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Abstract
A debutanizer column is an integral part of any petroleum refinery. Online composition monitoring of debutanizer column

outlet streams is highly desirable in order to maximize the production of liquefied petroleum gas. In this article, data-driven

models for debutanizer column are developed for real-time composition monitoring. The dataset used has seven process

variables as inputs and the output is the butane concentration in the debutanizer column bottom product. The input–output

dataset is divided equally into a training (calibration) set and a validation (testing) set. The training set data were used to

develop fuzzy inference, adaptive neuro fuzzy (ANFIS) and regression tree models for the debutanizer column. The

accuracy of the developed models were evaluated by simulation of the models with the validation dataset. It is observed

that the ANFIS model has better estimation accuracy than other models developed in this work and many data-driven

models proposed so far in the literature for the debutanizer column.
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Introduction

Today, in a wide array of processes, it is difficult to achieve

continuous online monitoring. The prime reason is the low

reliability or unavailability of hardware sensors. This

results in huge revenue loss to the industry due to low-

quality products which could have been otherwise pre-

vented in presence of continuous monitoring. In order to

counter this problem, various industries are now incorpo-

rating soft sensor models to achieve quality monitoring.

There is increasing use of soft sensors in process industries

such as petroleum refinery (Wang et al. 2013; Shokri et al.

2015), cement (Pani and Mohanta 2014, 2016), polymer

(Shi and Liu 2006; Ahmed et al. 2009; Chen et al. 2013;

Sharma et al. 2017), metallurgy (Gui et al. 2005; Zhang

et al. 2013; Markopoulos et al. 2016), bioprocesses

(Steinwandter et al. 2016) and plasma etching process

(Zakour and Taleb 2017).

A debutanizer column is used to remove the lighter

fractions from gases, which are the overhead distillate

coming from the distillation unit. The debutanizer column

lacks real-time monitoring system for the butane (C4)

composition. Adding to the nonlinearity of the process, the

control of product quality tends to become a tricky issue in

the refinery. For the prediction of the bottom product

composition of the debutanizer column, various models

have been reported in the past. Significant among them are

backpropagation neural network (Fortuna et al. 2005; Pani

et al. 2016), partial least square (PLS; Ge and Song 2010;

Zheng et al. 2016), support vector regression (SVR; Ge and

Song 2010), principal component regression (PCR; Ge

et al. 2014), supervised latent factor analysis (Ge 2016;

Yao and Ge 2017), probabilistic regression (Yuan et al.

2015) and state-dependent ARX (Bidar et al. 2017) tech-

niques for modeling of debutanizer column.

Literature survey on modeling of debutanizer column

reveals that various types of PCR, PLS, probabilistic

regression, ARX and backpropagation neural network

models are reported. However, so far, the techniques of

fuzzy inference modeling and regression tree-based mod-

eling techniques have not been investigated for the debu-

tanizer column. Therefore, in this work, the performances
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of fuzzy inference, adaptive neuro fuzzy (ANFIS) and

regression tree models are reported for the debutanizer

column. The required input output data are obtained from

the World Wide Web shared by Fortuna et al. (2007). The

data were statistically divided into a training set and a

validation set using Kennard–Stone algorithm (Kennard

and Stone 1969). The training set was used to develop

Mamdani and Sugeno-type fuzzy inference model, adap-

tive neuro fuzzy inference model and regression tree

models. All developed models are examined with unknown

data (validation set data) to assess the estimation accuracy

of the models. The performances of the developed models

were analyzed and compared by computing various sta-

tistical model evaluation parameters such as mean absolute

error (MAE), root-mean-squared error (RMSE) and corre-

lation coefficient (R). It was found that the adaptive neuro

fuzzy model is able to estimate the butane content in the

bottom stream of the debutanizer column with good

accuracy. The accuracy of the ANFIS model reported here

is even better than many other data-driven models pro-

posed so far in the literature.

The main contribution of this research is proposing a

model (with good accuracy of prediction) for the LPG

recovery unit of refinery. The use of the model will help to

overcome the problem of time delay arising due to the

hardware sensor. This will result in improved process

efficiency with maximization of LPG production. The rest

of the article is organized as follows. Process description

section contains the process description for the debutanizer

column and the scope of inferential model application in

the process. Details of the modeling techniques applied in

this research are presented in Methodology section fol-

lowed by results and discussion in Results and discussion

section. Finally, concluding remarks are presented in

Conclusion section.

