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          Abstract 

In this paper, by introducing two virtual decision-making units (DMUs) called ideal DMU (IDMU) and anti-

ideal DMU (ADMU) with fuzzy inputs-outputs, the efficiency evaluation of DMUs are done by fuzzy data 

envelopment analysis (FDEA). Therefore, we evaluate DMUs from the perspective of the best and worst poss-

ible relative efficiency. For each DMU two efficiencies are calculated while inputs and outputs are fuzzy. 

These two distinctive efficiencies are combined with the closeness coefficient (CC) index. The CC index is 

then used for an overall ranking of all DMUs. Finally, we compare the result of proposed fuzzy DEA model 

with León et al.’s (2003) results by representing a numerical example. 
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1. Introduction 

Data envelopment analysis (DEA) is a mathemat-

ical optimization technique that measures the rela-

tive efficiency of decision making units (DMUs) 

with multiple input–output. Charnes et al. (1978) 

first proposed DEA as an evaluation tool to meas-

ure and compare a DMU’s relative efficiency. Their 

model which is commonly referred to as CCR mod-

el, assumed constant returns to scale. It was devel-

oped for variable returns to scale by Banker et al. 

(1984). That is commonly referred to as BCC mod-

el (Cooper et al., 2000). 

Evaluating the performance of activities or organ-

izations by conventional DEA models requires crisp 

input/output data. However, in real-world problems 

inputs and outputs are often imprecise. The DEA 

models with fuzzy data can more realistically 

represent real-world problems than the traditional 

DEA models. Fuzzy set theory allows linguistic 

data to be used straightly within the DEA models. 

Fuzzy DEA (FDEA) models take the form of fuzzy 

linear programming models.  

We can find several fuzzy approaches to the as-

sessment of efficiency in the DEA literature. Sen-

gupta (1992) proposed a fuzzy mathematical pro-

gramming approach in which fuzziness was incor-

porated into DEA model by defining tolerance le-

vels on both objective function and constraint viola-

tions. Triantis and Girod (1998) suggested a ma-

thematical programming approach through trans-

forming fuzzy input-output data into crisp data us-

ing membership function values. Efficiency scores 

were computed for different values of membership 

functions and then averaged. Kao and Liu (2000; 

2003) introduced a technique  which  transforms  a  

fuzzy DEA model to a family of crisp DEA models 

by applying the α -level (also called α -cuts) ap-

proach. Despotis and Smirlis (2002) and Entani et 

al. (2002) proposed a DEA model with an interval 

efficiency consisting of efficiencies obtained from 

the pessimistic and the optimistic viewpoints. Their 

models deal with fuzzy data. Lertworasirikul et al. 

(2003) proposed a possibility approach in which 
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fuzzy DEA model was transformed into possibility 

DEA model by using possibility measures on fuzzy 

events. Hougaard’s (2005) approach allows the de-

cision makers to use scores of technical efficiency 

in combination with other sources of information as 

expert opinions for instance. The α -cut approach 

was also adopted by Saati et al. (2002), who de-

fined the fuzzy CCR model as a possibilistic-

programming problem and transformed it into an 

interval programming using the concept of α -cuts. 

Guo and Tanaka (2001) proposed a fuzzy CCR 

model in which fuzzy constraints including fuzzy 

equalities and fuzzy inequalities were all converted 

into crisp constraints by predefining a possibility 

level and using the comparison rule for fuzzy num-

bers. Recently, Hatami-Marbini et al. (2009) ex-

tended the idea of ranking fuzzy numbers to the 

fuzzy DEA model, and their method was applied to 

evaluation bank branches. Hatami-Marbini and Saa-

ti (2009) also developed a new method to deal with 

RTS of efficient DMUs in fuzzy BCC when  0u  is a 

fuzzy variable. Here, we are particularly interested 

in the approach by León et al. (2003), which uses 

the possibilistic programming. In the present paper 

we also utilize possibilistic programming tech-

niques to approach the problem of the measurement 

of efficiency. Some interests are obtained with re-

spect to both computational and interpretative as-

pects. 

In this paper, CCR model is extended to be a 

fuzzy DEA model for evaluating DMUs from the 

perspective of the best and worst possible relative 

efficiency with the given fuzzy input-output data. 

Following this approach, the results obtained by 

two different efficiencies are combined with the 

closeness coefficient (CC) index. The CC index is 

then used for an overall ranking for all the DMUs. 

The paper is organized as follows. In Section 2, 

first, we review some basic concepts about fuzzy 

numbers, then, we introduce virtual ideal DMU 

(IDMU) and anti-ideal DMU (ADMU) in DEA 

model. Section 3 presents proposed approach for 

solving fuzzy DEA models. Subsequently, we con-

sider a numerical example provided by León et al. 

(2003) to validate our method in Section 4. The pa-

per is concluded in Section 5. 

2. Preliminary definitions  

In this section we are simply recalling how to 

perform the basic operations of arithmetic of fuzzy 

numbers and introducing IDMU and ADMU in 

DEA model (Zimmermann, 2005; Klir and Yuan, 

1995; Wang and Luo, 2006). They are expressed as 

follows. 

