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          Abstract 

Determination of shipment quantity and distribution problem is an important subject in today’s business. 

This paper describes the inventory/distribution network design. The system addresses a class of distribution 

network design problem, which is characterized by multiple products family, multiple warehouses and retail-

ers. The maximum capacity of vehicles and warehouses are also known. The resulting system focuses on two 

key goals: minimizing the lost sales cost as a costumer’s satisfaction factor and balancing sum of service dis-

tances for different warehouses. In this paper we consider the distribution network problem formulated by 0-1 

mixed integer linear programming model. Due to difficulty of obtaining the optimum solution in medium and 

large scale problems, a simulated annealing algorithm (SA) is also applied. The efficiency of this algorithm is 

demonstrated by comparing its numerical experiment results with those of SA algorithm and LINGO 6. pack-

age. 
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1. Introduction 

Due to the advancement of technology and other 

supporting mechanisms, today’s some new topics 

have been appeared in management and industry. In 

the recent decades, competitive pressures pose the 

challenge of simultaneously prioritizing the dimen-

sions of competition: flexibility, cost, quality and 

delivery. The above-mentioned aspects of industrial 

competition developed the necessity of “supply 

chain management”. Supply chain management 

(SCM) is a concept that originated and flourished in 

the manufacturing industry. The first visible signs 

of SCM were in the JIT delivery system, as part of 

the Toyota production system (Vrijhoef and Koske-

la, 2000). Related topics in SCM were proposed in 

the late 80’s and developed in 90’s (Makui, 2004).  

Supply Chain Management (SCM) is the man-

agement of material and information flows both in 

and between facilities, such as vendors, manufac-

turing and assembly plants and distribution centers 

(DC). 

One of the outcomes of the fiercely competitive 

business environment in the late 1990s has been the 

increasing attention given to supply chain networks 

in the manufacturing and service sectors. The cus-

tomer in these business sectors have come to expect 

faster reaction, high reliability, and greater flexibili-

ty to ever-changing for both manufacturers and ser-

vice personnel to find new and better ways to man-

age their material flows (Jayaraman and Pirkul, 

2001). With the trend towards greater synergy be-

tween suppliers and industrial customers, most 

manufacturing enterprises are organized as net-

works of manufacturing and distribution sites that 

purchase raw materials, transform those materials 
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into work in process and finished goods, and distri-

bute the finished goods to customers. Management 

of such networks has emerged as a major topic in 

operations research. Improving the efficiency of 

these systems requires striking a balance between 

the various logistical function; in particular, inven-

tory control and transportation planning need to be 

closely coordinated (Qu et al., 1999). 

Because transportation cost is a large portion of 

distribution cost and number of vehicles and their 

capacity are usually constrained, taking a suitable 

strategy is of a great importance. Due to these con-

strains, lost sales may be encountered which is one 

of the costumer’s satisfaction factors that directly 

affect inventory costs.  

In most given models, only shipment costs are 

considered and little attention is paid to the above 

mentioned limitation. In this research a mathemati-

cal model for distribution network is proposed in-

cluding multi warehouses and retailers by taking 

their constraints. In assigning warehouses to retail-

ers - on the contrary of the other given models - 

balancing sum of service distances for different 

warehouses is considered instead of minimizing 

transportation distances. 

The paper is organized as follows: Section 2 dis-

cusses the relevant literature. Section 3 introduces 

the mathematical model and Section 4 presents the 

solution approach. Some examples are solved and 

the computational results are analyzed in Section 5.   

2. Background 

While SCM is relatively new, the idea of coordi-

nated planning is not. The study of multi-echelon 

inventory/distribution systems began as early as 

1960 by Clark and Scarf. They present a recursive 

decomposition approach to determine optimal poli-

cies for serial multi-echelon structures (Clark and 

Scarf, 1960). 

The supply chain begins with the procurement of 

raw materials or subassemblies. Many traditional 

inventory models have focused on determining op-

timal order quantities for the purchaser. The model 

presented in this class include Single-vendor, Sin-

gle-buyer [(Banerjee, 1986; Lee and Rosenblantt, 

1986; Monahan, 1984), Multiple-vendors, Single-

buyer (Anupindi and Akella, 1993; Lau and Lau, 

1994) and Single-vendor, Multiple-buyers (Kohli 

and Park, 1994) all aiming to minimize the cost or 

maximize the profit. 