Process description

A debutanizer column is present in various processing units

of a refinery. The column is used to remove the lighter

fractions from gasoline in the production of LPG and

gasoline. For instance, it is a part of the atmospheric and

vacuum crude distillation unit, cracking and coking units.

Unstabilized naphtha is fed to the debutanizer column. The

products coming out from the column are LPG as the top

product and gasoline/stabilized naphtha as the bottom

product. A simplified schematic flowsheet of the debu-

tanization process is shown in Fig. 1. The detailed process

flowsheet can be referred to in Fortuna et al. (2005).

Scope of the present research work

The butane (C4) content in the bottom product needs to be

minimized for better performance of the process (maximiz-

ing LPG in the top product). This requires continuous

monitoring of C4 content in the bottom product. A gas

chromatograph is used in the process to achieve this. But this

hardware sensor is located in the overhead of the deisopen-

tanizer column rather than being in the bottom flow line

coming from the debutanizer column. This results in a time

delay of 30–75 min in the composition measurement (For-

tuna et al. 2005). Therefore, to overcome this problem of

time delay, an inferential process model can be incorporated

in the bottom flow of debutanizer column to achieve real-

time monitoring of C4 content from the knowledge of other

process inputs. The various process inputs influencing theC4

content in the bottom stream are listed in Table 1. The output

to be predicted by the soft sensor model is the C4 content

present in the debutanizer column bottom product.

Methodology

The required process input–output data were obtained from

the internet resource mentioned in (Fortuna et al. 2007). This

has a total of 2394 observations (samples). This dataset was

split equally into a training set consisting of 1197 samples and

a validation set of the same dimension. The training set was

used formodel development, and the validation set wasmeant

for subsequent model performance assessment. The splitting

was done so as to ensure that the training set becomes a proper

representative of the entire set. The widely used distance-

based statistical technique, the Kennard–Stone algorithm

(Kennard and Stone 1969), was used for data division. The

followingmodeling techniques were followed in this research

for modeling of the debutanizer column.

Classification and regression tree (CART) model
development

CART method involves the progressive binary splits of

various estimations of classification variable to generate a

decision tree. Every estimation of every indicator variable

is taken into account as a potential split and the ideal split

is chosen in view of impurity criterion. A set of explana-

tory variables or predictors are used to study the variation

of the new data. Recursive binary splits are made on the

data creating mutually exclusive subgroups containing

objects with similar properties. An extremely intriguing

preferred standpoint of CART is the likelihood to manage

vast quantities of both categorical and numerical factors.

Another favorable position is that no assumption about the
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hidden circulation of the predictor factors is required (even

categorical variables can be utilized). Eventually, CART

gives a graphical representation, which makes the under-

standing of the outcomes simple. Five elements are nec-

essary to develop a classification tree (Breiman et al.

1984): (1) a set of binary questions, (2) a measure to

optimize the split, (3) a stop-splitting rule, (4) a rule for

assigning termination code classification and (5) a method

to prune the tree back. The structure of a typical CART

model is shown in Fig. 2 (Breiman et al. 1984).

The tree growing procedure in CART is roughly anal-

ogous to a stepwise linear regression procedure which

consists of the following steps: (1) defining an initial set of

variables, (2) choosing the fitting method of least squares,

(3) defining the threshold P values for new variables to be

entered or removed from the equation, (4) backward

elimination of variables and selection of the best multi-

variable model based on the adjusted R2 values.

The designed training set was used to build up the

CART model for the debutanizer model. The resulting

model is shown in Fig. 3.

However, because of the large dimension data set (1197

objects), the initial CART model is highly complex with a

very high number of nodes. This model produces very

accurate prediction for the training data but largely fails to

predict accurately when supplied with unknown data (the

objects of validation set). This is the well-known overfit-

ting problem. The determination of a smaller tree, got from

the maximal one, is therefore essential for successful

modeling. The choice of the ideal tree is accomplished by a

tree pruning methodology. Many techniques were used to

generate the optimal model like examination of resubsti-

tution error, cross-validation, control depth, evaluating

root-mean-squared error (RMSE), correlation coefficient

(R) and mean absolute error (MAE).

