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          Abstract 

A characteristic of data envelopment analysis (DEA) is to allow individual decision making units (DMUs) 

to select the factor weights that are the most advantages for them in calculating their efficiency scores. This 

flexibility in selecting the weights, on the other hand, deters the comparison among DMUs on a common base. 

For dealing with this difficulty and assessing all the DMUs on the same scale, this paper proposes to use a 

multiple objective linear programming (MOLP) approach for generating common set of weights under the 

DEA framework. This is an advantage of the proposed approach against general approaches in the literature 

which are based on multiple objective nonlinear programming. 
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1. Introduction 

Data envelopment analysis (DEA) has been widely 

applied to measure the relative efficiency for a group 

of homogeneous decision making units (DMUs) with 

multiple inputs and outputs. Its characteristic is to 

focus on each individual DMU to select the weights 

attached to the inputs and outputs, and to show each 

DMU in its most favorable light as long as the effi-

ciency scores of all DMUs calculated from the same 

set of weights do not exceed one.  

As the mathematical models in DEA are run sepa-

rately for each DMU, the set of weights will typically 

be different for the various DMUs, and in some cases, 

this is unacceptable that the same factor is accorded 

widely differing weights. This flexibility in selecting 

the weights  deters the comparison among DMUs on 

a common base. A possible answer to this difficulty 

lies in the specification of a common set of weights, 

which was first introduced by Roll et al. [14]. In other 

words, the major purpose for generating common set 

of weights is to provide a common base for ranking 

the DMUs. 

Research about the idea of common set of weights 

and rankings are developed gradually in recent years. 

Kao and Hung [11] based on multiple objective 

nonlinear programming and by using compromise 

solution approach, proposed a method to generate a 

common set of weights for all DMUs which are able 

to produce a vector of efficiency scores closest to the 

efficiency scores calculated from the standard DEA 

model (ideal solution). Likewise, Jahanshahloo et al. 

[9] based on multiple objective nonlinear program-

ming and maximization of the minimum value of the 

efficiency scores, proposed a method to generate a 

common set of weights for all DMUs. Some of the 

other studies in this field are Doyle and Green [4], 

Karsak and Ahiska [12] and Roll and Golany [15]. 

The plan for the rest of this paper is as follows: In 

Section 2 a brief discussion is presented about DEA 

models and the multiple objective linear program-

ming (MOLP). The mathematical foundation of our 



 

 

 

��� �����������������
������������ 	��
�!������������

 

 

 

method for finding a common set of weights and the 

method itself is discussed in Section 3. A Numerical 

example is presented in Section 4 and finally, Section 

5 draws the conclusive remarks. 

2. DEA and MOLP preliminaries 

Thirty years after the publication of the founding 

paper by Charnes et al. [3], DEA can safely be con-

sidered as one of the recent success stories in Opera-

tions Research and several hundreds of papers have 

been published since then. Interestingly, Charnes and 

Cooper [2] have also had a significant impact on the 

development of multiple objective linear program-

ming through the development of Goal Programming 

(GP). Since the 1970s, MOLP has become a popular 

approach for modeling and analyzing certain types of 

multiple criteria decision making (MCDM) problems. 

Although Charnes and Cooper have played a signifi-

cant role in the development of DEA and MOLP, re-

searchers in these two camps have generally not paid 

much attention to research performed in the other 

camp. Some work on the  interactions between 

MCDM and DEA, are as follows: Bouyssou [1], 

Estellita et al. [5], Giokas [6], Golany [7], Joro et al. 

[10], Stewart [16] and Xiao and Reeves [17]. 

2.1. Data envelopment analysis 

Consider n production units, or DMUs, each of 

them consume varying amount of m inputs to pro-

duce s outputs. Suppose 0≥ijx denotes the amount 

consumed by the i
th

 input and 0≥rjy  denotes the 

amount produced by the r
th

 output by for j
th

 decision 

making unit. Then, the following set is the production 

possibility set (PPS) of obviously most widely used 

DEA model, CCR with constant returns to scale char-

acteristic: 
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Definition 1. DMUj , j=1,2,...,n, is called efficient if 

there does not exist another cTyx ∈),( such that 

jxx <  and jyy > , and is called pareto efficient iff 

there does not exist another cTyx ∈),( such that 

jxx ≤ and jyy ≥  and ),(),( jj yxyx ≠ . 

