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          Abstract 

This paper investigates the performances of artificial neural networks approximation, the Translog and the 

Fourier flexible functional forms for the cost function, when different production technologies are used. Using 

simulated data bases, the author provides a comparison in terms of capability to reproduce input demands and 

in terms of the corresponding input elasticities of substitution estimates. The results suggest that ANN provide 

a better approximation than other traditional functional forms only when a single technology is used. However,  

when elasticities of substitution are calculated, the Translog approximate batters the true technology in both 

single and mixed technology. 
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1. Introduction 

In the empirical studies on production and cost 

functions, the true technology relating the inputs to 

the output is generally little known. Several studies 

were carried out to compare the performances of a 

large number of functional forms and the one which 

is adjusted best with the studied case was selected. In 

1928, Cobb and Douglas [12] proposed the first 

specification characterizing the productive combina-

tion. This function became the concern of several 

specialists and was the subject of many controversies 

giving place to a first generation of functional forms 

such as the Leontief and the Constant Elasticity of 

Substitution forms. However, this type of functional 

forms presents very severe restrictions on studied 

technology and in particular on the possibilities of 

substitution between the production inputs; these 

forms supposed fixed proportions or constant elastic-

ities of substitution.  

The developments of the duality theory and their 

implications were at the origin of a renewed interest 

concerning the development of a new generation of 

functional forms called the flexible type. These forms 

have the advantage of reproducing in a more general 

way a production technology without imposing prior 

constraints on the possibilities of substitution be-

tween inputs; they are interpreted as second order 

approximations of any twice differentiable unspeci-

fied technology (Fuss et al. [22] and Chambers [10]). 

Among the most popular flexible forms are Translog 

(TL) proposed by Christensen et al. [11], the Gener-

alized Leontief form (GL) proposed by Diewert [15], 

the Generalized Square Root Quadratic (GSRQ) form 

suggested by Diewert [16], the Generalized Cobb-

Douglas form (GCD) suggested by Diewert [15] and 

Generalized Box-Cox (GBC) proposed by Berndt and 

Khaled [6].  

The Flexible Functional Forms (FFF) presented by 

definition the same theoretical properties and the 

economist does not dispose of any criterion allowing 

to decide, in a decisive way, in favor of one or the 

other of the suggested forms. One is then often 

brought to discriminate them empirically. Several 

empirical studies were proposed in the literature to 

select the functional form which best approximate 

reality (Berndt et al. [5], Wales [36], Appelbaum [2], 

Berndt and Khaled [6], Caves and Christensen [8], 

Gallant [23], Guilkey and Lovell [27], Barnett and 

Lee [3], Lau [30], Berndt et al. [5], Dévazeaux de 

Lavergne [14]). The technique consists in estimating 

different forms using the same data base, and then  

the choice of the best one is based on the significance 

of the parameters, the relevance of elasticities ob-
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tained and on the maintenance of the regular condi-

tions.   

However, although FFF allows to describe an un-

known technology and to estimate elasticities of sub-

stitution, it has some limitations. The most important 

one is that it can only provide a second order ap-

proximation of the true data generation function at a 

single point, and then fail to be globally flexible. 

Global approximation means that the FFF is capable, 

in the limit, of approximating the unknown underly-

ing generating function at all points and thus of pro-

ducing accurate elasticities at all data points. There 

are several methods to impose the conditions of 

global regularity. But unfortunately, imposing further 

restrictions on the parameters destroys flexibility 

(Diewert and Wales [17]). To overcome these prob-

lems, Gallant [23,24] proposes another approximation 

to an unknown cost or production function. His idea 

was to use a Fourier series which approximates the 

true function in the so-called Sobolev norm to 

achieve, asymptotically, global approximation to the 

complex economic relations. However, in spite of its 

theoretical superiority, the comparative studies be-

tween the two types of FFF do not make it possible to 

decide in favour of Fourier form in a categorical way.   

The Artificial Neural Networks (ANN) constitutes 

a new technique which is relatively recent. It consists 

of a mathematical model that emulates the behaviour 

of the human brain and has an interesting capacity to 

identify patterns among a group of variables without 

any assumption about the underlying relationships. 

According to Dreyfus (1997), the advantage of ANN 

compared to the other techniques of processing data 

is that they are parsimoniously universal approxima-

tors of function
1
.  They were used and proved reliable 

in various research areas such as character and voice 

recognition, medical and financial diagnosis, eco-

nomic and agricultural research. Moreover, several 

studies compare the performance of the FFF and a 

new form based on ANN. Guermat and Hadri [26] 

carried out a Monte Carlo experiment in order to ana-

lyse the effects of functional form misspecifications 

and the performance of neural networks versus Trans-

log model for approximating different theoretical 

production functions like Cobb Douglas, CES func-

tion and Generalized Leontief model. They have 

found that neural networks are a serious alternative to 

the Translog specification. Fleissig et al. [20] employ 

                                                      

 
1 With equal precision, the neural networks require less 

adjustable parameters than the universal approximators 

usually used. 

