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          Abstract 

Nowadays, One-Dimensional Cutting Stock Problem (1D-CSP) is used in many industrial processes and re-

cently has been considered as one of the most important research topic. In this paper, a metaheuristic algo-

rithm based on the Simulated Annealing (SA) method is represented to minimize the trim loss and also to fo-

cus the trim loss on the minimum number of large objects. In this method, the 1D-CSP is taken into account as 

Item-oriented and the authors have tried to minimize the trim loss concentration by using the simulated an-

nealing algorithm and also defining a virtual cost for the trim loss of each stock. The solved sample problems 

show the ability of this algorithm to solve the 1D-CSP in many cases. 

 

Keywords: One-dimensional cutting stock problem; Simulated Annealing; Trim loss concentration; Item-

oriented; FDD algorithm; Virtual cost  

 
 
1. Introduction 

The one-dimensional cutting stock problem (1D-

CSP) is used in many industrial processes [7,15,16] 

and recently has been considered as one of the most 

important research topic [1,3,21]. But most of the 

researches have focused on the problem which con-

tains large objects by the same size and the same or a 

bit different with respect to standard lengths. 

Most of the problems related to the 1D-CSP have 

been known as NP-Complete problems [2,8,13]. Al-

though in many cases, these kinds of problems can be 

modeled by mathematical programming methods, 

their solutions could be found by the exact or ap-

proximate methods. 

The purpose of this paper is presenting a method 

for solving the 1D-CSP, with specific number of large 

objects with different lengths and divides them to 

many items of relatively few small items in a way 

that the trim loss becomes minimized and also quali-

fied to be used in future cutting plans. So, they must 

be focused on the minimum number of large objects 

with the largest possible lengths. According to the 

Dyckhoff typology [4], the CSP presented in this pa-

per, when the number of the large objects is enough, 

can be classified as 1/V/D/R. 

1, in this classification, shows the number of di-

mension of this problem. V means that all of the small 

items are a selection of large objects. D, means that 

there are many small items of relatively few dimen-

sions that must be cut from large objects.  

1D-SCP is mostly used in real world and the real 

problems are usually large and hard to solve with opti-

mization methods. Many scientists have solved this 

problem by using heuristic and metaheuristic algorithms 

like Simulate Annealing, Genetic Algorithm, Ant Col-

ony Optimization etc. in different cases. [5,6,17] 

Dyckhoff also classifies the solution of CSP in two 

groups: Item-oriented and Pattern-oriented. 

Item-oriented solution is characterized by individ-

ual treatment of every item to be cut. In the pattern- 

oriented solution, at first, ordered lengths are com-

bined into cutting patterns and then the frequencies of 

the pattern that are necessary to satisfy the demands 

are organized based on an algorithm prepared with 

Gilmore and Gommory [9,10,11,12]. 
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Because the pattern-oriented method can be used 

only when the large objects have the same lengths or 

they are used in different standard lengths, and the 

item-oriented method is used when there is not any 

constant pattern for cutting process, according to the 

type of the solution method used for this problem, the 

authors of this paper have chosen the item-oriented 

solution method to be discussed. 

2. 1D-CSP problem 

In most industries, the cost of the materials consists 

of a high percent of total price. (More than 80%) 

The CSP is one of the most famous operation re-

search problems which is defined to improve the 

quality of using materials. This problem can be de-

scribed as follow: 

There is a collection of stock material object that 

we are going to divide them into smaller pieces of 

desired lengths in order to satisfy specific customer 

demands by facing the minimum trim loss or using 

the minimum number of stocks. 

The very first formulation for CSP was produced 

for one dimensional CSP by Kantorvich in 1939 [19] 

In 1960`s, Gilmore and Gomory published their four 

popular papers for 1 and 2 dimensional CSP [9,10, 

11,12]. Their first paper was published in 1961 and it 

was about using the linear programming to solve the 

1D-CSP. This paper was a real start to introduce the 

techniques which are used to solve the real world 

problems. 

CSP was developed during the development of us-

ing computers in solving the OR problems. 

There are many definitions for 1D-CSP. In this 

problem, there are specific numbers of large objects 

and we want to satisfy the order list which is equal 

with the stocks in 2 dimensions so that the trim loss 

becomes minimized.  