Resubstitution error is difference between the predic-

tions of the model and that of the response training data.

High resubstitution error signifies lower accuracy in pre-

dictions. However, great predictions for new data aren’t

assured by having low resubstitution error.

Tree was cross-validated to see how accurate it could

predict for the new data; training data were split into 10

parts at random. On 9 parents of the data, 10 new trees

were trained. Predictive accuracy for each newly developed

tree was examined on the data which was not there in the

training. The technique gives a decent gauge on how

accurate is developed model.

A leafy tree with depth (many nodes) is generally very

precise on the training data. However, the model is not

ensured to demonstrate a tantamount exactness on a test

set. A deep tree’s test accuracy is frequently far not as

much as its training (resubstitution) accuracy as it tends to

Fig. 1 Schematic process

diagram of the debutanizer

column

Table 1 Input and output variables for the proposed inferential

model of the debutanizer column

Variables Description

Inputs

x1 Top tray temperature

x2 Top pressure

x3 Reflux flow

x4 Flow to next process

x5 Sixth tray temperature

x6 Bottom tray temperature 1

x7 Bottom tray temperature 2

Output

y Butane (C4) content in the debutanizer column bottom
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overtrain (or overfit). Conversely, a shallow tree does not

achieve high training precision.

The regression tree model after improvement is pre-

sented in Fig. 4.

Mamdani and Sugeno fuzzy inference model
development

The entire activity of fuzzy inference model designing is a

sequence of five steps: fuzzification of the input (predictor)

process variables, application of the appropriate AND or

OR operator in the antecedent, implication from the ante-

cedent to the consequent by application of the fuzzy if then

rule, aggregation of the consequents across the rules to get

the output (response) process variable in fuzzified form and

finally defuzzification of the fuzzified output (Jang et al.

1997; Pani and Mohanta 2014).

In the fuzzification step, membership functions were

decided to create valid fuzzy sets to accommodate all

inputs. The membership functions can take many forms

Fig. 2 A typical CART model

Fig. 3 Initial CART model of the debutanizer column
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such as trapezoidal, triangular, Gaussian bell shape, etc.

(Jang et al. 1997). In this work, triangular membership

functions were used for both the inputs and output.

Training data used for the model were normalized so that

all input and output data points lie in the broad range of

0–1. Every crisp variable was then classified into 5 fuzzy

variables namely VS (Very Small), S (Small), M (Med-

ium), L (Large) and VL (Very Large) depending upon its

value.

Table 2 summarizes the membership functions and the

range of values for classifying under a particular linguistic

variable for all seven inputs and the output.

After fuzzification of the inputs (and outputs for Mam-

dani-type fuzzy model) as mentioned in Table 2, OR type

fuzzy operator is applied to get a single number that rep-

resents the result of the antecedent for a rule which has

multiple parts in its antecedent. The input to the fuzzy OR

operator is two or more membership values from fuzzified

input variables and the output is a single crisp value (the

maximum of all inputs).

After the FIS was designed as per the requirements of

our process, the next step was to add rules to it based on the

training set. The conventional means to do that would

require feeding the fuzzy logic toolbox with the linguistic

variable for each data point based on its value individually.

In our case, we had 7 input variables and 1 output

variable for a total of 1197 rows. So for adding rules, we

needed 8 9 1197 = 9567 data points, classify them to

linguistic variables based on their values and then finally

add them row by row individually to the GUI provided by

the fuzzy logic toolbox of MATLAB. It was really a

cumbersome task to add rules in this manner. Moreover,

this was not a one-time task! If we needed to change the

training set at any point of our research, we would have to

do the entire task again. The task was hence a time taking

one. To eliminate the manual addition of rules, a function

was written to make the process of rule building easy and

replicable for any training set. It was called the RuleMatrix

method. The function takes a training set as parameter and

returns a rule matrix for that training set. A rule matrix is

nothing but a set of rules defined for a particular training

set in the form of a matrix. For a system with m number of

inputs and n number of outputs, there are exactly m ?

n ? 2 columns in the rule list.