 

neural networks for the cost functions estimation and 

compare its performance with four FFF. For the first 

one, they find convergence problems when the prop-

erties of symmetry and homogeneity are imposed. 

Santin et al. [34] use ANN for a simulated production 

function and compare its performance with traditional 

efficiency techniques like stochastic frontier and 

DEA. Authors suggest that ANN is a promising alter-

native to traditional approaches. 

The analysis of the technology based on the speci-

fication of a functional form for the cost of produc-

tion function rests often on the fundamental hypothe-

sis that the relationship is the same during the period 

and shared by all productive units; this supposes only 

one functional form with the same vector of parame-

ters. In a previous study (Feki [19]), the researchers 

have tried to deal with this problem for the difference 

of technologies between the firms in the same indus-

try. A new approach of specification and estimation 

of the cost function based on a switching regression 

model for panel data is proposed. The retained model 

allows to take into consideration the possible differ-

ence of technologies between productive units, and 

consequently to find the best representation of the 

economic reality. Finally, this technique provides an 

endogenous choice method of the adequate functional 

form. This approach has been applied to a panel of 

firms operating in the Tunisian textile industry. Re-

sults show that at least two technologies are used and 

identified by two different functional forms. 

The main aim of this study is to compare the per-

formances of ANN for the cost functions with two 

FFF, Translog and Fourier, when different production 

technologies are used. Following Guilkey et al. [28] 

who argued that for the evaluation of functional 

forms, its better to begin with known technology and 

examine the ability of various forms to track that 

technology, the author has used data provided by Ner-

love 1960. His data base concerned 145 firms operat-

ing in the United States electric power industry and 

were largely used in the comparisons of functional 

forms. The author then generated data for two differ-

ent but known technologies. Mixed technology is 

then obtained by mixing the two data sets. The rest of 

this paper is organised as follows: 

In the next section, the author presents the three re-

tained functional forms for the cost function, Trans-

log, Fourier and the neural networks approximation. 

Section 3 describes the data construction procedure 

and the experimental design. The results from the 

empirical study are summarized in Section 4, and the 

concluding remarks and suggested areas for further 

research are provided in Section 5. 
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2. Functional forms 

 
2.1. The Translog cost function 

The Translog (Transcendental Logarithmic) func-

tion was first proposed by Christensen et al. [11] and 

has been used by many authors, who demonstrated 

that it is an excellent representation of the technology 

in many cases. The Translog technology is defined as 

follows: 
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For a well-behaved cost function, the following re-

strictions need to be imposed on the Translog cost 

function so that it is symmetric and linear homogene-

ous in input prices: 
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Differentiating with respect to each input price and 

applying Shephard’s lemma yields a series of input 

cost shares stated as: 
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Following Diewert and Wales [17], we express the 

logarithmic second order derivatives of a cost func-

tion in term of its first and second order partial de-

rivatives: 
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where 1=ijδ  if ji = and 0 otherwise.   

2.2. The Fourier cost function 

The Fourier approximation of the cost function 

proposed by Gallant [23,24] consists of two compo-

nents, the first one corresponds to the Translog cost 

function, while the second is a nonparametric Fourier 

expansion. This function is based on a logarithmic 

transformation of prices: 

  

)()( iii aLogpLogx +=       .,...,2,1 ni =         (7) 

 

The constants ia are location parameters chosen to 

ensure that the minimum value of the scaled log-input 

price ix  will be slightly greater than zero. The choice 

of ia is arbitrary and does not affect the result. Fol-

lowing Chalfant and Gallant [9], we may consider: 
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The logarithmic version of the Fourier approxima-

tion of the cost function is expressed as: 
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where )/( θxg K  represents the logarithm of the true 

cost function and xkz αα λ ′= . K is the order (degree) 

of approximation that can be chosen freely (the only 

limiting factor is the sample size).  

Let ),,,...,,,( 110)( ααααααθ JJ vuvuu=′ then 

),,,( )()1(0
′′′′= Abu θθθ represents the vector of 

)21(1 JAn +++ parameters to be estimated. The 

matrix ψ  is defined by �
=

′−=
A

kku
1

0
2 ][

α
αααλψ . The 

sequence  }{ αk  is that of so-called elementary multi-

indexes (vectors with integer components of dimen-

sion n). The number A depends on the order of ap-
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proximation, and its length is �
=

=
n

i

ikk
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*

αα . The 

multi-indexes are constructed by increasing their 

length and they reduce the complexity of the notation 

of high-order partial differentiation and multivariate 

Fourier series expansions. λ  is a scaling factor cho-

sen a priori  so that all ix  are in the interval ]2,0[ π , 

and it is computed as }max{/)2( ixεπλ −= . Gal-

lant [18] suggested that a reasonable choice is 

6)2( =− επ .  

