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     Abstract  

This paper presents a genetic algorithm (GA) for solving a generalized model of single-item resource-

constrained aggregate production planning (APP) with linear cost functions. APP belongs to a class of pro-

duction planning problems in which there is a single production variable representing the total production of 

all products. We linearize a linear mixed-integer model of APP subject to hiring/firing of workforce, avail-

able regular/over time, and inventory/shortage/subcontracting allowable level where the total demand must 

fully be satisfied at end of the horizon planning. Due to NP-hard class of APP, the real-world sized problems 

cannot optimality be solved within a reasonable time. In this paper, we develop the proposed genetic algo-

rithm with effective operators for solving the proposed model with an integer representation. This model is 

optimally solved and validated in small-sized problems by an optimization software package, in which the 

obtained results are compared with GA results. The results imply the efficiency of the proposed GA achiev-

ing to near optimal solutions within a reasonably computational time.  
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1.  Introduction 

Aggregate production planning (APP) belongs to a 
class of production planning problems in which there 
is a single production variable representing the total 
production of all products [9]. This means that there 
must be some units for measuring the aggregate out-
put that is called "aggregate unit of production" such 
as tons for a steel mill, cases for a bottling plant, bar-
rels for a refinery, machine-hours for a job shop, or 
man-hours for a maintenance department. APP is a 
medium term capacity planning that determines the 
minimum cost workforce and production plans to 
meet fluctuating demand requirements over a plan-
ning horizon. In general, its aim is to determine the 
production quantity and inventory level in an aggre-
gate term in such a way that the expected demand is 
met by utilizing the resources of an organization effi-
ciently and effectively [23]. In fact, APP plans and 
controls the process of different aspects of the entire 

production activities in order to satisfy customers' 
demands. In other words, APP is the best use of po-
tentials and capacities when changes in demands oc-
cur. In APP, the management must decide upon a 
production rate in a mix-term plan horizon. The final 
output of an APP is the periodically production rate 
of the factory for a given horizon planning with being 
involved in production details. The solution to an ag-
gregate model establishes the production capacity and 
the aggregate production level for each period. 

Some of researchers have advocated a hierarchical 
approach for modeling the production planning prob-
lem [1-5]. With this approach, commonly known as 
hierarchical production planning (HPP), the problem 
is usually broken down into a series of decision lev-
els. The highest decision level is generally known as 
aggregate production planning. At the aggregate 
level, the number of variables is reduced to a man-
ageable quantity by grouping similar resources into 
resource centers and similar finished products into 
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common product types as well as subdividing the 
planning horizon into large discrete time units, say in 
months. Then, an APP model is often developed and 
employed to construct an aggregate plan. Eventually, 
this aggregate plan is passed to a lower decision level 
considering a much shorter planning horizon and dis-
aggregates it. 

APP usually covers a time period ranging from 12 
to 24 months. In the aggregate plan, data are usually 
based on monthly or quarterly data. The most impor-
tant input data for an APP problem are demand fore-
cast because the main aim of APP is to respond to 
demand fluctuations in a proper manner. Three prin-
cipal types of resources involved in an APP problem 
are manpower, time, and subcontract ones. The main 
limitations of such problem can include machine ca-
pacity, storage area, inventory level, safety stock 
level, manpower adjustment, regular/over time of 
production, and subcontract level. In addition, the 
corresponding costs also consist of inventory holding, 
overtime, subcontracts, shortage, loss sales, and hir-
ing/firing/training of labor [11]. 

According to Saad [27], all traditional models of 
APP problems may be classified into four categories 
as follows: (1) linear programming (LP) [8,29], (2) 
linear decision rule (LDR) [20], (3) transportation 
method [6], and (4) management coefficient approach 
[7]. Also, some of heuristic APP strategies to satisfy 
the demand are discussed in details in the literature 
[10,28]. Some of these techniques yield the optimum 
solution, while others give only acceptable ones. In 
addition, some required models that are easy to be 
formulated, while others require complicated models. 
The principal disadvantage of APP problems is the 
computational difficulty resulting from the size of the 
model or type of cost functions (linear, nonlinear or 
both of them). Vollman [31] pointed to the disadvan-
tage of the use of the traditional APP techniques in 
industry. He put forward the following reasons for 
such a failure: 

1.  Uniform rates have been assumed for different 
products. This assumption does not reflect reality 
in organizations producing various products. 