The dimension in CSP is the degree of freedom in 

decision making. If 2 dimensions of the large objects 

and small items be equal, the decision is made about 

the way of cutting the third dimension. So this cutting 

procedure is called one-dimensional. 

The basic goal in solving the CSP is to minimize 

the trim loss. Of course, sometimes other parameters 

like the time or the cost of changing the fixations are 

applied In goal function [22]. In this paper, focusing 

the trim loss on minimum number of large objects is 

applied including minimizing the trim loss.  

Gradisar, in his paper in 2002, made an evaluation 

between the 1D-CSP algorithms which was the main 

reference for the authors of this paper [14]. 

He presented 3 specifications for a suitable CSP 

model: 

1. Ability to cut order lengths in exactly re-

quired number of pieces, 

2. Ability to cumulate consecutive residual 

lengths in one piece which could be used 

later,  

3. Ability to use non -standard stock lengths.  

3. Trim loss definition 

In CSP the final objective is to minimize the trim 

loss which is usually defined as minimizing the num-

ber of cutting patterns. But totally the trim loss on 

each stock can be formulated in according to this 

equation: 

The trim loss appeared on a large object = the 

length of the large object – the sum of small items 

lengths cut from a large object. 

This equation can be applied in both item-oriented 

and pattern-oriented methods in 1D-CSP. In item-

oriented CSP solution, it is possible to model the 

trim loss according to these parameters: 

 

kn  The number of the ordered small items by the 

length of kl . 

N         The number of all small items. 

il           The length of the 
th

i  ordered item. 

M        The number of all large objects. 

jL         The length of the 
th

j large object. 

jw ������  The trim loss appeared on 
th

j  large object. 

ijX       A binary variable which is equal to one if the 

th
i Item is cut from the 

th
j  large object and 

zero otherwise. 

The trim loss model is as follows: 

�
=

−=

N

i

ijijj xlLw
1

)(  

jj Lw ≤≤0                j=1,2,…,M.                      (1) 
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The goal of the above equation is to present an al-

gorithm in order to perform an item-oriented CSP 

solution while the trim loss is focused on the mini-

mum number of stocks. 

By changing the values of ijX , the different states 

of the cutting patterns by different trim loss values 

would be appeared on a large object. 

It must be mentioned that the different cutting pat-

terns are created by using the FFD (Firs Fit Decreas-

ing) algorithm. 

4. FFD algorithm 

In according to the FFD algorithm, if the length of 

the 
th

i small item is smaller than the remaining length 
th

j  large object, the 
th

i  item will be cut from the 
th

j  

large object )1( =ijX . Otherwise, the cutting process 

is applied on the next large object if possible 

)0( =ijX [18].  And it is continued until the 
th

i  item 

is cut. Here is the pseudo code of this algorithm: 

 

For i=1 to N 

       For j=1 to M� 

       If  ji Ll <  then 

           ijj lLL −=  

           Go to NEXTI 

        Else 

           Go to NEXTJ 

        End if 

       NEXTJ: next j 

NEXTI: next i. 

 

In this algorithm, the order of cutting small items is 

important. By changing the order of these items, the 

trim loss concentration (and sometimes the trim loss 

value) will be also changed. Here is an example 

which defines the effect of small items cutting order 

on the trim loss concentration. 

Example. It is assumed that the following table con-

tains the customer order of the small items and the 

length of the stocks is 12 meters. 

 

Table 1. The demand of small items. 

Number Length 

11 2m 

4 3m 

4 5m 

In Table 2, all of the items in the item list column 

are sorted ascending in according to their length. If 

one of the items can be cut from the remaining stock 

length, the new stock length after cutting should be 

written in the related column and if the cutting proc-

ess could not be done on the remaining length of the 

previous stocks, a new stock is used. The trim loss of 

each stock is mentioned in the last row. 

As it could be seen, the total trim loss of the Table 

2 is 6 meter which is appeared on the stocks number 

2,4 and 5. In Table 3, the order of the items will be 

changed and the table contents will be updated again. 

It is obvious that by changing the order of items, 

the total trim loss will be obtained equal to 6 meters 

which is reduced from 3 stocks to only the stock #5. 

