
J. Ind. Eng. Int., 7 (12), 32-38, Winter 2011  
ISSN: 1735-5702 
© IAU, South Tehran Branch 

 *Corresponding Author Email: alinezhad_ir@yahoo.com 
     Tel.: +98 9123342560 
 

An MCDM-DEA approach for technology selection 
 

A. Alinezhad 
1*

; A. Makui 
2
; R. Kiani Mavi 

3
; M. Zohrehbandian 

4
 

 

Assistant Prof., Dep. of Industrial Engineering, Islamic Azad University, Science and Research Branch, Tehran, Iran 

Assistant Professor, Dep. of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran 

Assistant Professor, Dep. of Industrial Management, Islamic Azad University, Qazvin Branch, Qazvin, Iran 

Assistant Professor, Dep. of Mathematics, Islamic Azad University, Karaj Branch, Karaj, Iran 

 

Received: 24 November 2007;        Revised: 18 May 2008;       Accepted: 24 May 2008 

Abstract: Technology selection is an important part of management of technology. Recently Karsak and 

Ahiska (2005) proposed a novel common weight multiple criteria decision making (MCDM) methodology 

for selection of the best Advanced Manufacturing Technology (AMT) candidates based on a number of 

attributes. However, Amin et al. (2006), by means of a numerical example demonstrated the convergence 

difficulty of the Karsak and Ahiska algorithms, and then introduced an improvement model to rectify that 

running problem. This paper presents an MCDM-DEA methodology in order to evaluate the relative effi-

ciency of AMTs with respect to multiple outputs and a single exact input. Using displaced ideal methodolo-

gy, a practical common weight is developed and its robustness and discriminating power are illustrated via 

a previously reported robot evaluation problem by comparing the ranking obtained by the proposed MCDM 

framework with that obtained by a data envelopment analysis (DEA) classic model.  
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1. Introduction 

Selection of technologies is one of the most 
challenging decision making areas that manage-
ment of a company encounters. It is difficult to 
clarify the right technology alternatives because 
the number of technologies is increasing and the 
technologies are becoming more and more com-
plex. The large number of available advanced 
manufacturing technologies (AMT), among which 
industrial robots, computer numerical control 
(CNC) machines, flexible manufacturing systems, 
automated material handling (AMH) systems can 
be listed, and numerous AMT performance 
attributes that should be considered in the decision 
making process require the use of a robust deci-
sion methodology capable of evaluating several 
AMT candidates. Several researchers have uti-
lized a variety of DEA models to address the 
AMT evaluation and selection problem. Talluri et 

al. (2000) proposed innovative DEA frameworks 
for evaluating AMT considering qualitative and 
quantitative criteria as well as imprecision.  

Recently Karsak and Ahiska (2005) proposed a 
novel common weight multi-criteria decision 
making (MCDM) methodology for selection of 
the best AMT candidates based on a number of 
attributes. Many justification methodologies for 
AMT selection necessitate the decision-maker to 
assign arbitrary importance weights to perfor-

mance attributes. One problem with arbitrary 
weights is that they add subjectivity to the metho-
dology. On the other hand, assigning weights is 
cumbersome since it is often quite difficult for the 
decision-maker to quantify their preferences on 
performance attributes. Furthermore, the task of 
assigning weights becomes more difficult as the 
number of performance attributes increases. 
Hence, a robust decision tool that does not require 
precise information on the importance of perfor-
mance attributes from the decision maker would 
facilitate the AMT evaluation process. 

The present paper proposes a multi-objective 
decision tool for industrial robot selection, which 
does not require subjective assessments of the de-
cision maker to prioritize performance attributes. 
Hence, it can be named as objective decision 
techniques. The proposed methodology can be 
success-fully applied, but is not limited to tech-
nology selection problems such as the determina-
tion of the best industrial robot, CNC machine or 
flexible manufacturing system from a feasible set 
of mutually exclusive alternatives. 

The plan for the rest of this paper is as follows: 
Section 2 provides a concise literature review on 
the existing decision tools for AMT. Section 3 
presents a new multiple objective linear pro-
gramming (MOLP) methodology for technology 
selection in seven steps. In Section 4, the robust-
ness and convenience of the proposed MOLP me-
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thodology are illustrated through a comparison 
with the results of CCR model. Finally concluding 
remarks are provided in Section 5. 

2. Literature review 

Over the past several decades, manufacturers 
who have been faced with intense competition in 
the global marketplace, have invested in AMTs, 
such as group technology, flexible manufacturing 
systems, industrial robots, etc., which enable high 
quality and customization in a cost-effective man-
ner. The increased concern and importance at-
tached to AMTs by the manufacturers have con-
sequently oriented the researchers to develop 
models and methodologies for evaluation and se-
lection of AMTs. Proctor and Canada (1992), Son 
(1992) and more recently, Raafat (2002) have 
provided comprehensive bibliographies on the 
justification of AMTs. 