Muckstadt and Thomas investigate the applicabil-

ity of multi-echelon methods in low demand sys-

tems. Two approaches presented for determining 

stock levels in a two echelon system. Both ap-

proaches use a Lagrange relaxation technique that 

results in a separable problem that can be solved 

easily (Muckstadt and Thomas, 1980). Erkip et al. 

(1990) present an approach to determine optimal 

ordering policies at a depot that distributes to mul-

tiple warehouses with correlated demand. 

Qu et al. (1999) present a multi-item joint re-

placements problem, in a stochastic setting, with 

simultaneous decisions made on inventory and 

transportation policies.  

Buffa and Reynolds (1977) developed a model to 

include a number of transport-related variables. 

They also have shown that transportation cost clear-

ly influence on the inventory costs. 

Constable and Whybark (1978) proposed an al-

ternative version of the inventory-theoretic model 

that explicitly included both carrying and back-

order cost. The model jointly determined the inven-

tory reorder points, order quantities, and transporta-

tion choices that provide minimum total transporta-

tion and inventory costs. 

Williams (1981) presented a dynamic program-

ming algorithm for simultaneous determination of 

production batch sizes in an assembly network and 

distribution batch sizes in a conjoined distribution 

network. Dynamic programming algorithms were 

applied to solve the model. 

Benjamin (1990) considered the choice of trans-

portation mode in a production-distribution network 

with multiple supply and demand points and a sin-

gle product class. The problem was formulated as a 

nonlinear program, and a heuristic solution proce-

dure was presented along with a procedure for 

computing a lower bound on the global minimum.  

Haq et al. (1991) develop a mixed integer pro-

gram to determine production and distribution batch 

sizes that minimize system costs in a multi-stage 

production-inventory-distribution system. 

Pyke and Cohen (1993) presented a Markov 

chain model of a single product three-level supply 

chain, consisting of a factory, a finished goods 

stockpile and a retailer. Near-optimal algorithms 

were presented to determine the expedite batch size, 

the normal replenishment batch size, the normal 

reorder point, the expedite reorder point and the 

order-up-to level at the retailer.  

Jayaraman (1998) considered the relationship be-

tween the management of inventory, location of 

facilities and the determination of transportation 

policy simultaneously in a distribution network de-

sign environment. 
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Jayaraman and Pirkul (2001) studied two echelon 

distribution problems with multiple plants and mul-

tiple capacitated DCs.  For solving the model they 

used a heuristic based on Lagrange relaxation and 

sub-gradian optimization that obtained good results 

too. 

Dasci and Verter (2001) provided a mixed integer 

linear programming model for facility location 

which focuses on setting up a number of new facili-

ties in an area, so that each of facilities should ser-

vice a portion of demand. Demand portion in their 

research are not as discrete points because the mod-

el is designed in a continuous solution space. 

Hwang (2002) provided a logistics system design 

which optimizes the performance of logistics sys-

tem subject to required service levels both in a 

number of warehouse or distribution center and ve-

hicle routing schedule. He formulated this problem 

using stochastic set-covering problem to determine 

the minimum number of warehouse/distribution 

centers among a discrete set of location sites and 

solved this problem using 0-1 programming method. 

Then he formulated a vehicle routing problem using 

an improved genetic algorithm. 

Syarif et al. (2002) considered the logistic chain 

network problem formulated by   0-1 mixed integer 

linear programming model. The design tasks of that 

model involve the choice of the plants and distribu-

tion centers to be opened and the distribution net-

work design to satisfy the demand with minimum 

cost. As the solution method, they proposed the 

spanning tree-based genetic algorithm by using 

prüfer number. The efficacy and the efficiency of 

this method are demonstrated by comparing its nu-

merical experiment results with that traditional ma-

trix-based genetic algorithm. 

Syami (2002) made a research on developing tra-

ditional facility location problem considering logis-

tic cost. For solving the constructed model two dif-

ferent heuristics, one based on Lagrange relaxation 

and the other simulated annealing were used. 

Jolaymi and Olorunniwo (2004) provided a de-

terministic model for planning production quantities 

in a multi-plant, multi-warehouse environment with 

extensible capabilities. When the production cannot 

meet demand the model allows shortfalls to be met 

through subcontracting or the use of inventory. 

Wang et al. (2004) proposed a just-in-time distri-

bution requirements planning system under the li-

mited supply capacity. The aim is to establish an 

optimal distribution requirements planning model to 

minimize the total cost of manufacturing and trans-

portation under limited warehouse capacity. The 

model can be translated in to a linear programming 

problem and solved by simplex procedure. 

