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          Abstract 

This paper will investigate the optimum portfolio for an investor, taking into account 5 criteria. The mean 

variance model of portfolio optimization that was introduced by Markowitz includes two objective functions; 

these two criteria, risk and return do not encompass all of the information about investment; information like 

annual dividends, S&P star ranking and return in later years which is estimated by using data from a longer 

history. Thus portfolio selection is a typical multi-objective decision making (MODM) problem. It is well 

known that Goal Programming (GP), based on preemptive priorities and target values, has been successful in 

solving MODM problems. In this paper we rank objectives of the MODM model according to weights elicited 

from Decision Maker’s (DM) preferences. Then we obtain goals from DM’s opinion. As a guidance for DM, 

we revise these goals consistent with ranking of objectives by a Linear Programming model in a way that new 

goals remain as close as possible to DM’s goals. After obtaining the goals we solve our MODM problem by a 

Lexicographic Goal Programming (LGP) model which is constructed by prioritizing objectives. Finally we il-

lustrate our proposed LGP model by a numerical example. 

 

Keywords: Consistent comparison matrix; Lexicographic goal programming (LGP); Multi-objective deci-

sion making (MODM); Portfolio optimization problem (POP); 

 
 
1. Introduction 

1.1. Portfolio optimization 

The traditional mean–variance model developed 

by Markowitz [9] has been the basis of portfolio 

theory. It is the first systematic treatment of inves-

tor’s conflicting objectives of high return versus 

low risk. On one hand, the risk of a portfolio, 

represented by its variance, is to be minimized, 

while on the other hand the expected return of the 

portfolio is to be maximized. This traditional port-

folio theory has been applied successfully in a va-

riety of situations in which investments are com-

prised of stocks, bonds, real estate, private equity, 

and similar instruments. 

In recent years, criticism of the basic model has 

been increasing because of its disregard for individ-

ual investor’s preferences. 

Hallerbach et al. [4] showed how multi-attribute 

nature of investors can be combined into portfolios 

with the same attributes at the portfolio level. They 

found that there is a gap between objectives in 

Markowitz model and investor preferences. The 

results of research done by Schwehm [12] with sev-

eral investors as well as analysts indicated that the 
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expected return as used in the Markowitz model 

should be broken down into the criteria 12-month 

performance, 3-year performance and annual divi-

dend in order to improve the possibilities of the in-

dividual investor to articulate subjective preferences. 

This gain of flexibility seems enough to include 

these 3 objectives instead of return used in Marko-

witz’s model. The fourth objective, the Standard 

and Poor’s star ranking, describes to what extent an 

investment fund follows a specific market index 

and is applied particularly in the case that a portfo-

lio consists exclusively of investment funds. It eva-

luates the out- or under-performance divided by the 

tracking error over three years and rewards funds 

that closely follow the market index. The fifth 

attribute, the 3 years risk, is used as a measure of 

the risk of a portfolio. So we conclude that portfolio 

optimization problem (POP) can be considered as a 

classical multi-objective decision making (MODM) 

problem. 

1.2. Proposed algorithm justification 

According to the above discussion the assump-

tion of the multi-dimensional nature of POP re-

quires determination of priorities by DM to satisfy 

his/her desires well. Goal Programming (GP) intro-

duced by Charnes and Cooper [1] is an appropriate 

way for solving MODM problems, like POP. There 

are different approaches for solving GP models like 

lexicographic GP (preemptive GP), weighted GP 

(Archimedean GP), and MINMAX GP (Chebyshev 

GP) (See Romero [10]). Lexicographic GP is an 

approach which solves GP problems with priorities 

on objectives. So the result obtained by this ap-

proach is suited for POP and can meet the desires of 

DM well when assuming POP as an MODM prob-

lem; since DM's desires and aim from investment 

may cause him/her prioritize the objective functions. 