2.   It is so difficult for the general managers to grasp 
and understand the mathematical methods used in 
available techniques. Hence, the lack of interest 
on their parts in utilizing those techniques.  

3.   Models used in the above techniques require de-
terministic and certain data that the collection and 
quantification of these data is difficult requiring 
extra costs such as for employment and training 
of new staffs, etc. Gilgeous [16] has also put for-
ward the following points: 

A. Methods are rooted in their own specific 
qualifications. Hence, they are appropriate 
for a definite rage of variables. 

B. The real world problems face a definite range 
of planning variables. Therefore, none of the 
available techniques can produce optimal or 
near-optimal solutions of plans. Other limita-
tions of the current techniques are as follow: 

• Functions used by the current techniques 
do not appropriately reflect real cost func-
tions in organizations. 

• Models of a case cannot directly be used in 
other cases. 

On the other hand, the consideration of the all real-
istic parameters in an APP model makes the model 
difficult and non-optimally solvable. Therefore, it is 
necessary for a trade-off between the selection of a 
non-exact model with an optimal solution and an ex-
act model with a near-optimal solution. Obviously, an 
exact model with a near-optimal solution is preferred. 
Nowadays, meta-heuristic methods are widely used 
as near-optimal approaches for solving NP-hard prob-
lems such as a generalized APP and the like. Due to 
the above reason, we examine the efficiency of a 
well-known and effective metaheuristic method based 
on a genetic algorithm for solving a generalized APP 
problem with semi-realistic conditions in which most 
of real parameters are considered.   

Numerous models have been proposed to model 
APP [13,18,22,25]. Among the mathematical pro-
gramming approaches, linear programming (LP) has 
been the most widely accepted method as APP prob-
lems with large numbers of variables and constraints 
solved efficiently. Also, the parametric programming 
or post optimality analysis is used to investigate the 
effects of changing certain constants in a linear pro-
gram over a specified range [12]. The linear decision 
rule can be considered as an important contribution 
for long-term strategic APP decisions [21]. This ana-
lytical rule is determined to minimize the quadratic 
cost functions subject to inventory and workforce 
balance equations. As a result, it provides an optimal 
smoothing solution for aggregate inventory, produc-
tion, and workforce levels. 

Wang and Fang [32] presented a genetics-based 
approach to imitate the human decision procedure for 
a classical product mix problem as an APP problem 
in a fuzzy environment. Their research is just one in 
context of the GA implementation for an APP prob-
lem. Tavakkoli-Moghaddam and Biyabani [30] pro-
posed a special design of a GA to work out an APP in 
order to minimize production costs in a real-case 
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study of a car industry. There is no research in the 
literature using metaheuristics for an generalized APP 
problem with a long horizon planning.  

The rest of the paper is organized as follows. Sec-
tion 2 describes the proposed APP problem and 
model. Section 3 considers the proposed GA to solve 
the model. Some numerical results are included in 
section 4 and concluding remarks are made in section 
5. 

2. Problem formulation 

We propose a nonlinear model of APP considering 
four main costs as production, adjusting work force, 
inventory carrying, and shortage ones. In this pro-
posed model, all resources are also assumed to be 
finite and restricted by the decision maker and cus-
tomer, available time for manpower in regular and 
over time, sub-contracting level, storage area, short-
age level (customer satisfaction), and adjusting work 
force level. The ending inventory/shortage is not al-
lowable. The demand is deterministic and dynamic 
under a multi-period horizon planning. The primary 
resources, beginning inventory, and initial work force 
level are known as a priori. We linearize the above 
nonlinear model to linear mixed-integer one. The 
mathematical presentation of the proposed model is 
descried below. 

2.1. Mathematical formulation 

   Input parameters are defined as follows: 

T :  Number of periods in horizon planning. 

dt :  Forecasted demand in period t. 

I0 :  Beginning inventory. 

W0 :  Initial work force level. 