Chan et al. (2005) developed a hybrid genetic al-

gorithm for production-distribution problems in a 

supply chain with multi-plants. Their mathematical 

model is proposed in linear programming form. 

They have used GA and AHP to solve that. 

Gen and Syarif (2005) proposed a produc-

tion/distribution problem to determine an efficient 

integration of production, distribution and inventory 

system in order to minimize system wide costs 

while satisfying all demand required. This problem 

can be viewed as an optimization model that inte-

grates facility location decisions, distribution costs, 

and inventory management for multi-products and 

multi-time periods. To solve the problem, they pro-

posed a new technique called spanning tree-based 

genetic algorithm. 

Liang (2006) developed an interactive fuzzy mul-

ti-objective linear programming method for solving 

the fuzzy multi-objective transportation problems 

with piecewise linear membership function.   

Geoffrion and Graves (1974) presented a mixed 

integer programming formulation of multi-

commodity distribution system design. A solution 

procedure based on Benders' decomposition is pre-

sented. This decomposition separates the problem at 

each iteration into several easily solved LPs. Com-

putational results show that Benders' decomposition 

performs remarkably well on this class of problems. 

Cohen and Lee (1989) presented an integer pro-

gramming model designed to support strategic re-

source deployment decision making in a global 

manufacturing and distribution network. The model 

is used to determine resource deployment, given a 

logistics structure. In practice, such a tool is useful 

for evaluating and supporting strategic decision 

making. 

Ross (2000) presented a two phase approach for 

supply chain problem. The first phase deciding 

based on a strategy that selects the best set of distri-

bution centers to be open. The second phase is an 

operational deciding that includes customer and 

resource assignments. Simulated annealing is ap-

plied for solving this problem. 

Jayaraman and Ross (2003) provided a distribu-

tion network in two models focusing on two key 

stages; planning and implementing. Determining 

warehouses and cross-dock centers allocation to 

open warehouses and family products allocation 

from warehouses to cross-dock centers are all re-

sults of solving the first model. The second model 
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is an operational model aiming to minimizing the 

cost of transportation to warehouses, costs of trans-

portation from warehouses to cross-dock centers 

and cost of product distribution to customer’s hand. 

Simulated annealing is used to achieve a sub-

optimal solution for both models. 

3. Problem formulation 

In today’s customer-oriented business environ-

ment, a firm’s ability to assign its customers to 

available warehouses can be translated into a com-

petitive advantage (Zhou et al., 2003). The purpose 

of this research is to provide a model for distribu-

tion network in order to assign vehicles from ware-

houses to retailers and also determining optimum 

shipment quantity by considering lost sale cost as a 

customer satisfaction factor and balancing the sum 

of service distances for different warehouses.  

A simple prototype of the ‘distribution network 

‘problem investigated in this paper is provided in 

Figure 1. 

As it is obvious in Figure 1, the problem is allo-

cating warehouses to retailers. Instead of direct 

warehouse assignment to retailers, warehouse ve-

hicle is assigned to each one. Against the previous 

proposed models which their aim was to minimize 

shipment cost, we have considered balancing sum 

of service distance for every warehouse as a goal in 

order to balance the transportation costs for every 

warehouse. Another assumption is predefined con-

stant number of vehicles for every warehouse, and 

the last is a definite constant number of shipments 

for vehicles. Every retailer could meet his demand 

from multiple warehouses. In the following, first 

decision variables and required parameters are de-

fined and then problem modeling is provided in 

details.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure1. Three central warehouses and seven retailers. 

The following indices, parameters and variables 

are used to describe the mathematical model.   

Notation of MIP model: 

 

t The number of periods. 

l The number of products group. 

i The number of retailers. 

j The number of warehouses. 

jp  The set of vehicles that are belong to ware-

house j. 

p The elements of jp set. 

 

It could be pointed that number of vehicles for 

every warehouse is definite and constant. Each ve-

hicle has a unique index that is assumed to start 

from first warehouse and increase by the order of 

next warehouses. For example if there are three 

warehouses that the first one has two vehicles, the 

second  has three  and the third one has two, the 

index of the first warehouse vehicles will 

be { }2,11 =p , the second { }5,4,32 =p  and  

{ }7.63 =p  for the third one. 