A number of papers have focused on the use of 
MCDM techniques for AMT justification. Stam 
and Kuula (1991) developed a two-phase decision 
procedure that uses AHP and multi-objective ma-
thematical programming for the problem of flexi-
ble manufacturing system (FMS) selection. 
Agrawal et al. (1991) employed TOPSIS for robot 
selection whereas Agrawal et al. (1992) applied 
TOPSIS for optimum gripper selection. Khouja 
(1995) addressed the robot evaluation problem 
and proposed a two-phase methodology that con-
sisted of first using DEA to identify the technical-
ly efficient robots from a list of feasible robots, 
and then, using multi-attribute utility theory to 
further discriminate among efficient robots and 
select the best alternative. Sambasivarao and 
Deshmukh (1997) presented a decision support 
system that employed economic analysis, multi-
attribute analysis including AHP, TOPSIS and 
linear additive utility model, and risk analysis. 

In addition, several studies contribute to the 
non-deterministic MCDM literature on evaluation, 
justification and selection of AMTs. Perego and 
Rangone (1998) analyzed and compared fuzzy set 
theory-based multi-attribute decision-making 
techniques for AMT justification. Karsak and 
Tolga (2001) presented a fuzzy multi-criteria de-
cision-making approach for evaluating AMT in-
vestments, which integrated both economic and 
strategic selection criteria using a decision algo-
rithm based on a fuzzy number ranking method. 
Karsak (2002) has recently developed a distance-
based fuzzy MCDM approach for evaluating FMS 
alternatives that eliminates the need for using a 
fuzzy number ranking method. 

3. Practical common weight displaced ideal ap-

proach for technology selection 

In DEA, the measure of efficiency of a DMU is 
defined as a ratio of a weighted sum of outputs to 
a weighted sum of inputs subject to the condition 
that corresponding ratios for each DMU be less 
than or equal to one. A standard formulation of 
DEA creates a separate linear program for each 
DMU. The model chooses nonnegative weights 
for a DMU in a way that is most favorable for it 
and that DMU achieve the maximal relative effi-
ciency index value. This flexibility in selecting the 
weights, on the other hand, deters the comparison 
among DMUs on a common base. For dealing 
with this difficulty and assessment of all the 
DMUs on the same scale, the DEA model could 
be expressed as a multi-objective linear fractional 
programming problem. The idea behind this ap-
proach and identification of the common weights 
is formulated as the simultaneously maximizing 
the ratio of outputs to inputs for all DMUs. Hence, 
the objective function of the model is the same as 
in the conventional DEA model but applied to 
maximize efficiency of all DMUs, instead of one 
at a time, and the restrictions remaining un-
changed. 

In technology selection problems, when mul-
tiple exact outputs and a single input are to be 
considered in the evaluation process, this ap-
proach produces the following MOLP problem: 
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Each preferred solution (preferred common set 
of weight), of Model (1) produce efficiency meas-
ures that is not specific to a particular DMU, but 
common to all DMUs. For solving the above 
MOLP problem and presenting a preferred solu-
tion, we employ the displaced ideal approach as 
follows: 

Step 1: All DMUs are evaluated in input-oriented 
CCR model as follows: 
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where, DMUo is under evaluation and 
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The optimal solution of Model (2) *
ru  is used 

for assessment of the efficiency of the other 
DMUs. Hence, we calculate: 
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In other words, θ oj  represents the score given 

to unit j in the DEA run of unit k, i.e. unit j is eva-
luated by the optimal weights of unit k and ac-
cording to Model (4) we have: 
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Step 2: The results of step 1 are used to form an n 
by n payoff matrix; see Table 1, where u*o is the 
vector of optimal output weights when DMUo is 
under evaluation. Note that all the elements in the 

matrix are between zero and one, i.e. 0< 1≤θ oj , 

and the elements in the diagonal,θ jj  represent the 

standard DEA efficiency score, which are the 
highest values that the DMUs can attain. In other 
words, a diagonal element of the payoff matrix 
introduces an ideal solution. Furthermore, if the 
optimal weights of the LP Model (2) are not 
unique, a technique e.g. goal programming, can be 
applied to choose between the optimal solutions. 
In this manner, each column of the table is asso-
ciated to an efficient solution of Model (1). 

Step 3: Define efficiency distance index as fol-
lows: 
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The efficiency distance index of DMUj meas-
ures the distance of efficiency of DMUj, when 
using optimal weights of DMUo, from optimal 
efficiency of DMUj (0 ≤ doj ≤ 1, and djj=0). 

Step 4: The results of Step 3 form the distance 
matrix as follows, where the elements on the di-
agonal are zero. 