Another important issue here is that arbitrary se-

lection of goals and priorities can lead to undesira-

ble results; for example determining large goals for 

one high and one low priority objectives may avoid 

satisfying the low priority objective with its goal 

and cause a large deviation. So after asking goals 

from DM, we revise them in a way that new goals 

be consistent with ranking of objectives and remain 

as close as possible to those of DM. We do this by a 

linear programming problem. These new goals are 

as guidance for DM and he/she may or may not ac-

cept them. In this case we use DM’s goals in our 

model. The remaining of this paper is organized as 

follows: In Section 2 first we describe Markowitz’s 

model and its extensions according to the above 

discussion. Then we develop our model based on 

Lexicographic Goal Programming (LGP). In order 

to prioritize objectives we elicit weights of objec-

tives from pairwise comparison matrix provided by 

DM using weighted least squares method. We re-

vise DM’s goals as discussed earlier by a linear 

programming model and propose them to DM who 

may or may not accept these goals. Finally, in Sec-

tion 3 we illustrate our approach by a numerical 

example. 

2. Model description 

2.1. Markowitz’s model 

Markowitz’s model is in the following form:    

1

Max

n

i i

i

r x

=

∑       

1 1

Min

n n

ij i j

i j

x xσ
= =

∑∑  

Subject to:                                                             (1) 

1

n

i

i

x M

=

=∑                                                    

0 1 , . . . ,
i

x i n≥ =  

where 
i

r  , denotes the expected return of asset i.  

i
x represents the investment portion in asset 

{ }1,...,i n∈ , where n denotes the number of availa-

ble assets; so the first objective function represents 

the expected return of portfolio which is to be max-

imized. 
ij

σ , denotes covariance between returns of 

assets i,j. The second objective is the risk of portfo-

lio which is defined as the variance of the expected 

return. The constraint 
1

n

i

i

x M
=

=∑ is capital con-

straint where M is the total amount of capital. 

Without loss of generality we can assume that the 

capital constraint is
1

1
n

i

i

x
=

=∑ . From now we as-

sume 
i

x denotes the percent of capital which is in-

vested in asset i. For more details see Markowitz 

[9]. 
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Figure 1. Objective hierarchy based on Markowitz’s model. 

 

 
2. 2. Objective hierarchy 

An example for multi-objective POP based on 

Markowitz’s classical model is the one that was 

found by Schwehm [12]. Figure 1 shows his pro-

posed objective hierarchy extending the classical 

Markowitz model in t: 

he sense that the two classical criteria risk and re-

turn are replaced by five more specific objective 

functions. Matthias Ehrgot et al. [3] considers indi-

vidual preferences through the construction of DM 

specific utility functions and an additive global util-

ity function.   

2.2.1. One year return 

If 
ti

P denotes the price of asset i  in period t  then 

the return rate in one year will be:  

 

 
1,

1,

Ti T i

i

T i

P P
r

P

−

−

−
=                                        (2)                                                                                       

where T  is present. In fact 
i

r  is the relative change 

in price of asset i  over the last year. This is a good 

approximate of expected return over future year. 

We do not need to know the statistical distribution 

of 
i

r .  

2.2.2. Three years return 

We denote the 3 years return by 
i

r′  and define it 

in this way: 

i
r′ = 3,

3,

Ti T i

T i

P P

P

−

−

−
                                  (3)                                                                                    

Thus the objective functions for 1 year and 3 

years return are: 

1

1

( )
n

i i

i

f x r x
=

=∑                                                (4)                                                                                                 

2

1

( )
n

i i

i

f x r x
=

′=∑                                              (5)                                                  

2.2.3. Annual dividend 

The annual dividend of an asset is the dividend 

paid, relative to the highest price of the asset and is 

denoted by
i

d . 

a
i

i h
i

d
d

P
=                                                            (6)                                                                                                              

 

We denote the annual dividend objective function 

by: 

 

3

1

( )
n

i i

i

f x d x
=

=∑                                               (7)                                                                                                     
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2.2.4. Risk 

As discussed earlier, the risk function is: 

 

4 ( )f x =
1 1

n n

ij i j

i j

x xσ
= =

−∑∑                                (8)                                                                              

 

where 
ij

σ  is the covariance between return rate of 

assets i  and j , and can be computed from histori-

cal data of return rates.  