In DEA, the measure of efficiency of a DMU is de-

fined as a ratio of a weighted sum of outputs to a 

weighted sum of inputs subject to the condition that 

corresponding ratios for each DMU be less than or 

equal to one. The model chooses nonnegative weights 

for a DMU in a way that is most favorable for it. The 

original model proposed by Charnes et al. [3], for 

measuring the efficiency of unit ’p’, is a fractional 

linear program as follows: 
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The above model can be transformed to a linear 

program by setting the denominator in the objective 

function equal to an arbitrary constant (e.g., unity) 

and maximizing the numerator. The obtained model, 

called input oriented CCR multiplier model, is as fol-

lows: 
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where ru and iv are the weights to be applied to the 

outputs and inputs optimum solution of the problem 

is associated to a normalized coefficient ),( **
uv−  of 
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a supporting hyperplane (a hyperplane that contains 

the PPS in only one of the halfspaces and pass among 

at least one of the points of it). The dual problem of 

model CCRm will also be used afterwards, called 

input oriented CCR envelopment model, which has a 

strong intuitive appeal and is typically the one used to 

explain and visualize DEA. 

 

CCRe) 

Min  pθ  

Subject to: 
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,0≥jλ        .,...,1 nj =         

A DMU is efficient if and only if the objective 

function value associated with the optimal solution to 

the above problem is one; otherwise it is inefficient. 

Moreover, if in the former model all variables take a 

strictly positive value or as in counterpart in the later 

model all slack variables be equal to zero, it is pareto 

efficient. 

Lemma 1. If 
*
pθ is the optimum solution of model 

(3), then ),( *
ppp yxθ called projection of DMUp on 

the efficient frontier, is an efficient virtual DMU. 

Lemma 2. DMUp is efficient iff there exist  nonnega-

tive coefficient 
s

R
m

Ruv ×∈),( associated to the gra-

dient vector of a supporting hyperplane where 
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2.2. Multiple objective linear programming 

The MOLP problem can be written in the general 

form as follows: 

Max  Cxxf =)(  

Subject to:  

},...,1,0)({ mixgxXx i =≤=∈ ,                 (4) 

where
n

Rx ∈ , the objective function matrix 
nk

RC
×∈ and )(xg i , ,,...,1 mi = are linear functions. 

In MOLP, efficient solution is introduced as follows: 

Definition 2.   Xx ∈*
 is called an efficient solution 

(or non-dominated solution) if there does not exist 

another Xx ∈ such that 
*

CxCx ≥   and 
*

CxCx ≠ . 

One of the methods for finding an efficient solution 

of model (4) is the Maximization of the minimum 

value of ,xCi .,...,1 ki = This Maximin model, simply, 

can be transformed to a linear problem as follows: 

Max z  

Subject to:  

Xx ∈ ,                                                                 (5) 

0)( ≥− zxf j        .,...,1 kj =  

3. A method for finding common set of weights 

In DEA for calculating the efficiency of different 

DMUs, different set of weights are obtained, which 

seems to be unacceptable in reality. Kornbluth [13] 

noticed that the DEA model could be expressed as a 

multi-objective linear fractional programming prob-

lem. The objective function of the model is the same 

as in the CCR model (1), but applied to maximize the 

efficiency of all DMUs, instead of one at a time, by 

the same constraints. However, the proposed model is 

nonlinear. Some other methods also  are proposed in 

the literature which are based on Kornbluth’s ap-

proach, and all of them are nonlinear.  

In this section, we present an improvement to 

Kornbluth’s approach by introducing an MOLP for 

finding common weights in DEA. the following 

model is introduced to find efficiency value of DMUp 

which has the same results as the CCR multiplier 

model. However, it has some advantages compared to 

foregoing models that will be discussed later. 
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,0, ≥ri uv        ,,...,1 mi =        ,,...,1 sr =  

where ,,...,1,* njj =θ is optimum value obtained from 

the model eCCR , when DMUj is under consideration. 

Theorem 1. The optimum value of the above model 

is zero and for its optimal solution, say ),( **
vu , we 

have:  

Max   .*
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Proof. Since ),( *
ppp yxθ  is input oriented projection 

of pDMU on the efficient frontier, hence it is effi-

cient. � 

According to the above model and the proposed 

approach by Kornbluth [13], the idea behind the iden-

tification of the common weights is formulated as 

maximizing the ratio of outputs to inputs for all pro-

jected DMUs simultaneously. So we present the fol-

lowing MOLP problem. 
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Furthermore, in order to solve the above MOLP 

model, we use the Maximin approach to maximize 

the objective function pertaining to the DMU with 

minimum objective value. 
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,0, ≥ri uv        ,,...,1 mi =        .,...,1 sr =  

Solving the above model gives us a common set of 

weights and then efficiency score of DMUj , j=1,…,n, 
can be obtained to use these common weights as 
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then DMUp is called efficient. Furthermore, by defin-

ing the set A={j: DMUj is efficient in model (9)}, and 

using the same approach as in Jahanshahloo et al. [9] 

a complete ranking of DMUs will be obtained. 