Imax : Minimum inventory level available in period t 
(units). 

Bmax : Maximum backorder (shortage) level available      
 in period t (units). 

Hmax:  Maximum allowable hiring in each period.  

Fmax:  Maximum allowable firing in each period. 

Rmax:  Maximum production volume in regular time in 
each period (units). 

Omax: Maximum production volume in overtime time 
available in each period (units). 

Smax: Maximum production volume in subcontracted 
available in each period (units). 

rt :    Regular time production cost per unit in period t 
($/unit). 

ot : Overtime production cost per unit in period t 
($/unit). 

st :  Subcontracting cost per unit in period t ($/unit). 

ht :  Hiring cost per one worker in period t ($/man). 

ft :  Firing cost per one worker in period t ($/man). 

h
+

t : Inventory carrying cost per unit in period t 
($/unit). 

h
-
t :  Backorder cost per unit in period t ($/unit). 

k : Number of workers required per unit product. 

   Decision variables are defined as follows: 

Pt :  Total aggregate production in period t. 

Rt : Regular time production volume in period t 
(units). 

Ot :  Overtime production volume in period t (units). 

St : Subcontracting production volume in period t 
(units). 

Ht :  Worker hired in period t. 

Ft :  Worker fired in period t. 

It : Inventory/backorder level in period t (negative 

inventory  ≡ shortage) . 
 

By defining the above notations, the proposed 
mathematical model of APP can be written below: 

�
=

++++=
T

t

tttttttttt FfHhSsOoRrZ
1

(Min  

��������� })0,{max)0,{max tttt IhIh −++ −+  ������ (1) 

Subject to: 

1     
t t t t

I I P d t−= + − ∀    �������        (2) 

    
t t t t

P R O S t= + + ∀    ������������� (3) 

1 0 1 1k P W H F× = + −     ������������� (4) 

1     1
t t t t

k P k P H F t−× = × + − ∀ >  ������������� (5) 

max         
t

R R t≤ ∀     ������������� (6) 

max         
t

O O t≤ ∀     ������������� (7) 

max          
t

S S t≤ ∀      ������ (8) 

{ } maxmax ,0        tI I t≤ ∀   �����������������������  (9) 
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{ } maxmax ,0      tI B t T− ≤ ∀ <                        (10) 

max      
t

H H t≤ ∀    �����������        (11) 

max         
t

F F t≤ ∀    �����������        (12) 

{ }max ,0 0
T

I− =                   (13) 

NandN,,,,, , ∈∈ +
ttttttt IFHSORP .      (14) 

 

The nonlinear objective function (1) is equal to the 
total cost of production, adjusting work force, inven-
tory carrying, and shortage in planning horizon. 
Equation (2) indicates the balanced inventory con-
straint between periods. Equation (3) determines the 
total production level at each period. Equations (4) 
and (5) calculate the number of workers hired/fired at 
each period with respect to the total production level. 
Inequalities (6), (7), and (8) correspond to the maxi-
mum available volume of production in regular time, 
overtime, and subcontracting at each period respec-
tively. Inequalities (9) and (10) correspond to the 
maximum allowable level of inventory and shortage 
(backorder) at each period respectively. Likewise, 
inequalities (11) and (12) correspond to the maximum 
allowable level of hiring and firing at each period 
respectively. Finally, Equation (13) indicates the lack 
of shortage at the end of horizon planning. The pro-
posed model includes 10T constraints and 7T integer 
variables, where T is the number of periods in hori-
zon planning.  

2.2. Model linearization  

The above proposed model is a nonlinear one be-
cause the existence of negative inventory or shortage  

in the system resulting the max{} term in the objec-
tive function (1). To transform the proposed model 
into a linear one, the non-negative variables I+

t, I
-
t are 

introduced where I+
t =max{ It , 0}, I-

t =max{-It , 0}. 
 

Then, I
+

t and I
-
t are put in the objective function 

and the following inequalities are introduced to the 
proposed model as constraints. 

       
t t

I I t
+ ≥ ∀ ,                   (15) 

, =0     
t t T

I I I t
− −≥ − ∀ .                       (16) 

Thus, constraints (10) and (11) must be changed as 

I
+

t ≤ Imax and I-
t ≤ Smax respectively.  