The first m columns are for the inputs of the system. The

next n columns are for the outputs of the system. Each

Fig. 4 CART model after improvement

Table 2 Membership functions for inputs and outputs for Mamdani and Sugeno models

Variables (inputs/outputs) Fuzzy variable Membership function Range

Input and output for Mamdani and only inputs for Sugeno VS (Very Small) Triangular 0–0.2

S (Small) 0.1–0.4

M (Medium) 0.3–0.7

L (Large) 0.6–0.9

VL (Very Large) 0.8–1

Journal of Industrial Engineering International (2020) 16:41–51 45

123



column contains a number that refers to the index of the

membership function for that variable. The m ? n ? 1

column contains the weight applied to each rule. As

specified earlier, it is 1 for each rule in our case. The

m ? n ? 2 column contains a 1 if the fuzzy operator for

the rule’s antecedent is AND. It contains a 2 if the fuzzy

operator is OR. AND was used as the fuzzy operator in our

case for the rules.

The rule matrix was then added to the FIS through a

single line of code. This has made the entire process easy,

reproducible and adaptable for different training sets by

just changing one line in the entire code.

For development of Sugeno-type fuzzy model, the prime

difference is in the definition of membership values for

output variable which was defined to constant values in the

range 0–1 (zero-order Sugeno fuzzy model). The mam2sug

MATLAB function method takes a Mamdani-type FIS as

parameter and returns a corresponding zero-order Sugeno-

type FIS for the process. The resulting Sugeno-type FIS has

output membership functions with values corresponding to

the centroids of that in Mamdani-type FIS passed as

parameter. It uses weighted-average defuzzification

method and the product implication method. All the other

properties like the input membership functions and the rule

definitions of the resulting FIS are identical to the Mam-

dani-type FIS passed to it.

Adaptive neuro fuzzy inference (ANFIS) model
development

This technique was first proposed by Jang (1993) and has

subsequently become one of the most popular hybrid

modeling techniques combining neural network and fuzzy

inference concepts. ANFIS takes a Sugeno-type FIS as

input and then trains its membership function parameters.

The initial fuzzy model is required to determine the num-

ber of inputs, linguistic variable and the number of rules in

the tuned final model. The FIS must have the following

properties for the ANFIS to support it:-

1. Only zeroth- and first-order Sugeno-type FIS.

2. Output membership functions uniformly of the same

type, i.e., linear or constant. The FIS must have a

single output.

3. Number of output membership function must be equal

to the number of rules, i.e., no two rules can share the

same output membership function.

4. Have the same weight for each rule, i.e., 1.

The Sugeno-type FIS designed earlier will not be sup-

ported by the ANFIS. It is because the FIS had 350 rules

while the number of output membership functions was 5.

This clearly hints at rule sharing which is not supported by

the ANFIS.

Hence a new FIS had to be designed such that it com-

plies with all the requirements for it to be supported by the

ANFIS. The number of rules can be reduced and fine-tuned

by using various clustering methods on the training data.

Clustering methods analyze the intrinsic grouping in a

dataset. The two most widely used methods are grid par-

titioning and subtractive clustering.

In grid partitioning technique, the antecedents of the

fuzzy rules are formed by partitioning the input space into

numerous fuzzy regions. It is a rather subjective approach

because the user has to initially specify the number of

clusters in which the variables will be partitioned into. The

product of number of clusters for each input variables then

gives the total number of rules.

The grid partitioning method leads to a problem when

the number of inputs is large. The method requires enu-

merating all possible combinations of input membership

functions to generate rules, and hence, the number of rules

blows up in the case of more inputs. In our case of 7 inputs,

each with say 5 membership functions, this method will

lead to 78,125(= 55) rules. Hence, the number of rules

grows exponentially with the increase in number of inputs.

Such systems then are infeasible for any training. This

exponential blowing up of number of rules with the

increase in number of inputs is often referred to as the

‘curse of dimensionality.’

So keeping in mind the above constraint, the number of

membership function for the 7 inputs of the debutanizer

column was kept as low as 2. That led to 128 (= 27) rules

and could be further trained using ANFIS. The membership

functions were marked S and L denoting ‘small’ and

‘large,’ respectively. The model was chosen to be a zeroth-

order Sugeno model. The membership functions were

chosen to be of the triangular type.

The above fuzzy model obtained by grid partitioning

was trained by updating the consequent parameters of the

rules by least square estimation algorithm and the premise

parameters by the backpropagation gradient descent algo-

rithm. This is also known as the hybrid learning algorithm.