The minus sign shows that this objective must be 

maximized like all other objectives. For more de-

tails see Markowitz [9]. 

2.2.5 S&P star ranking 

The Standard and Poor’s Fund Services evaluates 

the performance of most investment funds con-

tained in their data base on an annual basis which 

results in a performance ranking (star ranking). The 

ranking is based on the performance of an invest-

ment fund in comparison to the sector index and 

assigns between one star (for a relatively poor per-

formance) and up to five stars (for a very good per-

formance).  

We will assume in the following that the ranking 

is additive in the sense that the ranking of a portfo-

lio of investment funds can be obtained as the 

weighted sum of the rankings of the individual in-

vestment funds in the portfolio. 

Consequently, the fifth objective function can be 

written as: 

 

5

1

( )
n

i i

i

f x sr x
=

=∑                                                 (9)                                                                                                       

 

where 
i

sr  denotes the number of stars assigned to 

investment fund  i . Therefore our MODM model is 

in this form: 

Max 1 5[ , , ]( ) ( )f fx x…                 

Subject to: 

1

1
n

i

i

x
=

=∑                                                             (10) 

0; 1,...,
i

x i n≥ =  

2.3. Determining priorities 

In order to determine priorities we must obtain 

the degree of importance of each objective 

(weights). We also use these weights when revising 

DM’s proposed goals; so there are two reasons that 

show the necessity of obtaining weights of objec-

tives: determining priorities and using in revision 

DM’s proposed goals.  

The weight vector 1 5( ,..., )T
W w w= must be eli-

cited from DM’s judgments on objectives. Usually, 

it can be estimated subjectively or objectively. Ob-

jective approaches such as the relative entropy me-

thod, (see Hwang and Yoon [5] and Wang and Fu 

[13]) and the factor analysis, ( see Wang and Fu 

[13]) determine the weights of attributes of a multi- 

attribute decision making problem using decision 

matrix information, but we don’t have any alterna-

tive here for forming a decision matrix. On the oth-

er hand these approaches take no account of DM’s 

preferences on the relative importance of attributes. 

Therefore, we use a subjective approach that is ex-

tensively used so that DM’s preferences can be con-

sidered in the determination of attribute weights. 

The most widely used subjective approach is the 

method of pairwise comparison matrix on the rela-

tive weights of attributes. We use this method on 

objectives in MODM problem. Let the relative 

weights of objective functions be represented by: 

 

1 2 5

1 11 12 15

2 21 22 25

5 51 52 55

w w w

w a a a

w a a a
A

w a a a

=

 
 
 
 
 
 

�

…

…

� � � � �

…

                           (11) 

where 
1

0
ij

ji

a
a

= >  and 1 ( , 1, ... , 5)
ii

a i j= = . Ac-

cording to Saaty’s eigenvalue method, (see Saaty 

[11]), weight vector 1 5( ,..., )T
W w w= can be esti-

mated by solving the following eigenvalue problem: 

 

maxAW Wλ=                                                (12)                            

If the multiplicative preference relation A  is a 

precise/consistent comparison matrix on the relative 

weights of attributes, then Eq. (12) can be simpli-

fied as: 

 

5AW W=                                                    (13)                                                                                                     
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It is hoped that the multiplicative preference rela-

tion provided by DM should be as consistent as 

possible that is ik kj ij
a a a= ; otherwise eigenvalue 

specifies a degree of non-consistency about infor-

mation existing in matrix A  (11). Saaty defines 

Consistency Index ( CI ) by (14): 

max

1

K
CI

K

λ −
=

−
                                              (14)                                                                                                 

where K  is the dimension of matrix A , so we can 

write: 

max max
5 5

5 1 4
CI

λ λ− −
= =

−
                             (15) 

Saaty [11] shows that maxλ  for each invertible 

matrix is greater than or equal to 5K =  (dimension 

of matrix A ) and only in case of having a full con-

sistent matrix, maxλ  equals K . Thus max Kλ −  is 

an appropriate measure of degree of consistency of 

a matrix. This index after normalizing it by the di-

mension of matrix A , can be expressed by (14). 

