journal of Industrial Engineering International 7(15) (2011) 68-75                                                                                  75 

Padberg, M. W.; Rinaldi, G., (1987), Optimization 

of a 532-city symmetric traveling salesman 

problem. Operation Research Letters, 6, 1-7. 

Padberg, M.; Rinaldi, G., (1991), A branch-and-

cut algorithm for the resolution of large-scale 

traveling salesman problems. SIAM Review, 

33, 60-100. 

Qinghong, W. U., Zhang, J., (1999), ACO with 

the characteristic of mutation. Computer 

research and development, 240-245. 

Yadlapalli, S.; Malik, W. A.; Darbha, S.; Pachter, 

M., (2009), A lagrangian-based algorithm for 

a multiple depot, multiple traveling salesmen 

problem. Nonlinear Analysis: Real World 

Applications, 10(4), 1990-1999. 

Yousefi Khoshbakht, M.; Zafari, A., (2008), A 

new ant colony algorithm for solving multiple 

traveling salesman problem. The 2nd Joint 

Congress on Intelligent and Fuzzy Systems 

(ISFS2008), Malek-Ashtar University of 

Technology, Tehran, Iran. 