The curse of dimensionality renders the grid partitioning

method impractical for large number of inputs. For

instance, if the above fuzzy model was attempted with 3

membership functions for each input, the number of rules

would have exceeded 2000. Therefore, the number of

membership functions was restricted in the case of grid

partitioning algorithm.

A much more intuitive technique is the subtractive

clustering algorithm. Subtractive clustering is a one pass

algorithm that estimates the number of clusters and the

cluster centers for the input–output pair in the data set. It

works by determining regions of high densities in the data

space. A point is chosen to be the cluster center if it has

maximum no. of neighbors. User specifies a fuzzy radius
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till which the points are left out, and the algorithm tries to

find the next cluster center in the remaining points. In this

manner, all the data points are examined.

This algorithm does not lead to the dimensionality issue.

Number of rules and antecedent membership functions are

first determined by the rule extraction method. Linear least

squares estimation is then used to determine the consequent

of each rule.

This algorithm requires the user to specify the radius of

influence of the cluster centers for each input. This values

lies between 0 and 1 considering the entire data set as a unit

hypercube. Also the accept ratio and the reject ratios needs

to be specified which instructs the algorithm to accept the

data points as cluster centers if their density potential lies

above the accept ratio and reject them if the potential lies

below the reject ratios.

For the final model generated using subtractive clus-

tering, the radii of influence were set to 0.22 for all inputs.

The accept ratio was set to be 0.6, and the reject ratio was

set to 0.1. This generates a Sugeno FIS with 54 member-

ship functions and 54 rules.

Results and discussion

The initial regression tree model was developed with the

leaf size of 1. Though it has good accuracy, the model is

extremely complex. As the leaf size was increased error

also increased, i.e., model became less accurate. For the

given data when Min leaf size vs cross-validated error

graph was generated, it was found out that the cross-vali-

dated error was least for the 77.5 min leaf size. The best

leaf size is 77.5 or 78. Therefore, leaf size of 78 was

decided to be somewhat optimum at which the model is

relatively much simpler and at the same time does not have

very high error value.

The resubstitution loss is the MSE (mean squared error)

of prediction. This was computed to be 0529.

The cross-validated loss was computed to be 0.0177,

which signifies a common predictive error of model to be

0.133. This signifies that simple resubstitution loss is typ-

ically lower than cross-validated loss.

The optimal regression tree generated gives very high

resubstitution error and is much smaller. Yet, it gives

comparable precision. Even though cross-validation error

was low for the generated model other errors [root-mean-

squared error (RMSE), correlation coefficient (R), mean

absolute error (MAE)] were really high as compared to the

original model.

The performances of the Mamdani and Sugeno-type

fuzzy models are not satisfactory when developed from

such a huge data set of 1197 samples. However, an increase

in the number of rules (which will also add to added

complexity and computational effort) may result in a better

model.

Both grid partitioning and subtractive clustering tech-

niques were applied for ANFIS modeling. Both kinds of

ANFIS models were trained for 30 epochs. The value of

Table 3 Performance comparison of debutanizer column process model

Model TYPE Mean absolute error

(MAE)

Root-mean-squared

error

Correlation

coefficient

This work

Mamdani FIS 0.2597 0.2822 0.0297

Sugeno FIS 0.2607 0.2834 0.0224

ANFIS (grid partitioning) 0.0722 0.1048 0.6654

ANFIS (subtractive clustering) 0.05 0.0672 0.8829

Regression tree (leaf size: 1) 0.048 0.08 0.8366

Regression tree (leaf size: 78) 0.0901 0.1232 0.4969

Earlier reported works

Back propagation neural network (Pani et al. 2016) 0.055 0.076 0.856

Least square support vector regression (Ge and Song 2010) – 0.1418 –

Nonlinear semi-supervised PCR (Ge et al. 2014) – 0.1499 –

Gaussian mixture model-based Just In Time Learning (Fan et al. 2014) – 0.1345 –

Robust supervised probabilistic principal component analysis (Zhu

et al. 2015)

– 0.1385 –

Neighborhood preserving regression embedding (Aimin et al. 2015) – 0.1429 0.4371

Weighted probabilistic PCA (Yuan et al. 2015) 0.0806 0.7431

Active learning PCR (Ge 2014) – 0.145 –

The best performing model along with its prediction results is highlighted in bold
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error drops with each training epoch. The models trained

using the training set were validated by the test set. The

value of error goes down for the test set too with the

number of training epoch till it finally converges to a

constant value. The RMSE values converged at 0.109 and

0.105 for training set and the test set, respectively, for the

grid partition-based ANFIS model. For the subtractive

clustering based model, the RMSE values converged at

0.0539 and 0.0672 for training set and the test set,

respectively.