Therefore it is expected that, by using the FFD algo-

rithm in different order of items the better concentra-

tion of trim loss will be achieved. 

Among the different possible concentration of trim 

loss produced by changing the order of items, those 

order of items which have the better concentration of 

trim loss, should be searched. If the trim loss ap-

peared on the least number of stocks with the longer 

length, the concentration of trim loss will be achieved 

to its desirable level and therefore these stocks will be 

used in the future cutting orders as input large objects. 

 

Table 2. Cutting according to FFD algorithm in primary order of small 

items (in example). 

1 2 3 4 5 Stock no. 
Item list 

12 12 12 12 12 Initial stock length 

2 10     

2 8     

2 6     

2 4     

2 2     

2 0     

2 0 10    

2 0 8    

2 0 6    

2 0 4    

2 0 2    

3 0 2 9   

3 0 2 6   

3 0 2 3   

3 0 2 0   

5 0 2 0 7  

5 0 2 0 2  

5 0 2 0 2 7 

5 0 2 0 2 2 
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Sum of trim loss 

Trim loss 0 2m 0 2m 2m 6m 

L�=12�m 
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Table 3. Cutting according to FFD algorithm in Secondary order of small 

items (in example). 

1 2 3 4 5 Stock no. 
Item list 

12 12 12 12 12 Initial stock length 

5 7     

5 2     

5 2 7    

5 2 2    

3 2 2 9   

3 2 2 6   

3 2 2 3   

3 2 2 0   

2 0 2 0   

2 0 0 0   

2 0 0 0 10  

2 0 0 0 8  

2 0 0 0 6  

2 0 0 0 4  

2 0 0 0 2  

2 0 0 0 0  

2 0 0 0 0 10 

2 0 0 0 0 8 

2 0 0 0 0 6 

��
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��

��

��

Sum of trim loss 

Trim loss 0 0 0 0 6m 6m 

In order to compare the different states of trim loss 

concentration and identify the better concentration, it 

is essential to define a parameter, explained below, as 

a comparison criterion. 

5. Cutting virtual cost 

It can be predicted that by considering a virtual cost 

and trying to minimize it, we will be able to obtain a 

better trim loss concentration by using a local search 

algorithm. 

The virtual cost which is defined for each stock is a 

variable value which has the ascending trend. It is 

possible to use the natural series of number with a 

linear-ascending trend (from 1 to M) as a virtual cost. 

in order to assign the virtual cost to each stock, after 

using the FFD algorithm, they must be sorted in de-

scend order in according to their own trim loss, and 

then the least virtual cost is assigned to the stock 

which has the most trim loss. 

Finally the total virtual cost (TVC), will be com-

puted as below: 

�
=

=

M

j

jj wVCTVC
1

)(  

jVC j =                  j=1,2,…,M,                           (2) 

where jVC is the virtual cost assigned to the 

th
j stock and TVC is total virtual cost. 

In other words, always the goal of search procedure 

is to find those solutions which use the entire stock. 

In this situation the amount of jVC coefficient effect 

on total virtual cost computing (TVC) will be reduced. 

By considering the previous example, after sorting 

the trim loss in descending order, their concentration 

in the first state will be achieved (Table 4). 

After sorting the trim loss in descending order, 

their concentration in the second state will be 

achieved as below (Table 5). 

It is obvious that the total virtual cost of the second 

state is lower than that of the first state. Therefore, it 

is possible to use the total virtual cost as a compari-

son criterion to distinguish the better concentration of 

trim loss.  

In order to present another reason for this topic, the 

assignment of virtual cost will be generally defined: 

Assume that we have N items which must be cut 

from M large items. The trim loss of this cutting pro-

cedure is sorted according to Table 6. So, TVC is cal-

culated as follows: 

 

�
=

=

M

j

jj wVCTVC
1

)(       ....321 Mwwww >>>>  (3) 

 

Table 4. Assuming virtual cost to the large objects. 

Stock# 1 2 3 4 5 

VC 1 2 3 4 5 

jw  2 2 2 0 0 

TVC = 2*1+2*2+2*3+0*4+0*5= 12 

 

 

Table 5. Assuming virtual cost to the large objects. 