Step 5: We define general norm as follows: 
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For P=2, the results form the Table (3) (Eucli-
dean norm). 

Step 6: Find out the minimum amount of the re-
sults in Step 5 as:  

Min {L-2[u*j] | j=1,…,n}                                    (8) 

Assume that the minimum is obtained by 
DMUo as:  

L-2[u*o], o ∈{1,…, n}                                        (9) 

Step 7: u
*o is a superior common set of weights of 

outputs and we can calculate the efficiency score 
of all DMUs with these weights. 

4. Numerical example 

In this section, the proposed MOLP methodol-
ogy is used for robot selection and its discriminat-
ing power is illustrated through a previously re-
ported industrial robot selection problem (Karsak 
& Ahiska, 2005). The robustness of the metho-
dology proposed in this paper is tested via com-
paring the ranking obtained by the proposed me-
thodology with that obtained by the CCR model. 
The robot selection problem addressed in Karsak 
& Ahiska (2005) involves the evaluation of rela-
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tive efficiency of 12 robots with respect to four 
engineering attributes including ‘handling coeffi-
cient’, ‘load capacity’, ‘repeatability’ and ‘veloci-
ty’, which are considered as outputs, and ‘cost’, 
which is considered as the single input. Since 
lower values of repeatability indicate better per-
formance, the reciprocal values of repeatability 
are used in efficiency computation of robots. Input 
and output data regarding the robots are given in 
Table 4. 

The results obtained by execution of the pro-
posed approach in this paper, are depicted in 
Tables 5, 6 and 7. According to the results of Ta-
ble 7, the minimum of L-2[u*j], equals to 0.5676, 
is obtained for, u*1, u*6 and u*7. Therefore, u*1, u*6 
and u*7 are superior common set of weights and 
we can calculate the efficiency score of all DMUs 
with these weights. These common weights are 
u1=0.537483, u2=0.135944, u3=0.000010 and 
u4=0.000010. Final results are shown in Table 8. 

To test the robustness of the proposed metho-
dology, the obtained scores are compared with 
DEA efficiency scores (CCR model) by Spear-
man’s rank correlation test. Like the Pearson 
product moment correlation coefficient, Spear-
man’s ρ  is a measure of the relationship between 

two variables. However, Spearman’s ρ  is calcu-

lated on ranked data. For calculating spearman’s 
ρ  we can use the formulation: 
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that dj (j=1,2, …,n) is the difference between ranks 
for the same observations (DMUs), and n is the 
number of DMUs.  

Or we can compute the Pearson’s correlation on 
the columns of ranked data. The result of this 
formulation is too close to the exact Spear-
man’s ρ . In this formulation:  
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and xj and yj are the ranks for the same DMUj 
(j=1,2, …,n). 

Spearman’s rank correlation, in this example, is 

0.67, which means that there is a positive relation-
ship between the rankings of the proposed ap-
proach and CCR model. However, the number of 
efficient DMUs of the proposed approach has 
been reduced. Hence, discriminating power of the 
approach is higher than conventional DEA mod-
els. 

5. Conclusion 

This paper introduces a new efficiency measure 
with an improved discriminating power that can 
be successfully applied for AMT evaluation based 
on multiple exact outputs and a single exact input. 
Using the proposed efficiency measure, a practical 
common weight MOLP methodology is devel-
oped and illustrated through a robot selection 
problem. The convenience and robustness of the 
proposed methodology are tested via a compari-
son with CCR model. The comparison reveals that 
both analyses evaluate the same robot as the best 
one. Furthermore, the rankings obtained by the 
proposed methodology and CCR analysis are 
shown to be positively correlated.  

The merits of the proposed framework com-
pared with DEA-based approaches that have pre-
viously been used for technology selection can be 
listed as follows. First, this methodology allows 
the computation of the efficiency scores of all 
DMUs by a single formulation, i.e. all DMUs are 
evaluated by common performance attribute 
weights and on a common base. Second, it identi-
fies the best alternative by using fewer formula-
tions compared with DEA-based approaches. Fur-
ther, its practical formulation structure enables its 
results to be more easily adopted by management 
who may not poses advanced mathematical pro-
gramming skills. On the other hand, one similarity 
between the proposed methodology and DEA-
based approaches is that they are both objective 
decision tools since they do not demand a priori 
importance weights from the decision-maker for 
performance attributes. 

For further study, useful extensions of the pro-
posed methodology may be developed, which 
enables the decision-maker to consider imprecise 
output data denoted by fuzzy numbers. 
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Table 2: Distance matrix. 
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Table 3: Final results for P=2. 
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Table 4: Input and output data for 12 industrial robots. 