Theorem 2. Such a DMUp which is indicated effi-

cient by model (9), also is efficient in input oriented 

CCR model. 

Proof. According to the first inequalities we have: 
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 then 1* =pθ  and 

DMUp is CCR efficient. � 

Theorem 3. There is a DMUj, j=1,...,n for which 

model (9) characterize DMUj as efficient DMU. 

Proof. Let 1mM = and 1sS = , where 1 is a vector 

of m and s ones, [ ]T1,...,1 , respectively. There is a 

DMUp , },...,1{ np ∈ for which the first inequality in 

(9) is binding. Because, if it is not the case, there 

 is a sufficiently small value 0>ε  where 

),(),( SvMuvu εε −+=  satisfy the first and the last 

set of restrictions in (9). On the other hand, the value 

of z associated with ),( vu and the second restrictions 
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will be increased and this is contradicted with opti-

mum value of z. Therefore, there is a DMUj, 

},...,1{ np ∈ for which we have: 

.0
1
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=−��
==

m

i

ippi

s

r

rpr xvyu θ                               (11) 

However, ),( *
ppp yxθ  is efficient. Therefore, (u,v) 

is associated to the gradient vector of a supporting 

hyperplane. Furthermore, this supporting hyperplane 

must support the PPS at some extreme efficient 

DMUs . Therefore, such a DMUs are indicated effi-

cient by the model (9). �  

Roll et al. [14] and Golany and Yu [8] indicate that 

a general requirement for the common set of weights 

is that it explains as high a portion as possible of 

DMU performance. This requirement implies that at 

least one DMU must attain efficiency 1 with the 

common weights. If there is no DMU with efficiency 

score 1, then it is obvious that the efficiencies are un-

der-estimated in the sense of relative comparison. 

More importantly, there is no way to  know whether 

the production frontier appropriately represents the 

sampled DMUs. In this sense, the efficiency scores 

obtained from the proposed method are not under-

estimated and satisfy the general requirement. 

4. Numerical example 

To illustrate the idea of the proposed approach, an 

example from Kao and Hung [11] is utilized. In this 

example, there are 17 forest districts (DMUs). Four 

inputs (I1-I4): budget (in US dollars), initial stocking 

(in cubic meters), labor (in number of employees), 

and land (in hectares), and three outputs (O1-O3): 

main product (in cubic meters), soil conservation (in 

cubic meters), and recreation (in number of visits) are 

considered for measuring the efficiency. 

Table 1 contains the original data, while Table 2 

shows the common set of weights generated by the 

proposed method (Maximin), respect to inputs and 

outputs. Furthermore, Table 3 shows the efficiency 

scores of the 17 forest districts calculated from the 

CCR Model, efficiency scores of the compromise 

solution approach by Kao and Hung [11], and effi-

ciency scores of the Maximin approach in this paper, 

respectively.  

The CCR efficiency scores are the highest values 

that the districts can attain, and there are nine effi-

cient units which cannot be differentiated. Regarding 

the compromise solution approach, Kao and Hung 

[11], three values of p, 1, 2, and �, have been consid-

ered and the results are referred to as MAD, MSE and 

MAX. The common sets of weights generated from 

these four models, from which the efficiency scores 

of every district are calculated, are different sets of 

weights due to the fact that they are obtained from 

different viewpoints. Therefore, it is inappropriate to 

say which weights are correct and which are not. In 

general, the rankings of these four methods, as shown 

in parentheses in Table 3, are consistent with those of 

the CCR model, indicating that the results are reason-

able. In addition to this, they are more informative. 

They not only differentiate the efficient units, but also 

detect some abnormal efficiency scores calculated 

from the CCR model. The efficiency scores obtained 

for districts 9 and 11 are two of such examples. 

Empirically, in this example the spearman’s corre-

lation between the set of efficiency scores of the 

Maximin method and MAX, which are obtained from 

similar viewpoints, is greater than 95%. However, 

Maximin approach solved a linear problem and this is 

an advantageous of it against Kao and Hung’s ap-

proach, which solved a nonlinear problem. 

5. Conclusion 

The flexibility in the choice of weights is both a 

weakness and a strength of DEA approach. It is a 

weakness because deters the comparison among 

DMUs on a common base. This flexibility is also a 

strength, however, for if unit turns out to be ineffi-

cient even when the most favorable weights have 

been incorporated in its efficiency measure then this 

is a strong statement and in particular the argument 

that, the weights are incorrect is not tunable. 