Stock# 1 2 3 4 5 

VC 1 2 3 4 5 

jw  6 0 0 0 0 

 TVC = 6*1+0*2+0*3+0*4+0*5= 6 

 

 

Table 6. Sorting trim loss on each large object 

 and assignment of virtual cost. 

Stock# 1 2 3 . M 

VC 1 2 3 . M 

jw  
1w  2w  3w  . Mw  
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Assume that in an order of small items, the amount 
of the first item trim loss )( 1w is increased x units. It 
means that an item (or some of the items) is cut from 
the first item instead of other items like the 

th
k item. 

Therefore the
th

k item trim loss is decreased x units. 
The picture below shows the changing process of 
TVC. 

It can be seen from Figure1, increasing the value of 

1w in extend of x units (causes the more concentration 

of trim loss), the value of TVC will be decreased in 

extent of x(k-1) units. Figure 2 totally demonstrates 

this subject. 

 

 

 

 

               Figure 1. Changing process of TVC. 

 

 

 

 

 

               Figure 2. Changing process of TVC. 

By considering the TVC as a comparison criterion 

for the different orders of cutting items, we are able 

to follow the search procedure and to achieve the bet-

ter trim loss concentration. 

Because the cutting problem is NP-Complete, es-

pecially in item-oriented method, it is essential to use 

a metaheuristic algorithm to solve the problem. In 

these special problems which are known as combina-

torial optimization problems, one of the most useful 

metaheuristic algorithms is the simulated annealing. 

6. Simulated annealing solution 

Simulated Annealing (SA) algorithm is still being 

used to solve the general problems of cutting trim 

loss [2,6]. In this paper we try to extend the SA to 

solve cutting problem trim loss concentration. 

6.1. Objective function definition 

In this paper the objective function is defined as to 

minimize the TVC value: 

 

Min � �
= =

−

M

j

N

i

ijijj xlLVC
1 1

))(( .                            (4) 

At first, an N-Dimensional array, contents the or-

dered small items is produced. And also an M-

Dimensional array, contains the length of the large 

objects is considered. The value of M can not be ex-

actly determined initially. Therefore by the special 

manner of using FFD algorithm to determine the 

value of M, the required number of large items will 

be achieved. According to this change, when a small 

item can not be cut from the available large items, the 

value of M will be increased 1 unit and this procedure 

will be continued up to the end of cutting all of the 

items. 

By the end of cutting process and determining the 

status and the amount of the trim loss on each stock, 

the stocks are sorted according to their own trim loss 

and then the virtual costs will be assigned to each 

stock. Therefore TVC will be obtained. 

6.2. Initial feasible solution generation 

After sorting the length of items in descending or-

der, the FFD algorithm will be run in order to obtain 

the initial solution. Because in this process, the larger 

items are initially cut from the larger stocks, the 

Decreasing (k.x) 

units in TVC 

Increasing x 

units in w1 

Decreasing x 

units in wk 

Increasing x uits 

in TVC 

k>0 , k#1 

k.x > x � �VC < 0 

Decreasing (k.x) 

units in TVC 

Increasing x 

units in w1 

Decreasing x 

units in wk 

Increasing x uits 

in TVC 

k>0 , k#1 

k.x > x � �VC < 0 
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above solution is usually suitable and we can con-

sider as a desired initial solution. 

6.3. Neighborhood generation 

In order to generate a neighborhood solution, a 

random state will be used. In this state, by the use of 

random selection, the item orders are changed algo-

rithmically. The steps of the above algorithm are ex-

plained below: 

 

Step 1. Numerate the available small items in initial 

solution from 1 to N. 

Step 2. Generate a Uniform Random Number in the 

range of [2,N] (R1) which defines the number 

of displacement of items. 

Step 3. Generate R1 uniform random numbers in the 

range of [1,N] (R(i): i=1,…, N) which defines 

the displaced items number. 

Step 4. If the 
th

i and 
th

i )1( + item have the same 

length, avoid displacement, otherwise, dis-

place the 
th

i and 
th

i )1( + items. 

6.4. Simulated Annealing procedure 

After determining the neighborhood solution, the 

amount of Boltzman function will be computed as 

below. 