Saaty [11] also comparesCI with a Random In-

dex ( RI ). RI  has been computed by generating 

random matrices of dimension K  and computing 

the average of their CI . Consistency Ratio ( CR ) 

for a matrix is defined by (16): 

 

CI
CR

RI
=                                                          (16)                                                                              

 

If 0.1CR ≤ , the consistency of matrix A is  

accepted, otherwise DM must revise in his/her 

pairwise judgments for further consistency. 

If DM gives us a comparison matrix which its 

consistency is accepted but, not a full consistent 

matrix it is desirable to determine the weights 
j

w  

such that i
ij

j

w
a

w
≈ . 

Chu et al. [2] propose the weighted least square 

method to obtain weights. We describe this method 

here. The weights can be obtained by solving the 

constrained optimization problem: 

 

Min  
5 5

2

1 1

( )T
ij j i

i j

z w Dw a w w
= =

= = −∑∑  

Subject to: 

5

1

1i

i

w
=

=∑                                                         (17) 

 

where 1 5( ,..., )T
W w w=  and 

5 5[ ]
ij

D d ×= . The 

elements in matrix D  are: 

 
5

2

1

5 2
ii ji

j

d a
=

= − +∑      1,...,5i =                  (18)                                                                           

( )
ij ij ji

d a a= − +      , 1,...,5i j i j= ≠    (19)                                                               

 

Model (17) is a nonlinear programming model. In 

order to minimize it, the Lagrangian function is 

formed: 

( 1)t T
L w DW e wλ= + −                               (20) 

                                                                            

where (1, 1, 1, 1, 1)e =  and λ  is Lagrangian mul-

tiplier. 

Differentiating Eq. (20) with respect to w  and 

λ respectively, the following equations are obtained: 

      

0DW eλ+ =                                  

1T
e w =                                                           (21)  

                                                                                                  

Eq. (21) forms a set of 6 non-homogeneous linear 

equations with 6 unknowns. If the minimum of 

model (17) is 0z =  then it is obvious that A  is a 

full consistent matrix and we can obtain weights 

from Eq. (13). Otherwise, we have 0z >  for all w . 

This shows that D is a positive definite matrix. By 

the property of positive definite matrix, D is invert-

ible.  By solving Eq. (21), we have: 

1
*

1T

D e
W

e D e

−

−
=                                      

1

1
T

e D e
λ

−

−
=                                                    (22)  

Now these k
w ’s can be ordered analogously. 

Without loss of generality suppose that the ranking 

is:  

 

 1 2 2 4 5w w w w w> > > >                             (23)   
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This gives an ordering, i.e. a priority structure 

among the objectives.  

2.4. Deriving LGP model 

As discussed earlier, we prioritize objective func-

tions as they can form L  prioritized 

classes (1 5)L≤ ≤ . The LGP model is: 

 

Min

1

1
( ), , ( )

L

k k k k k kL k k k k

k K k K

V W d d W d dλ λ λ λ
+ + − − + + − −

∈ ∈

= + +
 
 
 
∑ ∑…   

Subject to: 

; 1,...,5( )
k k k k

d d g kf x
+ −

− + = =  

1

1

n

i

i

x

=

=∑                                                          (24) 

0; 1,...,5
k k

d d k
+ −

= =  

, , 0; 1,...,5; 1,...,
k k i

d d x k i n
+ −

≥ = =  

 

 Let 
k

d
+

,
k

d
−

 be respectively the over attainment 

and under attainment deviation variables of the k th 

objective which can not be simultaneously unequal 

to zero (see last two constraint sets). We also as-

sume 
k

λ
+

 , 
k

λ
−

 are deviation weights and take them 

1
k

kg
λ

+ =  and 
1

k

kg
λ

− =  where 
k

g  is the goal of  

objective 
k

f . If there is a priority class l in which 

only one objective lies, then the use of 
kλ
+

 and 
kλ
−

is 

meaningless and we can discard them. These devia-

tion weights make deviation variables of the same 

scale and dimensionless. In order to show the 

priorities, the objective of model (24) is shown as a 

vector V  which its l th component denotes the total 

deviation of l th priority class that is 

( )

l

kl k k k k
k K

W d dλ λ
+ −+ −

∈

+∑ ; where 
l

K  is the index set 

of objectives in l th priority class. Here 1k
w s de-

note the differential weights of different objectives 

in the same class. Since in this paper we specify 

priorities according to the weights of objectives, 

those objectives which lie in the same class have 

equal weight, so the use of differential weights here 

is redundant and we can drop them from our model. 