2.3. An illustrative example  

To evaluate the performance of the developed 
model, a small-sized instance is generated at random 
[26] and optimally solved by a branch-and-bound 
(B&B) method. This example consists of 12 periods 

with the total demand �Dt=32190, in which its origi-
nal data are shown in Table 1. The optimal solution 
obtained by the B&B method with CPU time less 
than one second is shown in Table 2. The graph asso-
ciated with the demand rate versus the total produc-
tion is shown in Figure 1. As depicted, the demand 
has a chaotic pattern; contrariwise, production rate 
has a nearly smooth pattern because of high hiring 
and firing costs with respect to other costs effecting 
on constraint (5).  

3. Genetic algorithm implementation 

   Genetic algorithms (GAs) [14,15,17,19,24] at-
tempted to mimic the biological evolution process for 
discovering good solutions. They are based on a di-
rect analogy to the Darwinian natural selection and 
mutations in the biological reproduction. They belong 
to a category of heuristics known as stochastic search 

methods employing randomized choice of operators 
in their search strategy and they do not depend on 
priori knowledge of the features of the domain com-
pletely. These operators have been conceived through

Table 1. A typical Example. 

period 1 2 3 4 5 6 7 8 9 10 11 12 

dt 1897 3602 3214 2068 3773 2628 1483 3944 2799 1654 3358 2970 
rt 14 13 16 16 15 14 13 16 15 14 13 17 
ot 21 28 26 23 29 26 22 20 27 23 30 28 
st 40 34 31 35 39 33 37 34 38 32 36 33 
ht 105 117 108 121 133 146 108 149 112 124 137 128 
ft 238 208 214 234 205 225 245 202 222 242 212 219 

h+
t 1 9 2 10 8 7 5 8 7 5 4 6 

h-
t 20 18 14 12 11 19 18 13 12 10 18 14 

Rmax=2400, Omax=400, Smax=200, Hmax=100, Fmax=50, I0=1200, W0=400, k=0.2 
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Table 2. Optimal solutions.  

 Rt Ot St It Ft Ht Wt Zt 

1 1895 1895 0 0 0 21 1198 0 

2 2395 2395 0 0 100 0 0 9 

3 2880 2400 400 80 97 0 0 343 

4 2880 2400 400 80 0 0 469 0 

5 2880 2400 400 80 0 0 0 424 

6 2880 2400 400 80 0 0 0 172 

7 2800 2400 400 0 0 16 1145 0 

8 2800 2400 400 0 0 0 1 0 

9 2695 2400 295 0 0 21 0 103 

10 2695 2400 295 0 0 0 938 0 

11 2695 2400 295 0 0 0 275 0 

12 2695 2400 295 0 0 0 0 0 

Total 32190 28290 3580 320 197 58 4026 1051 
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Figure 1. Demand rate versus optimal production rate in each period. 

 

 

 

abstractions of natural genetic mechanisms such as 
crossover and mutation and they have been cast into 
algorithmic forms. Repetitive executions of these 
heuristics need not yield the same solution. A genetic 
algorithm maintains a collection or population of so-
lutions throughout the search. It initializes the popu-
lation with a pool of potential solutions to the prob-
lem and seeks to produce better solutions (individu-
als) by combining the better of the existing ones 
through the use of one or more genetic operators. In-
dividuals are chosen at each iteration with a bias to-
wards those with the best objective or fitness values. 
With various mapping techniques and an appropriate 
measure of fitness of individuals (i.e., objective func-
tion value), a genetic algorithm can be tailored to 
evolve a solution for many types of optimization 
problems. 