Finally, constant A (number of terms) and J (de-

gree of the approximation) determines the degree of 

Fourier polynomials. The input cost shares and the 

Hessian matrix are stated as follows: 
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Parameters A and J must be selected for estimation. 

Chalfant and Gallant [9] and Eastwood and Gallant 

[18] suggested that, for reliable asymptotic, the num-

ber of parameters to be estimated in Fourier func-

tional function be equal to the effective sample size 

raised to the two thirds in power.  

Therefore, with three equations (the cost function 

and two cost shares) and 145 observations, the cost 

function should include about 58 parameters.   

With A=17 and J=1, we have 55 parameters to es-

timate. Finally, for the linear homogeneity of the 

Fourier cost function, we need to impose restriction 
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Finally, the Hessian matrix of the Fourier cost 

function is: 
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2.3. The neural networks approximation  

An Artificial Neural Networks is composed of a 

large number of highly interconnected elements (neu-

rons) working in parallel. The most commonly used 

ANN is the Multilayer Perceptron (MLP). It consists 

of an input layer, an output layer and one or more 

intermediary layers called hidden layers. The hidden 

layers can capture the nonlinear relationship between 

variables. Each layer is composed of a number of 

neurons. The information progress from the input 

layer to the output layer without feedbacks, for this 

reason this kind of ANN is called a feedforward neu-

ral network. For a system of three demand equations, 

the MLP with one hidden layer can be expressed as: 
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where, x is the vector of input demands and ip , 

3,2,1=i  are the associated input prices. h is the 

number of neurons on the hidden layer determined 

empirically. g and f are respectively the hidden and 

the output activation functions, usually chosen to be 

monotonous without decreasing. In this paper the 

function g is the sigmoid and f is the linear function. 

0β , jβ , jα and ijγ for ni ,...,1= and hi ,...,1= , are 

the weights (or parameters) to be usually adjusted 

(estimated) adjusted iteratively by a supervised learn-

ing algorithm, the back propagation algorithm, pro-

posed by Rumelhart et al. [31]. The learning is 

guided by specifying the desired response to the net-

work for each training input pattern through the com-

parison with the actual output computed by the net-

work in order to adjust the weights. 

2.4. Elasticity of substitution 

There are different measures of input substitutabil-

ity proposed in the literature when the production 

process has more than two inputs. Empirical research 

in production usually utilizes Allen-Uzawa partial 
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elasticity (AES). For a twice-differentiable cost func-

tion, the AES between inputs i and j is defined as 
2
 : 
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When the cost function is expressed in logarithmic 

form, AES can be computed as follow: 
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where s in an n vector of 1, S is a diagonal matrix of 

inputs cost shares: ],...,,[ 21),( nnn SSSdiagS = , and 

H is the Hessian. 

AES provide information on input substitutability 

by measuring changes in the demand of input i with 

respect to a change in the price of another input j. It 

has been employed to measure substitution behaviour 

and structural instability in different contexts. How-

ever, when there are more than two inputs the AES 

may be uninformative. In this case The Morishima 

elasticity of substitution (MES) is viewed as more 

appropriate measure of substitutability [7].
 
It is de-

fined as follows: 

 

),(

),(

),(

),(

YPC

YPCp

YPC

YPCp
MES

i

iii

j

iji

ij −= .           (16) 

 

MES measures the percentage change in the ratio 

of input i to input j, given a one-percent change in the 

price of input j. Note that AES is symmetric while the 

MES is not because changes in the input ratio in-

duced by the price of input j can be different from 

those induced by the price of input i. Estimation of 

the “true” elasticity substitution has been the main 

purpose of different studies [7,21,35]. It seems that 

both the AES and the MES can be useful measures of 

input substitutability depending on the purpose of the 

analysis. Finally, MES can be expressed in term of 

the AES [7]. 

3. Experimental design 

In order to investigate the performance of the neu-

ral network specification, when different production 

technologies are used, against the Translog and the 

                                                      

 
2 The subscripts denote partial derivatives with respect to 

input prices. 

Fourier Functional Forms, we use cross-section data 

set on individual firms in the United States electric 

power industry. This data set corresponds to 145 

firms observed in the year 1955 and used by Nerlove 

(1960). We retain the price indices for capital )( KP , 

labour )( LP and energy )( EP . Those data are widely 

used for the comparison of production and cost func-

tional forms.  

Taking each input price indices, the author con-

structed two series by adding normally distributed 

errors to obtain two data sets. Then, the author gener-

ated total cost and input demands were generated 

from CES form. The CES cost function used in this 

study  and its derived input demands are: 
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Two values for ρ  are considered yielding to dif-

ferent technologies. For the first data set we consider 

4−=ρ  to define a first technology characterised by 

small elasticity (0,2). A second technology with large 

elasticity (4) was defined from the second data set by 

setting 75.0=ρ . A multiple technology is then ob-

tained by mixing data for the two technologies. 