 

tlipq  Quantity of product l which is shipped to 

retailer i by vehicle p (p belongs to 

each jp ) at each service in period t. 

tpiz  Binary variable, equal to 1 if vehicle p 

service retailer i in period t, 0 otherwise. 

pc  Traveling cost per kilometer for vehicle p. 

tliD  Maximum demand of retailer i, product l 

in period t. 

tpin  Number of service times for vehicle p, 

retailer i in period t. 

ptk  Maximum available distance for vehicle 

p in period t.                                                                                                 

tlja  Maximum supply of warehouses j, prod-

uct l in period t. 

jid  Distance between warehouse j and retail-

er i. 
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lih  Lost sale cost per unit of product l for 

retailer i. 

pc   Distance cost for vehicle p. 

pv   Maximum capacity for vehicle p. 

 

The following relation is defined for balancing 

the costs: 

{ }

j

m n

p tpi ji
t ij p

Min Ma x c z d× ×∑∑ ∑            (1) 

Obviously, the relation (1) is a nonlinear term 

and should be linearized. In order to making that 

linear, do as follows: 

 

{ }
j

p tpi ji
t i p

z Ma x  c z d= × ×∑∑∑     jp∀     (2) 

Min z                                                                  (3) 

S.t. 

j

p tpi ji
t i

p

 c z d z× × ≤∑∑ ∑       jp∀           (4) 

{0,1}tpiz =         
jt , i , p∀                               (5) 

 

The Objective Function (2) is forcing the model 

to balance shipment cost in different periods based 

on allocating different warehouse vehicles to the set 

of retailers. Constraint (4) is the linearization of the 

Relation (1) which assures that sum of assignments 

in different period for different warehouses don’t 

exceed of z and finally Constraint (5) enforces the 

integrality restriction on the decision variable. 

Using the above-mentioned, we may formulate 

the problem by using the following mixed integer 

linear programming model: 

 

( ( ))

j

li tli tpi tlip
t i l j

p

Min h D - n q z× × +∑∑∑ ∑∑  (6) 

S.t. 

tpi tlip tli tpin × q D × z≤        
jt , l , i , p∀        (7) 

j

tpi tlip tli

p

n q D× ≤∑             
jt , l , i , p∀        (8) 

j

tpi tlip tlj
i

p

n q a× ≤∑ ∑     
jt , j , p∀                (9) 

tlip p
l i

q  v≤∑∑      
jt , p∀                              (10) 

tpi tpi ij pt
i

n × z ×d k≤∑      
jt , p∀            (11) 

j

p tpi ji
t i

p

 c × z × d z≤∑∑ ∑      j∀             (12) 

{0,1}tpiz =        
jt , i , p∀                                (13) 

tlipq   0≥           
jt , l , i , p∀                             (14) 

3.1. Objective function 

The objective function is to minimize lost sales 

costs and balancing sum of shipment costs for dif-

ferent warehouses.  

3.2. Constraints 

Constraint (7) represents that shipment quantity 

for every retailer of different products with every 

vehicle in each period should be less than product 

demand in the same period. Shipment quantity 

( tpi tlipn q× ) is calculated proportional to the 

number of times that a vehicle services a retailer 

and tlipq could be nonzero if the vehicle is assigned 

to that retailer.  

Since every retailer may receive its demand from 

multi warehouses, then different vehicles could 

provide retailer’s demand. Constraint (7) considers 

maximum demand for every retailer by different 

vehicles. There should be a constraint to prevent 

sum of shipments for every retailer of a specific 

product in a special period from different vehicles 

exceed to maximum demand of that retailer for 

every product in each period. Constraint (8) 

represents the demand which transported by differ-

ent vehicles to every retailer in each period should 

be less than or equal to maximum demand of that 

retailer for that product.  

In practice, because of the limitations in the 

amount of different products supply from ware-

houses, a limitation in maximum supply capacity 
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for different products in different periods is as-

sumed for each warehouse. The warehouse capacity 

constraint is ensured by Constraint (9) while Con-

straint (10) represents the capacity constraint for 

vehicles. Constraint (11) restricts travel distance by 

an upper bound on expected accumulated kilometer 

for each vehicle. Constraint (12) is used to lineari-

zation the balancing relation in the model, and aims 

to assign warehouses to retailers with equal ship-

ment costs. Constraint (13) represents zero-one 

constraint while Constraint (14) imposes non-

negative decision variable in the model. The pro-

posed model for assigning vehicle and determining 

shipment quantity of every retailer is a large-scale 

model. This problem can be viewed as determining 

shipment quantity and assignment problem simulta-

neously. So this problem is known to be NP-Hard 

(Gen and Chang 1997). 