Fig. 5 ANFIS model structure

Fig. 6 Actual and ANFIS

model-predicted output values
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The predicted values were compared with the actual

values in the data, and the values of MAE, RMSE and R

were computed for different models. The formulas used for

computation of various statistical parameters are men-

tioned below:

Mean absolute error is a quantity used to evaluate how

close the predictions are to the output. It is given by:

MAE ¼
PN

i¼1
yi�byij j

N
.

Root-mean-squared error gives an index to analyze the

precision with which the model predicts the output. It is

given by: RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1
yi�byið Þ2
N

r

where yi and byi are

actual and predicted values, respectively, N is the no. of

rows.

Correlation coefficient provides an index to measure the

linear dependence between two vectors X and Y. It gives a

value ranging from - 1 to ?1. The value 1 signifies total

positive linear correlation, 0 no linear correlation, whereas

- 1 signifies total negative linear correlation. For a sample,

the correlation coefficient is given by:

R ¼
P

y� yð Þ by � by
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

y� yð Þ2
P

by � by
� �2

r

0

B
B
@

1

C
C
A

yi byi are actual and predicted values, respectively, N is the

no. of rows.

The prediction performances of all models for the val-

idation data are presented in Table 3.

Fig. 7 ANFIS model residuals

Fig. 8 Normal probability plot of the ANFIS model residual
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From Table 3, it is quite clear that the proposed adaptive

neuro fuzzy inference model designed using subtractive

clustering algorithm regression tree model, Mamdani and

Sugeno fuzzy inference models and a few other models

(neural network, just in time and principal component

regression) reported in the literature for the same process

and using the same benchmark dataset. The structure of the

proposed ANFIS model is shown in Fig. 5. The model has

7 inputs, 1 output and a total of 54 rules.

Error analysis of the proposed ANFIS model

The accuracy of the designed ANFIS model is further

tested by conducting rigorous error analysis between the

actual and model-predicted output values (i.e., butane

content in the debutanizer column bottom product stream).

It may be noted that all the error analysis is done by sim-

ulation of the model to unknown inputs (validation data).

The actual values and the predicted values by the ANFIS

model are shown in Fig. 6.

Table 3 and Fig. 6 indicate that the predicted output of

the ANFIS model is quite close to the actual output values.

However, the accuracy of the model is further tested by

conducting error analysis of model residuals. Two kinds of

error analysis are reported in this work which are presented

in Figs. 7 and 8.

In simulation of the model with the validation set input

data, Fig. 7 presents the plot of model residuals (i.e., dif-

ference between actual output and model-predicted output).

It is clear that the residuals are perfectly random in nature

without any particular trend w.r.t the sample number (or

time instances). Figure 8 shows the normal probability plot

of the prediction errors which indicates that most of the

errors’ probability values match satisfactorily with the

analytic line. Randomness and normal distribution of the

prediction errors are important requirements of a good

model (Ljung 1998). Table 3 and Figs. 6 to 8 indicate that

the ANFIS model simulation with unknown inputs results

in outputs whose error values are less, randomly distributed

and come from a normal distribution.

Conclusion

Data-driven models were developed in the present work for

real-time monitoring of butane (C4) content in the bottom

stream of debutanizer column. Mamdani and Sugeno-type

fuzzy inference models, regression tree-based model and

adaptive neuro fuzzy model were developed. All models

were analyzed by assessing their prediction performances

with unknown data. It was found that the neuro fuzzy

model reported in this work results in better performance

than other models developed in this work and developed in

earlier works reported in literature. The good performance

of the neuro fuzzy model makes it a suitable option for

being used for real-time monitoring in petroleum refineries.

Open Access This article is distributed under the terms of the Creative

Commons Attribution 4.0 International License (http://creative

commons.org/licenses/by/4.0/), which permits unrestricted use, dis-

tribution, and reproduction in any medium, provided you give
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link to the Creative Commons license, and indicate if changes were

made.
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