4. Results 

In order to improve the efficiency of the estimates, 

total cost function is estimated along with share equa-

tions
3
 for both the Translog and the Fourier using 

maximum likelihood estimation. Neural networks 

estimation is carried out with Matlab Numeric Com-

putation Software and we report, for each technology 

results corresponding to the best MLP. Homogeneity 

and symmetry are imposed only for the two first 

functions.  

For The neural network, Fleissig et al. [20] used a 

penalty functions to impose those restrictions and 

concluded that no improvements were detected over 

the unconstrained model. Comparison is focused on 

the average root square error (RMSE) for the tree 

functional forms and for the tree technologies. 

                                                      

 
3 The energy share equation is arbitrarily dropped from the 

system estimation to overcome the problem of singularity. 
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 Table 1. RMSE for total cost and input demands for the tree functional forms. 

 RMSE for Total cost and inputs demands 

 Technology 1 Technology 2 Mixed technology 

 Translog Fourier ANN Translog Fourier ANN Translog Fourier ANN 

Architecture   3-20-3   3-30-3   3-30-3 

Performance   8.6612E-12   2.30713E-12   197.73614 

Total cost 0.1195557 0.1386477 0.0004451 0.0892424 1.2040983 0.0002830 394.30792 394.34116 360.52892 

Labor 0.0483505 0.0387100 0.0000032 0.1425040 0.1795817 0.0000016 29.11321 29.11280 23.87875 

Capital 0.0055287 0.0011930 0.0000022 0.0033594 0.0024128 0.0000016 1.07585 1.07614 1.018682 

Energy 0.0550754 0.0105887 0.0000033 0.0373578 0.0170522 0.0000014 5.50940 5.50530 4.64811 

Mean for inputs 0.0363182 0.0168306 0.0000029 0.0610737 0.0663489 0.0000015 11.89949 11.89808 9.90456 

 

 

 

 

Figure 1 : Ratio of RMSE for elasticities
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Figure 1. Ratio of RMSE for elasticities. 
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According to the results displayed in Table 1, MPL 

results best in all cases indicating that ANN better 

approximates the underlying technologies than both 

the Translog and Fourier functional forms corre-

sponding to a local and global approximation. But 

this superiority to traditional approaches is highly 

marked when data are generated from only one tech-

nology. For the case of multiple technologies, the 

differences between Translog and Fourier results are 

negligible. For the best MLP (one hidden layer with 

30 neurons), the performance is very important 

(197.73614) compared to the cases of one technology 

(8.6612E-12 and 2.30713E-12), but RMSE for the 

total cost function and all input demands remain 

slightly lower than those obtained for other two func-

tional forms. This last result is a little surprising since 

one expects a clear predominance of the neural net-

works, especially for the mixed technology, since 

they are known to be better suited to modeling com-

plex relationships.   

ANN is a non-parametric approach. To compute 

input elasticity of substitution, we use the procedure 

based on the usual definition of elasticity itself devel-

oped by Gruca and Klemz [25]. To measure the effect 

for one input, say j, we first set all others prices to 

their sample mean levels. Then, estimate input de-

mands using the trained neural networks and estimate 

elasticities at every observed level of jp using the 

standard elasticity formula: 

 

i

j

j
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∆

∆
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In Figure 1, we represent average RMSE for all 

elasticities of substitution calculated for the Fourier 

functional form and the Neural networks approxima-

tion, divided by the average RMSE for the Translog 

form. We notice that the Translog approximate bat-

ters the true technology in both single and mixed 

technology. It is possible that the disappointing re-

sults obtained in the case of the neural networks ap-

proximation come from the procedure used to calcu-

late elasticities.  

5. Conclusion 

This paper evaluates and compares the perform-

ances of ANN approximation, Translog and Fourier 

functional forms, for the cost function, the derivative 

input demands and the corresponding input elastic-

ities of substitution, when data are generated from 

one or mixed technologies. Results show that neural 

networks better approximate the underlying tech-

nologies than the other two functional forms in all 

cases.  

However, when elasticities of substitution are cal-

culated, the Translog approximate batters the true 

technology in both single and mixed technology. This 

result is a little surprising since one expects that 

ANNs perform better that traditional functional forms. 

The author thinks that neural networks can be a use-

ful but complementary tool for this type of analysis. 

Further research should, first, develop another 

method for estimating elasticity of substitution when 

using ANNs, and second, provide a comparison in 

term of violations of the regularity conditions for the 

cost function since those conditions guarantees the 

maintained hypothesis and validate duality theory 

that produces the estimated models. 
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