4. Simulated annealing approach  

Simulated annealing is a computational process 

which attempts to solve hard combinatorial optimi-

zation problems through controlled randomization. 

The procedure was popularized by Kirkpatrick et 

al. (1983) and is based on work by Metropolis et al. 

(1953) (the so-called Metropolis algorithm) in sta-

tistical mechanics. Simulated annealing emulates 

the physical process of annealing (hence the name 

of the heuristic) which attempts to force a system to 

its lowest energy state through controlled cooling. 

In a physical system with a large number of 

atoms, the equilibrium may be characterized as the 

minimal value for the energy of the system. This is 

accomplished by a slow cooling of the temperature. 

Then, the system is said to be in thermal equili-

brium at temperature T if the probability of being in 

state i with energy E
i

 follows the Boltzmann dis-

tribution: 

{ }

{ }

{ }

i

B

j

B

-E
exp

K T
Prob x = i

-E
exp

K T

=

∑

                   (15) 

where K
B

 is the Boltzmann constant and the sum 

is extended to all the possible states. Moving the 

atoms randomly to new configurations, different 

energy changes are induced (∆E ). If the increment 

is negative, the new configuration is accepted as a 

new state, but if the configuration has higher 

'energy' than the previous state, it is only accepted 

with a certain probability: 

 

{ }
B

-∆E
exp

K T
                                                   (16) 

 

Repeating these steps, it is shown that the ac-

cepted configurations converge to the Boltzmann 

distribution after some indeterminate number of 

iterations at each particular temperature. The proce-

dure may be easily applied to a large number of 

optimization problems where the objective function 

plays the role of the energy. In this context, the 

temperature is a control parameter to define large or 

small moves for the optimization variables (Marin 

and Salmeron, 1996). 

In general, the annealing process involves the fol-

lowing steps: 

 

1.   The temperature of the system is raised to 

a sufficient level. 

2.   The temperature of the system is main-

tained at this level for a prescribed 

amount of time. 

3.   The system is allowed to cool under con-

trolled conditions until the desired energy 

state is attained.  

 

The initial temperature (Step 1), the time the sys-

tem remains at this temperature (Step 2) and the 

rate at which the system is cooled (Step 3) are re-

ferred to as the annealing schedule. If the system is 

allowed to cool too fast, it may "freeze" at an unde-

sirable, high energy state. With respect to optimiza-

tion problems, the state of the system corresponds 

to the value of the objective function. Similarly, the 

freezing of a system at an undesirable energy state 

corresponds to an optimization problem which is 

"frozen" at a local optimum. Given this, in simu-

lated annealing the problem starts at some sub-

optimal solution, and a series of moves (changes of 

values of decision variables) are made according to 

a user-defined annealing schedule until either the 

optimal solution is attained or the problem becomes 

frozen at a local optimum from which it cannot im-

prove. To avoid freezing at a local optimum, the 

algorithm moves slowly (with respect to the objec-

tive value) through the solution space. This con-

trolled improvement of the objective value is ac-

complished by accepting non-improving moves 

(i.e., those which yield an objective value greater 

than or equal to the last accepted objective value) 
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with a certain probability (based on the resulting 

change in the objective value and the current tem-

perature) which decreases as the algorithm 

progresses. The algorithm’s transitions can be mod-

eled as a collection of finite-length Markov chains 

corresponding to each temperature level of the sys-

tem. Hence, through selection of an appropriate 

probability distribution and through control of its 

parameters, the algorithm’s rate of convergence is 

controlled. The general procedure for implementing 

a simulated annealing algorithm follows (Chen et 

al., 1996):  

 

Step1. Select an initial temperature, t, and an initial 

solution, 0X . Let  ( )0 0f = f X denote the 

corresponding objective value. Set i = 0 and 

go to Step 2. 

Step2. Set i = i + 1. Randomly generate a new solu-

tion, 
i

X , and evaluate ( )i if = f X . 

Step3. If  i i -1f < f  , then go to Step 5. Otherwise, 

accept f
i

 as the new solution with probabil-

ity 
( )/i i -1f - f t

e . 

Step4. If f
i

, was rejected as the new solution in 

Step 3, set i i -1f = f . Go to Step 5. 