Now we can simplify model (24) as: 

 

Min

1

( ), , ( )

L

k k k k k k k k

k K k K

V d d d dλ λ λ λ
+ + − − + + − −

∈ ∈

= + +
 
 
 
∑ ∑…     

Subject to: 

; 1, ..., 5( )
k k k k

f d d g kx
+ −

− + = =  

1

1

n

i

i

x

=

=∑                                                        (25) 

. 0; 1,...,5
k k

d d k
+ −

= =  

, , 0; 1,...,5; 1,...,
k k i

d d x k i n
+ −

≥ = =  

 

We solve model (25) in L  stages. In stage l we 

optimize only l th component of V and put the con-

straints ( ) ( )
k k k k lf x d d g k K

+ −
− + = ∈  in the 

constraint set of model (25). By using these con-

straints, we try to satisfy objectives ( )
k

f x  with at-

tainment values 
k

g ( )
l

k K∈ . In subsequent stage 

we put obtained values of deviation variables, in 

previous constraint set. This avoids deviating opti-

mized objectives of l th class. Then we optimize 

1l + th component of V and add new constraint set 

1( ) ( )
k k k k lf x d d g k K

+ −

+− + = ∈ of 1l + th class to 

our model and we stop this procedure when all of 

the components of V are optimized or reach an in-

feasible model. 

Further details concerning the algorithm, exten-

sions, and applications can be found in the text of 

Lee [8], Ignizio [6] and Romero [10]. 

2.5 Computing degrees of individual optimalities 

We know that arbitrary selection of goals may 

not be feasible and lead to undesirable results when 

prioritizing objectives. In order to define individual 

optimality we first obtain the best and worst solu-

tion for each objective:  

 
*

max ( )

1,...,5
min ( )

k k

k k

x X

x X

f f x

k
f f x

−

∈

∈

=


=
=
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where X  is the feasible space of our LGP model. 

As Lai and Hwang, 1994 said linear membership 

functions expressing degrees of individual optimali-

ties can be defined:  

 

*
( )

( )
k k

k k

k k

f
f x f

f f
µ

−

−
=

−

−
                                             (26)    

2.6. Revising proposed goals of DM 

We must obtain some goals that are more com-

patible and consistent with ranking of objectives 

than DM’s goals and as close as possible to those of 

DM; since goals could hardly be determined with-

out meaningful supporting data. So DM’s goals 

may not be feasible even when we do not prioritize 

objectives. In order to obtain goals consistent with 

ranking structure they must satisfy (27):  

 

1 1 5 5( ) ( )g gµ µ> >…                                          (27)                                                                          

 

We can write constraint (27) in the form of 4 sep-

arate constraints:  

 

 

1 1 2 2

4 4 5 5

( ) ( ) 0

( ) ( ) 0

g g

g g

µ µ

µ µ

− ≥

− ≥

�                                      (28)                                                                    

 

By using these fuzzy membership functions as 

defined by (26) we must make individual optimali-

ties of revised goals as close as possible to individ-

ual optimalities of DM’s goal while preserving 

higher priority objective with higher individual op-

timality of revised goal. That is: 

 

Min  
1

( ) ( )
n

i

i

DM
i i i iw g gµ µ

=

−∑                  (29)  

Subject to: 

1 1( ) ( ) 0 1,..., 4i i i ig g iµ µ + +− ≥ =  

                                 