 3.1. Chromosome representation 

The first and important step of GA is to design and 
represent a proper chromosome for the solution struc-
ture coding. This structure severely depends on the 
nature of the model’s decision variables and con-
straints. The binary representation scheme of genes is 
one of the most commonly used ones. However, the 
“real/integer number” presentation scheme has been 
very successful for a function optimization in recently 
years [33], because it needs no transformation of 
number systems. According to our proposed model, 
each solution is represented by a chromosome formed 
as an integer vector with T genes as shown in Figure 
2, where T is the number of periods. The value of tth 
gene, i.e, Pt, indicates the total production in period t 
that is bounded in interval [0, Rmax+Omax+Smax]. Con-
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straint (12) forces �Pt  ≥ �Dt . Also, constraint (9) 

forces �Pt  ≤ �Dt +Imax, thus for each chromosome 

we have �Dt ≤ �Pt ≤ �Dt +Imax. Other decision vari-
ables, i.e, Rt, Ot, St, It, Ht, and Ft must be updated with 
respect to the current solution and the model's con-
straints by Equations (17) to (22).  

 
1 2 3 … T 

P1 P2 P3 … PT 

Figure 2. Chromosome representation. 

 

{ }maxmin ,    t tR R P t= ∀    ����������� (17) 

{ }{ }max maxmin , max ,0    
t t

O O P R t= − ∀  ����(18) 

{ }{ }max max maxmin ,max ,0    
t t

S S P R O t= − − ∀ ��(19) 

1     
t t t t

I I P D t−= + − ∀          (20) 

( ){ }1max 0,    t t tH k P P t−= − ∀        (21) 

( ){ }1max 0,    
t t t

F k P P t−= − ∀ ,       (22) 

 
where P0=w0/k and I0 are known as a priori. Equa-
tions (17), (18), and (19) allot proportionally the total 
production between regular time, overtime, and sub-
contract level respectively at each period. If one of 
the constraints (9) to (13) is violated by on hand solu-
tion, then the degree of violation is added to the ob-
jective function (see Equation 23) by the penalty co-

efficient λ, where is a large positive number. Equa-
tion (23) indicates the fitness function that chromo-
somes are evaluated by that. 
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tt SIII
1

maxmax },0max{},0(max{λ  

   }),0max{},0max{ maxmax FFHH tt −+−+ .   (23)                                        

3.2. Genetic operators 

To explore solution space, we use an extended sin-
gle point crossover and a new version of crossover 
so-called “Arithmetic Crossover”. Also, to exploit 
neighbor solutions, three types of mutations are in-
troduced as so-called “Exchange Mutation”, “Arith-

metic Mutation”, and “Inversion”. The introduced 
operators are discussed in detail as follows: 

•••• Single point crossover (SPC). It is an extended 
version of classical crossover in which two selec-
tive parents are recombined by a single cross point 
(cp). As depicted earlier, the cross point must be 

determined in such a way that the inequality �Dt ≤ 

�Pt ≤ �Dt +Imax is observed in new offspring. 
Thus, according to Figure 3, it is necessary that 

max

1111

IDPPD
T

t

t

T

cpt

t

cp

t

t

T

t

t +=′+≤ ����
=+===

 and 

max

1111

IDPPD
T

t

t

T

cpt

t

cp

t

t

T

t

t +=+′≤ ����
=+===

are ob-

served in selective parents. For more description, 

suppose that T=5, �Dt =50, Imax=10 and two selec-
tive parents be {8, 12, 9, 11, 12} and {15, 9, 7, 6, 

16}, then cp=3 is a true cross point because 50 ≤ 

8+12+9+6+16=51 ≤ 50+10 and 50 ≤ 

15+9+7+11+12= 54 ≤ 50+10. Thus, two new off-
spring are as {8, 12, 9, 6, 16} and {13, 9, 7, 11, 

12}. In general, it is possible that such cross point 
is never found.  

•••• Arithmetic crossover (AC). Arithmetic crossover 
products a single offspring by linear combining two 
selective parents as shown in Figure 4. The princi-
ple of this operator is based on the following fact:  

 

).1,0(,])1([ max
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•••• Exchange mutation (EM). Exchange mutation 
swaps the value of the two random selected genes 
together. As shown in Figure 5, the value of genes 
2 and 5 are exchanged together. 

•••• Inversion-mutation (IM). Inversion mutation in-
verses a selective substring of the current solution. 
As shown in Figure 6, the substring selected be-
tween periods 2 to 6 is inversed in the new solu-
tion.  