For dealing with this difficulty and assessing all the 

DMUs on the same scale, this paper proposes the ap-

plication of MOLP approach (Maximin) for generat-

ing common set of weights. There are other methods 

in the literature which are also able to generate com-

mon weights. A case taken from Kao and Hung [11] 

is solved to investigate the differences among these 

methods and some conclusions are derived. However, 

the model proposed in this paper has the following 

advantages. Firstly, against general approaches in the 

literature which are based on solving nonlinear prob-

lems the proposed approach solve a linear problem 

(an MOLP model). Secondly, when common weights 

of the input / output factors are available, efficiency 

scores can be measured on the same scale. Moreover, 

all DMUs can be ranked in terms of a common base. 

Finally, the proposed method, simply and with ap-

propriate modifications, can be generalized to the 

other DEA models. 
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Table 1. Input and output data of the 17 forest districts in Taiwan. 

O3 O2 O1 I4 I3 I2 I1 DMUs 

3166.71 

6.45 

0.00 

0.00 

0.00 

822.92 

0.00 

404.69 

1252.62 

42.67 

16.15 

0.00 

0.00 

23.95 

24.13 

49.09 

6.14 

14.89 

173.93 

115.96 

131.79 

144.99 

190.77 

120.09 

125.84 

79.60 

132.49 

196.29 

108.53 

184.44 

85.00 

135.65 

110.22 

74.54 

40.49 

43.51 

139.79 

25.47 

46.20 

46.88 

19.40 

43.33 

45.43 

27.28 

14.09 

44.87 

44.97 

26.04 

5.55 

11.53 

44.83 

33.52 

108.46 

13.65 

146.43 

84.50 

8.23 

227.20 

98.80 

86.37 

79.06 

59.66 

127.28 

93.65 

60.85 

173.48 

171.11 

123.14 

49.22 

55.13 

257.09 

14.00 

32.07 

59.52 

9.51 

87.35 

33.00 

53.30 

144.16 

46.51 

149.39 

44.34 

44.67 

159.12 

69.19 

11.23 

123.98 

104.18 

107.60 

117.51 

193.32 

105.80 

82.44 

99.77 

104.65 

183.49 

104.94 

187.74 

82.83 

132.73 

104.28 

88.16 

51.62 

85.78 

66.65 

27.87 

51.28 

36.05 

25.83 

123.02 

61.95 

80.33 

205.92 

82.09 

202.21 

67.55 

72.60 

84.83 

71.77 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

 

 

               

 

Table 2. Common set of weights generated from Maximin method. 

U3 U2 U1 V4 V3 V2 V1 

0.001149 0.346710 0.075495 0.074547 0.097841 0.404158 0.000100 

  

 

 

 

Table 3. Efficiency scores and the associated rankings (in parentheses) calculated from the CCR ratio model  

and different methods of common weights.  

DMUs CCR MAD MSE MAX Maximin 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

1.0000(1) 

1.0000(1) 

1.0000(1) 

1.0000(1) 

1.0000(1) 

1.0000(1) 

1.0000(1) 

1.0000(1) 

1.0000(1) 

0.9403(10) 

0.9346(11) 

0.8290(12) 

0.7997(13) 

0.7733(14) 

0.7627(15) 

0.7435(16) 

0.6873(17) 

1.0000(1) 

1.0000(1) 

1.0000(1) 

1.0000(1) 

0.9747(5) 

0.8524(9) 

0.9244(6) 

0.8954(7) 

0.6619(14) 

0.8721(8) 

0.6398(15) 

0.7456(10) 

0.6229(17) 

0.7140(12) 

0.7245(11) 

0.6996(13) 

0.6310(16) 

1.0000(1) 

1.0000(1) 

0.9989(3) 

0.9927(4) 

0.9866(5) 

0.9123(6) 

0.8849(7) 

0.8707(9) 

0.6690(14) 

0.8768(8) 

0.6518(15) 

0.7282(10) 

0.6260(16) 

0.7142(12) 

0.7210(11) 

0.6811(13) 

0.6068(17) 

1.0000(1) 

1.0000(1) 

0.7231(11) 

0.8984(4) 

1.0000(1) 

0.8692(7) 

0.7432(9) 

0.8939(5) 

0.7230(12) 

0.8761(6) 

0.6577(13) 

0.7594(8) 

0.6453(14) 

0.7406(10) 

0.6410(15) 

0.4665(17) 

0.5908(16) 

1.0000(1) 

1.0000(1) 

0.7433(9) 

0.8537(6) 

0.9442(4) 

0.8351(7) 

0.7109(12) 

0.9619(3) 

0.6494(15) 

0.8995(5) 

0.7456(8) 

0.7265(11) 

0.6919(13) 

0.7428(10) 

0.6691(14) 

0.5554(17) 

0.5667(16) 

Average 0.910 0.821 0.819 0.778 0.782 

       *Results obtained from Kao and Hung [11]. 
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