In the objective function of model (29) we try to 

minimize the difference between individual opti-

mality of DM’s goals and obtained goals. Since iµ  

makes its parameter dimensionless, we use it in the 

objective function of model (29). The constraints 1 

through 4 tell us, the higher priority objective, the 

larger its individual optimality. iw s are the weights 

obtained from Eq. (22). Model (29) is a non-linear 

one, so we construct an equivalent linear model 

here. Let ( ) ( )DM

i i i i ig gε µ µ= −  for 1, , 5i = … ,  

2

i i

i

ε ε
ε + +

=  and 
2

i i

i

ε ε
ε − − +

= . Based on 
i

ε +
 and 

i
ε −

, 
i

ε  and
i

ε can be expressed as: 

 

, 1, , 5
i i i

iε ε ε+ −= − = …                 

, 1, , 5i i i iε ε ε+ −= + = …                               (30) 

 

where . 0
i i

ε ε+ − =  for 1, , 5i = … . Now model (29) 

by formula ( ) ( )DM

i i i i i ig gµ ε ε µ+ −= − +  and Eq. 

(30) can be rewritten as: 

Min  

5

1

( )
i

i

i iw ε ε
=

+ −+∑      

Subject to: 

DM DM
1 1 1 1( ) ( ( )) 0i i i i i i i ig gε ε µ ε ε µ+ − + −

+ + + +− + − − + ≥       

 1,. . . ,4i =  

1,. . . ,50i i iε ε+ −
==  

1,. . . ,5, 0i i iε ε+ −
=≥                                      (31) 

 

Solving model (31) will provide goals for model 

(25). These new goals make guidance for DM; 

however they may not be acceptable by DM while 

they are consistent with DM’s preferences on objec-

tives. In this case we can use DM’s goals in model 

(25). Any way DM can choose one of these two sets 

of goals arbitrarily. Figure 2 shows the flowchart of 

this algorithm. In the next section, an example will 

be used to illustrate the functioning and behavior of 

the algorithm. 

3. Numerical illustration      

We test our approach, by solving a POP. Let us 

use the set of historical annual data of 10 assets. We 

also assume that an investor wants to allocate one 

unit of wealth among some of these assets on which 

historical data of objectives have been calculated 

using the formulas described earlier. 
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Figure 2. Flowchart for the proposed algorithm. 
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We assume that the pairwise comparison matrix 

made by DM is: 

 

1 1 1 1
1

4 2 2 3

4 1 3 4 3

1 3
2 1 2

3 2

1 1 1
2 1

4 2 2

1 2
3 2 1

3 3

A

 
 
 
 
 
 

=  
 
 
 
 
  

 

 

The maximum eigenvalue of the above matrix is 

max
5.14λ =  and by using Eq. (15) we have: 

 

max
5 5.14 5

4 4
0.04CI

λ − −
= = =  

 

and finally from (16) the consistency ratio is: 

 

0.04
0.04 0.1

1.11

CI
CR

RI

= = = <  

 

So we can conclude that DM’s judgments in ma-

trix A  is consistent. 

By using formulas (18) and (19) we calculate ma-

trix D : 

 

37 4. 25 2.5 2.5 3.34

4. 25 4.36 3.34 4. 25 3.34

2.5 3.34 13.95 2.5 2.17

2.5 4. 25 2.5 28. 25 2.5

3.34 3.34 2.17 2.5 15.62

D

− − − −

− − − −

− − − −

− − − −

− − − −

 
 
 
 =
 
 
  

 

 

And the vector of weights from formula (22) is: 

 

1

1

0.0886

0.4636

0.1754

0.1093

0.1631

T

D e

e D e

−

−

 
 
 
 =
 
 
  

                                          (32)   

                                                                                                

Thus the obtained ranking is:  

 

2 3 5 4 1f f f f f> > > >  

 

Now we obtain max and min of each objective in 

feasible space. Results are shown in Table 1.                 

So we can compute 
i

µ s from (26): 

1
1 1

2.56
( )

2.84

f
fµ

−
=    2

2 2

5
( )

6.45

f
fµ

−
=  

3
3 3( )

1.6

f
fµ =     4

4 4

0.26
( )

0.23

f
fµ

+
=  

5
5 5

1
( )

3

f
fµ

−
=  

 

We also assume that DM’s goals are: 

 

1 5DM
g =  

2 7DM
g =   

3 1.5DM
g =  

4 0.1DM
g =    

5 4DM
g =          

     

Now we form model (31) in order to obtain new 

goals. Note that our ranking is  f f f f f> > > > . 