 

TVCTVC −=∆ 1  

TeBoltzman

∆
−

= .                                                (5) 

 

So, the steps of the algorithm are shown below: 

 

Step 1.  Generate an initial solution. 

Step 2.  Calculate the TVC for the initial solution. 

Step 3. Generate a neighborhood for initial solution 

and calculate the 1TVC for that. 

Step 4.  Let TVCTVC −=∆ 1 . 

Step 5. If 0<∆ , then 1TVCTVC = ,go to Step 3. 

Else, 1TVCTVC = with the Boltzman prob-

ability.  

 

Pay attention that a proper solution must never be 

omitted [20]. Therefore to have a proper final solu-

tion and not to miss the proper solutions during the 

algorithm performance, the authors have considered a 

register memory which always keeps the best solution 

and finally presents it as the final solution. 

By considering the diagram of searched points in 

the solved sample problems, it can be seen that the 

extensive range of solution area in high temperatures 

shown in Figure 3, is searched by SA.  Moreover the 

SA algorithm is able to escape from local optima. In 

lower temperatures, the searching procedure in in-

clined to the near optima points and in final points it 

can be easily seen that the method inclination is to the 

optimum solution. 

7. Computational results 

For analyzing the computational results, 36 differ-

ent random problems were generated by computer. 

These problems were modeled by operation research 

formulation of 1D-CSP and solved by Lingo-6 soft-

ware. Then the problems were solved by Simulated 

Annealing method presented in this paper and the 

quality of the solutions was compared. In Table 7, 

there are some information about the solution results 

for each problem, like the trim loss and the number of 

large objects which contain trim loss. In most solu-

tions of SA method, the quality of trim loss concen-

tration were better than the OR results. 

It shows the ability of the virtual cost technique to 

find the better trim loss concentration in CSP which 

can guide to reusing the trim loss in future cutting 

plans. The detail of the computational results is 

shown in Table 7. 

 

 

 

                  Figure 3. SA inclining to the near optimal solution. 
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Table 7. Solved problem information.
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1 50 10 2 1 2 7 19 450 83 2 2 2 5 

2 100 20 4 1 4 11 20 50 11 1.5 1 1.5 1 

3 125 25 9 2 9 6 21 100 22 5 1 5 2 

4 150 31 7 4 7 6 22 150 35 7 2 7 3 

5 200 46 10 1 10 2 23 200 50 2.5 1 2.5 3 

6 250 48 7.2 1 7.2 2 24 250 62 1.5 1 1.5 3 

7 300 56 5 2 5 3 25 300 76 8.5 1 8.5 4 

8 350 67 6 2 6 2 26 350 88 11 1 11 4 

9 400 76 9 5 9 4 27 400 103 8.5 1 8.5 5 

10 490 
10

1 
0 0 0 0 28 50 12 2.4 1 2.4 4 

11 50 10 5 1 5 2 29 100 21 11.8 2 11.8 8 

12 100 20 10 3 10 3 30 150 31 0.8 3 0.8 2 

13 150 29 7 3 7 4 31 200 52 9 8 9 13 

14 200 38 9 3 9 6 32 250 63 12 8 12 12 

15 250 47 6 1 6 6 33 300 75 12.6 14 12.6 17 

16 300 56 3 1 3 5 34 350 86 11 14 11 14 

17 350 64 8 1 8 5 35 400 100 24 27 Timeless 

18 400 74 9 2 9 4 36 480 119 24 23 Timeless 
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8. Conclusion 

In this paper, in order to receive to the best concen-

tration of trim loss between the 1D-CSP solutions, the 

authors defined an ascending trend cost and explained 

how to use this cost in the problem. Using this kind 

of cost in cutting problem, the authors received to a 

special type of virtual cost which could be used as a 

comparing parameter between the entire CSP solu-

tions. 

Finally a method was presented to minimize the 

trim loss concentration in 1D-CSP by using the Simu-

lated Annealing algorithm and using the FFD cutting 

simulator. 

The result was tested for 36 random generated 

problems and the solution results were compared with 

the Basic model of 1D-CSP, solved by Lingo which 

showed the best quality of solutions in SA results. 
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