•••• Arithmetic mutation (AM). Arithmetic mutation 
reduces the production level for a selective period 

(gene) by the amount of ∆ and then it is added to 
other selective period. This causes that the total 
production level is remained constant through hori-
zon planning. As shown in Figure 7, the product 

level in period 2 is reduced by the amount of ∆ and 
then it is added to one in period 5. 
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Parent 1 P1 P2 P3 P4 P5 P6 P7  Offspring 1 P1 P2 P3 P′′′′4 P′′′′5 P′′′′6 P′′′′7 

                 

Parent 2 P′1 P′2 P′3 P′4 P′5 P′6 P′7  Offspring 2 P′1 P′2 P′3 P4 P5 P6 P7 

Figure 3. Single point crossover implementation. 

 
 
 

Parent 1 P1 P2 P3 P4 P5 P6 P7  (0,1)λ ∈         

         Offspring  η1 η2 η3 η4 η5 η6 η7 

Parent 2 P′1 P′2 P′3 P′4 P′5 P′6 P′7  (1 )i tP Pη λ λ= + −         

Figure 4. Arithmetic mutation implementation.  

 

 
 

Exchange Mutation P1 P2 P3 P4 P5 P6 P7  Offspring P1 P5 P3 P4 P2 P6 P7 

Figure 5. Exchange mutation implementation. 

 
 
 

Inversion Mutation P1 P2 P3 P4 P5 P6 P7  Offspring P1 P6 P5 P4 P3 P2 P7 

Figure 6. Inversion mutation implementation. 

 
 
 

Arithmetic Mutation P1 P2 P3 P4 P5 P6 P7  Offspring P1 P2 + ∆ P3 P4 P5- ∆ P6 P7 

Figure 7. Arithmetic mutation implementation. 

 

 

Each operator must be selected with a certain rate 
or probability that is known in advance by GA pa-
rameter settings. The operator selection strategy is 
determined by a proper rate for each operator (that 
called “tuning”) and how to select them leading to the 
convergence of GA to the global optimum neighbor-
hood in a reasonable time. We use a two-level strat-
egy for the operator selection which the type of op-
erator (i.e., “crossover”, “mutation” or “reproduc-
tion”) is determined in level I (type level) and then 
the mode of operator selected in level I is determined 
in level II (mode level). A schema of the applied 

strategy is shown in Figure 8. Term PΩ dedicates the 

rate or selection probability of operator mode/type Ω, 
where PC+ PM+ PR =1, PSPC,+PAC =1, and 
PEM+PIM+PAM =1. For instance, the probability of 
calling arithmetic crossover at each iteration is equal 

to PC× PAC. In general, a classical tuning for the type 

level can be as PC ≅ 0.7, PR = (1/Pop_Size), and      
PM =1-(PC + PR). The term of PR = (1/Pop_Size) 
causes only one elite at each calling immigrates to the 
new generation.  

As shown in Figure 8, in addition to the maintained 
operators, we used “reproduction” operator for  
maintaining the elites at each generation. For this 
work, chromosomes in the current generation are first 
sorted as descending order with respect to their 
fitness (i.e., objective function value), then  

ρ = min{PR×Pop_Size, Pop_Size-K} percent of the 
best chromosomes are immigrated to the next genera-
tion, where PR is the reproduction rate, Pop_Size is 
the number of population at each generation and K is 
the number of required offspring for creating the new 
generation in the current time.  



 
 

 
"&����������	�	����������	

	��	�
�����	 	
���
�

�
�

�

 

 

 
operator_Type = RANDOM_SELECTION (PC, PM, PR) 
SELECT CASE Operator_Type 
  CASE crossover : 
    cross_mode = RANDOM_SELECTION (PSPC, PAC) 
    SELECT CASE cross_mode 

      CASE SPC:  CALL Single_Point_Crossover( ) 
      CASE DPC: CALL Double_Point_Crossover( ) 
      CASE AC:   CALL Arithmetic_Crossover( ) 
    END SELECT 

 

  CASE mutation : 
   mut_mode = RANDOM_SELECTION (PEM, PIM, PAM) 
   SELECT CASE mut_mode 

     CASE EM:   CALL Echelon_Mutation( ) 
     CASE DPC: CALL Inversion( ) 
     CASE AC:   CALL Arithmetic_Mutation( ) 
   END SELECT 
  CASE reproduction : CALL Reproduction( ) 
END SELECT 

Figure 8. Two-level procedure for the operator selection.  