So we have: 

 

 

 

[ ]

1 1

2 2

0.0886 0.4636 0.1754 0.1093 0.1631 3 3

4 4

5 5

Min

ε ε

ε ε

ε ε

ε ε

ε ε

+ − 
 + − 
 + −
 
 + −
 
 + −
  

+

+

+

+

+

  

Subject to: 

 

2 2 2 33 3
(7) (1.5) 0ε ε µ µε ε+ − + −− − + − ≥+  

5 5 53 3 3(1.5) (4) 0ε ε ε ε µ µ+ − + −− − + + − ≥  

5 5 54 4 4(4) (0.1) 0ε ε ε ε µ µ+ − + −− − + + − ≥  

4 4 1 1 4 1(0.1) (5) 0ε ε ε ε µ µ+ − + −− − + + − ≥          (33) 

, 0 , 1,...,5
i i

iε ε+ − ≥ =  

. 0 1,...,5
i i

iε ε+ − = =  

where 
i

w s are used from (32). 

Solving model (33) with lingo gave us revised 

goals as follows: 

 

1 5g =   
2 12.29g =   

3 1.81g =
 

4 0.01g = −  
5 4.39g =  

                                           

Now model (25) is completed as described earli-

er. Since there is no priority class in which more 

than one objective lies, thus we can discard devia-

tion weights. 
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Min 
2 2 3 3 5 5 4 4 1 1( , , , , )d d d d d d d d d d
+ − + − + − + − + −+ + + + +  

Subject to: 

1 1 1( ) 5f x d d
+ −− + =  

2 2 2( ) 12.29f x d d
+ −− + =  

3 3 3( ) 1.81f x d d
+ −− + =  

4 4 4( ) 0.01f x d d
+ −− + = −  

5 5 5( ) 4.39f x d d
+ −− + =                                    (34) 

1

1
n

i

i

x
=

=∑         

. 0 , 0 ; 1,...,5k k kd d d k
+ − = ≥ =  

0 ; 1,...,10ix i≥ =  

 

We solve this model by lexicographic GP using 

revised goals and DM’s goals. Results are shown in 

Table 2. We can see that using revised goals leads 

to less deviation than using DM’s goals especially 

in high priority objectives which are more impor-

tant from DM’s point of view. In each case the first 

priority objective has no deviation while 3f  which 

is in second priority class has deviated from DM’s 

goal and no deviation from revised goal. This is 

also true about 5f  which is in third priority class. It 

has no deviation from revised goal while has from 

DM’s goal. Both 4f  and 1f  have deviation from 

two types of goals while 1f  has deviated from re-

vised goal less than that of DM. So we see that re-

vised goals lead to better results than use of DM’s 

goals when solving our model with LGP; however 

DM can arbitrarily choose one of these two sets of 

goals. We also solve our model by ordinary GP and 

compare results with LGP approach. Results are 

shown in Table 3. The ordinary GP model is: 

 

Min  3 31 1 2 2 4 4( )( ) ( ) ( )

5 12.29 1.81 0.01

d dd d d d d d
+ −+ − + − + −++ + +

+ + +  

       5 5( )

4.39

d d
+ −+

+  

Subject to: 

1 1 1( ) 5f x d d
+ −− + =  

2 2 2( ) 12.29f x d d
+ −− + =  

3 3 3( ) 1.81f x d d
+ −− + =  

4 4 4( ) 0.01f x d d
+ −− + = −  

5 5 5( ) 4.39f x d d
+ −− + =                                    (35) 

1

1
n

i

i

x
=

=∑         

. 0 , 0 ; 1,...,5k k kd d d k+ − = ≥ =  

0 ; 1,...,10ix i≥ =  

 

As shown in Table 3, objective 2f  which lies in 

first priority class is fully satisfied with both goals. 