Step5. If satisfied with the current objective Value 

( if ) stop. Otherwise, adjust the temperature, 

t, according to the annealing schedule and go 

to Step 2. 

4.1. Problem solving with SA 

As mentioned before, using integer variables and 

increasing problem size in the proposed model 

causes NP-Hard problem. In the warehouse assign-

ment to retailers, both of the selecting vehicles for 

products shipment and determining the order quan-

tity are simultaneously performed. If we want to use 

SA for solving the model, because of many decision 

variables, it is not possible to introduce a suitable 

algorithm for generating a feasible neighbor from a 

point in the solution space. By the above-mentioned 

facts it seems that using a stochastic search process 

could search in the solution space more efficiently. 

In this paper, stochastic search algorithm adapted 

with SA logic and is used Boltzmann function for 

considering the quality of convergence for the 

searched points toward global optimum solution. In 

this section, every part of the main algorithm is ex-

plained. 

4.2. Objective function of SA algorithm 

The objective function minimizes lost sale costs 

by considering different retailers, and balancing the 

sum of shipment costs for every warehouse. These 

objectives form the total cost (TC) objective func-

tion. In order to compute the quantity of TC objec-

tive function, we should compute amount of last 

sales and also balance sum of shipment costs. Lost 

sales are a portion of customer demand that because 

of some limitations is not met. This quantity is sub-

tracted from the sum of shipment quantities to the 

retailers and the result is multiplied by the penalty 

rate of lost sales. By this way, the total quantity of 

lost sales in the TC objective function is computed. 

For balancing, a 
iEQU variable for every ware-

house is assumed. If a warehouse is assigned to a 

retailer the multiply transportation cost of the dis-

tance between warehouse and the retailer could be 

computed and saved in 
iEQU . Finally these va-

riables for each warehouse assignments are 

summed and compared for different warehouses. If 

they are balanced, corresponding assignments will 

be accepted and the obtained quantity will be set in 

the objective function. 

4.3.  Approach of generating random search 

For generating a feasible solution by the provided 

algorithm, firstly the numbers of warehouse to be 

service, then the warehouses which will provide 

service are randomly determined. Number of ve-

hicles in every warehouse and consequently vehicle 

of each warehouse to be serviced is randomly de-

termined. Finally retailers receiving service will be 

selected and assigned. It is necessary to mention 

that all of the selection is completely random. For 

more clarity an operator is used to search randomly 

in the feasible solution space. This operator is de-

fined as follows: 

• Determine the number of existing ware-

houses (NW). 

• Define variable  jV  , which is the number of 

vehicles in every warehouse. 
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• Determine the whole number of retailers 

(NC). 

• Generate an integer uniform random num-

ber between [1, NW] called RNW which 

presents the number of selected warehouses 

to provide service. 

• Generate non-iterative integer uniform ran-

dom numbers equal to RNW are as selected 

warehouses. (RNWI) 

• Generate a non-iterative random number in 

[1 ]j,V for each of the selected warehouses, 

which are considered as the vehicles num-

ber from the warehouse RNWI selected to 

service (RNWIN). 

• Generate non-iterative random numbers by 

the number of selected vehicles [1, 

RNWIN] as the indices of vehicles from the 

selected warehouse to stand by service. 

• Generate an integer uniform random num-

ber in [0, NC] called RC as the number of 

retailers to be serviced. 

• Generate non-iterative random numbers in       

[1, NC] for RC times as the indices of re-

tailers that receive service. 

 

Each of above assignments is shown by a varia-

ble: 

 

tijkz  Vehicle i from warehouse j that service 

retailer k in period t. 

ijV  If vehicle i from warehouse j is selected 

to be in service is equal to one, o other-

wise. 

 

At the beginning of the algorithm all z
tijk

 and 

ijV  are equaled to zero. In order to perform as-

signment, below steps should be followed: 

 

1. Select vehicle (i.e. vehicle i from ware-

house j) to service the first retailer (or re-

tailer k). 

2. Let L=Min {inventory of warehouse j, ca-

pacity of vehicle i from warehouse j, de-

mand of the   customer k}. 

3. If L = 0, then select the next vehicle and go 

to 1. 

4. L unit of products are shipped by the ve-

hicle i from warehouse j to the retailer k 

( tijkz = 1 , ijV = 1 ). 

5. Subtract an l unit from inventory of ware-

house j and capacity of vehicle i and de-

mand of customer k. 