 

3.3. Parent selection strategy 

The parent selection strategy means how to choose 
the chromosome in the current population that will 
create offspring for the next generation. In general, it 
is better that the best solutions in the current genera-
tion have more chance to be selected as parents to 
create offspring. The most common method for the 
selection mechanism is the “roulette wheel” sam-
pling, in which each chromosome is assigned a slice 
of a circular roulette wheel and the size of the slice is 
proportional to the chromosome's fitness. The wheel 
is spun Pop_Size times. On each spin, the chromo-
some under the wheel's marker is selected to be in the 
pool of parents for the next generation. This method 
can be implemented as follows: 

 
1. Let F be the sum of the fitness values of all solu-

tions in the current population as follows: 
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where, fi is the fitness values of solution i and 
Pop_Size is equal to the number of chromosomes in 
the current population.  

2. Let Pi be the relative probability related to chromo-
some i as follows: 
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3. Let qi be the cumulative probability related to 
chromosome i as follows: 

1

,       1,  2,......,  _
k

k j

j

q P k Pop Size
=

= =� ���� (26) 

4. Generate a random number, say r, in the range of 
[0, 1]. If r < q1, then the first chromosome is se-
lected. Otherwise, the ith chromosome is selected 
where,    

1 ,        (2 _ )
i i

q r q i Pop Size− < < ≤ ≤ � ����(27) 

The fitness of each solution is obtained by Equa-
tion (23). The initial population is randomly created 
in terms of a continuous uniform distribution. To 
maintain the diversity in each population, we pass 
each lately created offspring through a similarity 
check filter. This filter verifies the similarity between 
the new offspring and each other chromosomes in the 
new generation. According to the chromosome struc-
ture shown in Figure 2, the similarity between two 

chromosomes i, j is equal to sij=e/(3× T) where 0≤ sij 

≤ 1, e is the number of genes with same allele (i.e., 
value) and locus (i.e., position) in both chromosomes. 

If sij is greater than an arbitrary value 0 <θ ≤1, then 
two chromosomes i and j are the same.  

3.4. Stoppage rules 

Two criteria are used as stoppage rules: 1) maxi-
mum number of elapsed generation (G) that is a 
common criterion and 2) deviation-generation. If the 
deviation of the current generation decreases below 

an arbitrary constant (ε), then the algorithm is 
stopped. The deviation of each generation g can be 
calculated as follow: 
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where Fg
k
 is the fitness of kth chromosome in genera-

tion g. 
g

F is average fitness of all chromosomes in 

generation g that is calculated as follows:   
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Thus, if g > G or σ2
g ≤ ε, then the algorithm is 

stopped.  
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4. Experimental results  

In this section, we implement the proposed GA for 
the proposed APP problem by solving several in-
stances in medium and large sizes in addition to the a 
small-sized instance presented in Table 1 (12 period). 
Then, we present the results of computational ex-
periments associated with the instances generated at 
random according to a uniform distribution in certain 
intervals as shown in Table 3. Intervals are adopted 
from the presented data in the literature [27]. The in-
stances are optimally solved by the Lingo 8.0 soft-
ware package by using a branch-and-bound (B&B) 
method on an intel® Celeron® mobile 1.3 GHz Per-
sonal Computer with 512 Mb RAM. The best ob-
tained GA parameter setting is shown in Table 4. The 
experimental results show that the extended single-
point crossover, exchange mutation and inversion are 
more efficient than other introduced operators. Also, 
the best of population size is obtained Pop_Size =150. 
The compare resulting from GA and optimal solu-
tions with respect to the objective function value 
(OFV) and CPU time related to five instances with 
12, 30, 40, 45, and 50 periods is presented in Table 5. 
As depicted in Table 5, the proposed model is very 
hard in terms of computational time for instances 
with more than 50 periods and its associated CPU 
time exceeds more than one hour. Though, the pro-
posed GA does not present a reasonable CPU time in 
small-sized instances with respect to the optimal one. 
However by increasing the dimension of instances, 
the results obtained by GA become reasonable and 
acceptable. As shown in Table 5, the OFV related to 
the problems 8 and 9 cannot be obtained in 
 