But 3f which is in second priority class is deviated 

from both goals while it has no deviation when us-

ing LGP approach with revised goal. In Table 3,  

4f  has no deviation from both goals while it is de-

sirable for DM to reach a result with 3f  less de-

viated from its goal rather than 4f . This desirable 

result is obtained by using LGP approach with re-

vised goals as Table 2 shows. Since DM prioritizes 

objectives, it’s more desirable for DM to reach a 

solution with better satisfaction of higher priority 

objectives like 2f , 3f , 5f  which are fully satisfied 

by LGP approach with revised goals (see Table2).  

So we can infer here that DM is more pleased with 

results obtained from lexicographic approach than 

ordinary GP. Table 4 shows selected portfolios by 

using ordinary GP and lexicographic GP with re-

vised and DM’s goals. 

 

 

 

 

Table 1. Maximum and minimum of each objective. 

 

Objective                 Max                      Min 

 

   1f                           5.4                       2.56 

   2f                         11.45                      5 

   3f                          1.6                          0 

   4f                         -0.03                     -0.26 

   5f                            4                           1 
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Table 2. Results obtained for model (12). 

                                         1
f              2f                3f                 4f                5f    

 

                 k
d

+
               0                 0                0                  0                 0 

                 k
d −

          1.0228            0            0.5960         0.0210       1.1299 

            Achieved Goal   3.9772            7              0.904          0.079         2.8701 

 

            

                 k
d +

               0                 0                 0                0                 0 

                 k
d −

          0.0560            0                 0            0.1656            0 

            Achieved Goal    4.234           12.29           1.81         -0.1756         4.39   
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Table 3. Results obtained by using ordinary GP. 

                                         1
f              2f                3f                 4f              5f    

 

                 k
d

+
               0                 0                0                  0               0 

                 k
d −

          1.0948            0            0.6962              0           0.9255 

            Achieved Goal   3.9052            7             0.8083            0.1         3.0745 

 

            

                 k
d +

           0.2348            0                 0                 0               0 

                 k
d −

              0                 0             0 .2438           0            0.0681 

            Achieved Goal   5.2348        12.29           1.5662         -0.01        4.3219   
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Table 4. Selected portfolios using different approaches and goals. 

 
    Asset                                                                      Selected portfolio 

                                            
                                          Ordinary GP                                                         Lexicographic GP 

               
                                     DM’s goals         revised goals                              DM’s goals         revised goals 

 

     1x                 0.000000             0.000000                            0.000000             0.000000                                                                                                                     

     2x                             0.000000             0.6190456                                   0.000000             0.3129872             

     3x                             0.000000             0.000000                                     0.000000             0.000000             

     4x                             0.000000             0.000000                                     0.000000             0.000000             

     5x                             0.000000             0.000000                                     0.000000             0.000000            

     6x                             0.000000             0.000000                                     0.000000             0.000000         

     7x                             0.4627595           0.000000                                     0.5649718           0.2720128    

     8x                             0.0560979           0.07626602                                 0.000000             0.1912769          

     9x                             0.000000             0.000000                                     0.000000             0.000000         

     10x                            0.4811426           0.3046883                                   0.4350282           0.2237231            

                                                   

 

 

 

4. Conclusions 

In this paper, we interceded for preferences and 

interests of DM in the POP favorably. We consider 

the multi-attribute nature of desires, tastes and pre-

ferences of DM. In order to obtain some results 

which are more desirable for DM, these subjective 

and mental features of DM should be considered in 

the objective functions of model. So we considered 

multiple objectives to tackle the POP. 

The objectives considered by DM, have different 

or probably same priorities from his/her point of 

view. So in order to fulfill DM’s desires and tastes, 

it had better that DM specify degrees of importance 

of different Objectives from his/her viewpoint. 

Since the LGP is answerable to these types of situa-

tions, according to above discussion we utilized it 

in our paper.  

Ultimately the solution of proposed approach is 

closer to the mentality of DM. In addition the ap-

proach proposed in this paper is a general  

one and can be applied to any POP with arbitrary 

objective functions. 
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