6. If there is still any vehicle to be assigned, 

go to Step 1, else terminate the procedure. 

 

Neighbor generating process is run in each tem-

perature. In order to increase the accuracy of the 

SA, it is usual to generate neighbors for more times 

in a specific temperature.  When using this algo-

rithm an auxiliary memory is provided to record the 

best solution. It guarantees if a solution obtained in 

a specific temperature is worst than the last solution 

– even with a very small probability – the best solu-

tion is saved in the memory and introduced as the 

final solution.  

In general, using this memory guarantees stor-

ing the best solution. Minimum temperature crite-

rion is used for determining the end of runtime. In 

the problem solved with SA, it has been observed 

that usually in the temperature below 0.1 degree of 

Celsius, quantity of S is going to be steady-state 

and its deviations become smaller over the time. 

The best temperature for stopping criterion in the 

proposed SA algorithm - in this problem set - is 

below 0.1 degree of Celsius (i.e. 0.1 
0
c). According 

to the most examples solved, ∆  is converging to 

the best obtained value.   

5. Computational results 

The proposed model is solved by different values 

parameters with VBA software and LINGO pack-

age. In the following, the computational results of 

problems randomly value parameters summarized 

in Tables 2 and 3.  

During solving the problems the initial tempera-

ture was set to 10000 degree of Celsius and the 

cooling rate was set to 0.95% with the stopping cri-

terion of reaching to the temperature of 0.1 
0
c (Ta-

ble 1). By considering the algorithm of searched 

points in the solved sample problems, it can be 

shown that the extensive range of solution area in 

high temperatures, is searched by SA.  
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Table 1. SA parameter settings. 

0T  α K (Iteration  in each  temperature) T stop 

10000 .95 20 0.1 

 

 

 

Table 2. Summary of computational results (constant parameters). 

Problem Size      

Case 
#     

Retailer 

#      

Vehicle 

#        

Warehouse 

Exact Objec-

tive Function 

SA Objective 

Function 

Exact Run 

Time(s) 

SA Run 

Time(s) 

Obj. Function 

Deviation 

1 2 3 5 1600 1600 00:00:01 00:00:02 0% 

2 2 3 6 2500 2510 00:00:01 00:00:05 0.4% 

3 2 3 7 4600 4600 00:00:01 00:00:05 0% 

4 2 4 5 2400 2400 00:00:01 00:00:05 0% 

5 2 4 6 5700 5700 00:00:01 00:00:04 0% 

6 2 4 7 8900 8900 00:00:01 00:00:06 0% 

7 3 5 7 3300 3350 00:00:07 00:00:12 1.5% 

8 3 5 9 11100 11140 00:00:04 00:00:10 0.4% 

9 3 5 10 8640 8690 00:00:03 00:00:04 0.6% 

10 4 6 8 3080 3100 00:00:08 00:00:13 0.6% 

11 4 6 9 7200 7300 00:00:25 00:00:31 1.4% 

12 4 6 10 9000 9100 00:03:32 00:00:32 1.11% 

13 4 6 11 11400 11500 00:04:47 00:00:37 0.88% 

14 4 6 12 15850 16000 00:05:07 00:00:49 0.95% 

15 4 6 13 19400 19600 00:05:03 00:00:25 1.03% 

16 4 6 14 23800 24100 00:05:34 00:00:27 1.26% 

17 5 7 11 7400 7500 00:05:43 00:00:51 1.35% 

18 5 7 12 14115 14200 00:05:50 00:00:54 0.60% 

19 5 7 13 16100 16400 00:06:15 00:01:23 1.86% 

20 5 7 14 19700 19860 00:05:01 00:01:37 0.81% 

21 5 7 15 22470 22600 00:05:48 00:01:54 0.58% 

22 5 7 17 28400 28600 00:09:48 00:01:18 0.70% 

23 6 10 12 - 5600 Long Time 00:01:47 - 

24 6 10 16 - 14500 Long Time 00:02:27 - 

25 8 13 18 - 1600 Long Time 00:02:34 - 

26 10 15 20 - 20200 Long Time 00:02:45 - 

27 10 17 25 - 34400 Long Time 00:02:54 - 

28 11 15 20 - 55700 Long Time 00:02:29 - 

29 11 17 20 - 43500 Long Time 00:02:47 - 

30 12 18 20 - 44670 Long Time 00:03:23 - 

31 13 19 25 - 78120 Long Time 00:03:19 - 

32 15 30 45 - 67800 Long Time 00:03:15 - 
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Table 3. Summary of computational results (none constant parameters). 