a reasonable time (say, more than 1 hour). Thus, we 
consider an interval for the OFV for large-sized in-
stances that constructed by the IP bound and IP best 
values (see LINGO software documents for more de-
tails). The mean gap of the OFV between GA and 
optimal methods is reported as 0.36 % that is a very 
satisfactory and promising result. This gap is calcu-

lated as [(OFVGA-OFVOPT)/OFVOPT]×100.  
A typical convergence of the proposed GA with re-

spect to the deviation of generations according to 
Equation (29) is shown in Figure 9 (Problem 5 from 
Table 5). Figure 9 shows that this method becomes 
convergent to a small neighborhood of optimum solu-
tion within 50 generations. Also, the capability of the 
proposed GA approaching to feasible space within 40 
generations is shown in Figure 10. This figure indi-
cates the continuing reduction of infeasibility because 
of designing good operators and choosing a proper 
value of the penalty coefficient. The comparison be-
tween optimal and GA production rate related to 
problem 5 given in Table 5 is periodically shown in 
Figure 11. As shown in this figure, the GA produc-
tion rate approximately conforms to optimal produc-
tion rate.                 

Table 3. Intervals to random generation of instances. 

Parameter Interval 

dt U(Pmax-δ, Pmax +δ) 
rt U(10, 20) 
ot U(20, 30) 
st U(30, 40) 
ht U(100, 150) 
ft U(200, 250) 

H+
t U(1, 10) 

h-
t U(10, 20) 

* Pmax=Rmax+Omax+Smax 

*δ = Pmax/2, (3Pmax)/4 

       

Table 4. GA parameter settings. 

     PC = 0.7  PM = 0.295  PR = 0.005  

G ε λ Pop_Size  PSPC PAC  PEM PIM PAM    

200 2 10000 150  0.7 0.3  0.34 0.34 0.32    

Table 5. Comparison between GA and optimal solutions. 

Optimal Solution GA Solution 
No. Period No. 

OFV CPU Time (Sec.) Pop_Size OFV CPU Time (Sec.) 
GAP (%) 

1 12 583864 1 100 583921 110 0.009763 
2 12   150 583864 136 0.000000 
3 12   200 584157 162 0.050183 

4 30 1586764 10 100 1595944 154 0.578536 
5 30   150 1591023 151 0.268408 
6 30   200 1595800 335 0.569461 

7 40 2093220 60 150 2107304 226 0.672839 
8 45 [2306340, 2306690] 1200 150 2323030 319 0.723657 
9 50 [2630010,2630090] > 3600 150 2640735 497 0.407793 

Average: 0.364516 
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Figure 9. Convergence of GA with respect to the deviation of generation (Problem 5 from Table 5). 

 

 

 

Figure 10. Infeasibility reducing rate (Problem 5 from Table 5). 

 

 

 

Figure 11. Comparison between optimal and GA production rate (Problem 5 from Table 5).  
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5. Conclusion 

In this paper, we have formulated a single-item re-
source-constrained aggregate production planning 
(APP) problem with the most of realistic costs. To 
solve such a NP-hard problem, we propose an effi-
cient metaheuristic method based on genetic algo-
rithms (GAs) with novel operators and selection 
strategy. Due to the lack of shortage at the end of ho-
rizon planning, we design an extended version of sin-
gle point crossover, arithmetic crossover, and arith-
metic mutation operators required in the proposed 
GA. The obtained results show the efficiency of the 
proposed GA and designed operators with respect to 
the objective function value and CPU time. The effi-
ciency of the proposed GA will be compared with 
other evolutionary algorithms such as simulated an-
nealing, tabu search, scatter search, ant colony and 
particle swarm optimization, and memetic algorithm 
for future researches. In addition, a multi-item re-
source-constrained APP can be considered for the 
further research. 
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