Robot (j) Cost(US$) 
Handling coeffi-

cient 
Load capacity(kg) 

1/Repeatability 
(mm-1) 

Velocity 
(m/s) 

1 100000 0.995 85 1.70 3.00 
2 75000 0.933 45 2.50 3.60 
3 56250 0.875 18 5.00 2.20 
4 28125 0.409 16 1.70 1.50 
5 46875 0.818 20 5.00 1.10 
6 78125 0.664 60 2.50 1.35 
7 87500 0.880 90 2.00 1.40 
8 56250 0.633 10 8.00 2.50 
9 56250 0.653 25 4.00 2.50 
10 87500 0.747 100 2.00 2.50 
11 68750 0.880 100 4.00 1.50 
12 43750 0.633 70 5.00 3.00 
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Table 5: Payoff matrix. 

θ1  .65304 .62788 .62788 .62788 .35932 .65304 .65304 .39868 .62788 .53064 .53064 .43718 .35932 

θ 2  .75356 .82124 .82124 .82124 .50746 .75356 .75356 .56323 .82124 .37457 .37457 .69948 .37457 

θ3  .88300 .95386 .95386 .95386 .86132 .88300 .88300 .88514 .95386 .19959 .19959 .56944 .19959 

θ 4  .86365 .95127 .95127 .95127 .69736 .86365 .86365 .74950 .95127 .35547 .35547 .77789 .35547 

θ5  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .26622 .26622 .34179 .26622 

θ 6  .56370 .50767 .50767 .50767 .39130 .56370 .56370 .40723 .50767 .47961 .47961 .25189 .25189 

θ 7  .68310 .58518 .58518 .58518 .39054 .68310 .68310 .41116 .58518 .64212 .64212 .23316 .23316 

θ8  .63149 .74577 .74577 .74577 .99831 .63149 .63149 .99835 .74577 .11089 .11089 .64709 .11089 

θ9  .68690 .76449 .76449 .76449 .66578 .68690 .68690 .69897 .76449 .27721 .27721 .64709 .27721 

θ10  .61653 .54850 .54850 .54850 .34816 .61653 .61653 .38140 .54850 .71347 .71347 .41636 .34816 

θ11  .88853 .74925 .74925 .74925 .63680 .88853 .88853 .65132 .74925 .90739 .90739 .31771 .31771 

θ12  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

 

Table 6: Distance matrix. 

 u*1 u*2 u*3 u*4 u*5 u*6 u*7 u*8 u*9 u*10 u*11 u*12 

d1 .00000 .08565 .08565 .08565 1.0000 .00000 .00000 .86600 .08565 .41670 .41670 .73493 

d2 .15153 .00000 .00000 .00000 .70245 .15153 .15153 .57760 .00000 .99995 .99995 .27258 

d3 .09394 .00000 .00000 .00000 .12269 .09394 .09394 .09111 .00000 1.0000 1.0000 .50966 

d4 .14706 .00000 .00000 .00000 .42617 .14706 .14706 .33866 .00000 1.0000 1.0000 .29100 

d5 .00000 .00016 .00016 .00016 .00000 .00000 .00000 .00013 .00016 1.0000 1.0000 .89704 

d6 .00000 .17969 .17969 .17969 .55291 .00000 .00000 .50181 .17969 .26970 .26970 1.0000 

d7 .00000 .21763 .21763 .21763 .65022 .00000 .00000 .60440 .21763 .09107 .09107 1.0000 

d8 .41464 .28548 .28548 .28548 .00004 .41464 .41464 .00000 .28548 1.0031 1.0031 .39701 

d9 .15923 .00000 .00000 .00000 .20258 .15923 .15923 .13445 .00000 1.0000 1.0000 .24093 

d10 .26537 .45159 .45159 .45159 1.0000 .26537 .26537 .90903 .45159 .00000 .00000 .81333 

d11 .03199 .26818 .26818 .26818 .45888 .03199 .03199 .43426 .26818 .00000 .00000 1.0000 

d12 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 

 

Table 7: Final results for P=2. 

u*2 u*1 u*3 u*4 u*5 u*6 u*7 u*8 u*9 u*10 u*11 u*12 

.6666 .5676 .6666 .6666 2.1611 .5676 .5676 1.6902 .6666 2.5022 2.5022 2.3750 

 

Table 8: Efficiency scores and the associated rankings (in parentheses). 

Robot(j) 
CCR 

efficiency scores 
Displaced ideal effi-

ciency scores 

1 0.653(11) 0.653(9) 
2 0.821(7) 0.754(6) 
3 0.954(4) 0.883(4) 
4 0.950(5) 0.864(5) 
5 1.000(1) 1.000(1) 
6 0.563(12) 0.564(12) 
7 0.683(10) 0.683(8) 
8 1.000(1) 0.631(10) 
9 0.765(8) 0.687(7) 
10 0.714(9) 0.617(11) 
11 0.909(6) 0.889(3) 
12 1.000(1) 0.998(2) 

average 834.0=µ  768.0=µ  
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