Problem Size      

Case 
#     

Retailer 

#      

Vehicle 

#  

Warehouse 

Exact Objec-

tive Function 

SA Objective 

Function 

Exact Run 

Time(s) 

SA Run 

Time(s) 

Obj. Function 

Deviation 

1 2 8 6 

2009000 2013500 0:00:01 0:00:08 0.20% 

8700 9000 0:00:09 0:00:05 3.40% 

542450 547100 0:04:20 0:00:18 0.90% 

13500 14000 0:04:31 0:00:19 3.70% 

2 2 16 6 

5439800 5466150 0:00:01 0:00:10 0.50% 

4290100 4318950 0:00:37 0:00:10 0.70% 

5339800 5363950 0:01:31 0:00:11 0.50% 

4018000 4029100 0:03:32 0:00:11 0.30% 

3 3 5 6 

6026000 6080000 0:00:01 0:00:10 0.90% 

345000 355000 0:01:07 0:00:08 2.90% 

7856000 7912000 0:02:31 0:00:12 0.70% 

5909000 5958400 0:11:53 0:00:11 0.80% 

4 3 6 6 

24000 24150 0:00:00 0:00:06 0.60% 

145 145 0:00:01 0:00:05 0.00% 

6130 6280 0:00:01 0:00:11 2.40% 

171120 171160 0:00:01 0:00:10 0.00% 

5 4 8 7 

19780 19860 0:00:01 0:00:13 0.40% 

360 380 0:00:01 0:00:07 5.60% 

3000 3000 0:08:34 0:00:10 0.00% 

3000 3000 0:29:25 0:00:13 0.00% 

6 5 10 15 

- 1140900 Long Time 0:00:13 - 

- 924200 Long Time 0:00:33 - 

- 725000 Long Time 0:00:28 - 

- 702200 Long Time 0:00:14 - 

7 10 17 20 

- 4435500 Long Time 0:00:15 - 

- 2041400 Long Time 0:00:13 - 

- 26700 Long Time 0:00:20 - 

- 1076800 Long Time 0:00:19 - 

8 15 25 30 

- 101310 Long Time 0:00:33 - 

- 157935 Long Time 0:00:58 - 

- 189849 Long Time 0:00:42 - 

- 82379 Long Time 0:00:43 - 
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Moreover the SA algorithm is able to escape from 

local optima. In lower temperatures, the searching 

procedure in inclined to the near optima points and 

in final points it can be easily seen that the method 

inclination is to the optimum solution. 

It was generated by more than 100 random ex-

amples by computer and all of them were solved. 

The result of 32 instances as samples is shown in 

Table 2.  

After solving the generated instances, in order to 

investigate the model performance, again it was 

generated by more than 100 random examples by 

computer. Then the parameters such as vehicles 

capacity, demands of customers, maximum supply 

of warehouses and lost sales cost is changed where 

as the problem size is considered as  constant and 

the result of the 32 instances   as samples  is shown 

in Table 3. The CPU times correspond to an Intel 

Centrino Duo 2 GHz processors. 

After solving, the comparison of computational 

results of solved instances show that either in the 

samples which the parameters considered constant 

to decrease the model complexity (Table2) or in 

samples which the parameters doesn’t consider 

constant (Table3) by increasing the problem dimen-

sion, the run times of SA method were better than 

the exact run times. It is also show that in all solved 

instances the objective function deviation by pro-

posed SA method comparing with exact method is 

adoptable which show the appropriate proposed 

algorithm performance. 

6. Conclusion 

In this paper a mixed integer linear programming 

model is presented to solve the warehouses assign-

ment to the retailers, in order to balancing shipment 

costs for every warehouse. Determination of opti-

mum shipment quantities for retailers in order to 

minimize total costs is another issue of the pro-

posed model in this paper. Decreasing the amount 

of the lost sales is considered as a factor of custom-

er service level in the proposed model. The pro-

posed model can be viewed as the combination 

choice Knapsack problem with capacitated alloca-

tion problem simultaneously. So this problem is 

known to be NP-Hard.  

For relatively small size problem we show that 

the SA algorithm can usually search the near opti-

mum solution. So we believe this algorithm will be 

an efficient method to solve this kind of problem in 

large scale size in supply chain management. 
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