 

Definition 1. Fuzzy number M� is said to be a LR-

fuzzy number, ,( , , , )L R L R
L RM p q α β=�  if and 

only if its membership function has the following 

form: 

( )

( ) 1

( )

L
L

L

L R

M

R
R

R

p x
L x p

x p x q

x q
R x q
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 −
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= ≤ ≤


− ≥
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where L and R are reference functions, i.e., L; R: 

[0,+ [ [0,1]∞ →  are strictly decreasing in 

( ) { : ( ) 0}
M

supp M x xµ= >�
�  and upper semi-

continuous functions such that L(0) = R(0) = 1. If 

( )supp M�  is a bounded set, L and R are defined on 

[0,1]and satisfy L(1) = R(1)=0. 

In fuzzy linear programming (FLP), the min T-

norm is the most applied to evaluate a linear com-

bination  of   fuzzy   quantities.  In particular,   for a 

given set of LR-fuzzy numbers 

,( , , , )L R L R
j j j j j L Rd m n α β=�

 , j=1,…,n and some 

nonnegative jx , we have that: 

1 1 1 1 1

[ ]
n n n n n

L R L R
j j j j j j j j j j LR

j j j j j

d x m x , n x , x , xα β
= = = = =

=∑ ∑ ∑ ∑ ∑�

 

(2) 

where L and R are the common left and right refer-

ence functions, and 
1

n

j jj
d x

=∑ �  denotes the combi-

nation 1 1 2 2 n n
d x d x ... d x⊕ ⊕ ⊕� � � . Literature review 

reveals that multitudes of fuzzy number ranking 

methods exist (Wang and Kerre, 2001(a); Wang 

and Kerre, 2001(b); Bortolan and Degani, 1985). 

The ranking process depends heavily on the envi-

ronment or the framework of a problem. Here, we 

consider an approach of fuzzy number ranking that 

introduce as the following two definitions: 

 

Definition 2. Let M� and N�  be two fuzzy numbers. 

Then, membership function ( )
M N

xµ
∨� �  is defined as: 

 

( ) sup { ( ) ( )}
M N M N

x s t

x s tµ µ µ
∨

= ∨

= ∧� � � �               (3) 
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Based on “fuzzy max” operator, Dubois and 

Prade (1980) recount the Definition 3. 

 

Definition 3. Considering two fuzzy numbers 

M� and N� ,  

M� >
�

N� M N M⇔ ∨ =� � �                                 (4) 

Tanaka et al. (1984), Leon et al. (2003) and 

Ramík and Římánek (1985) have formulated FLP 

problems by using this order. In fact, Ramík and 

Ŕímánek (1985) provided an operative characteriza-

tion of (3) in terms of theα -cut. 

 

Theorem. Let M� and N�  be two fuzzy numbers. 

Then, M N M∨ =� � �  if and only if, [0,1]α∀ ∈  the 

two statements below hold (Ramík and Římánek , 

1985): 

 

inf { : ( ) } inf { : ( ) },
M N

s s t tµ α µ α≥ ≥ ≥� �  

sup{ : ( ) } sup{ : ( ) }
M N

s s t tµ α µ α≥ ≥ ≥� �      (5)  

In particular, if two LR-fuzzy numbers  

,( , , , )L R L R
L RM p q α β ′ ′=� and 

,( , , , )L R L R
L RN b h ξ µ=�  have supported to (5) 

and both L L ′= and R R ′= , then: 
 

, ,L L L L L L
p b p bα ξ≥ − ≥ −  

,R R R R R R
q h q hβ µ≥ + ≥ +                (6) 

 

Definition 4. An IDMU is a virtual DMU that uses 

the least inputs to generate the most outputs. While 

an ADMU is a virtual DMU which consumes the 

most inputs but produces the least outputs.   

Let ( , )ijx i 1 , ,m j 1 , , n= =… …  and  

rjy ( 1, , , 1, , )r s j n= =… …  are the ith input and 

the rth output of DMU j , respectively. An ideal 

IDMU and ADMU in DEA are defined as follows 

(exact data) (Wang and Luo, 2006): 

 
min max( , )i rIDMU x y  

max min( , )i rADMU x y                                        (7) 

where: 

min maxmin{ }, max{ },i ij i ij
j j

x x x x i= = ∀  

min maxmin{ }, max{ },r rj r rj
j j

y y y y r= = ∀  

  

On the other hand, Let 

( )L R L R
ij ij ij ij ijx x , x ,α ,α=� and 

( )L R L R
rj rj rj rj rjy y , y , β , β=�

 
are the ith fuzzy input 

and the rth fuzzy output of DMU j , respectively. 

Hence, an IDMU and ADMU in DEA are obtained 

as follows: 

 
min min min max min( , , , ),L R L R
i i i i ix x x iα α= ∀�

 max max max min max( , , , ),L R L R
i i i i ix x x iα α= ∀�

 

min min min max min( , , , ),L R L R
r r r r ry y y rβ β= ∀�  

max max max min max( , , , ),L R L R
r r r r ry y y rβ β= ∀�  (8) 

where 

 
min min{ },L L

i ijx x=       
min min{ },R R

i ijx x=  

{ }max max ,L L
i ijα α=       { }min min ,R R

i ijα α=   

max max{ },L L
i ijx x=       

max max{ },R R
i ijx x=  

min min{ },L L
i ijα α=       

max max{ },R R
i ijα α=  

min min{ },L L
r rjy y=       

min min{ },R R
r rjy y=  

max max{ },L L
r rj=β β       

min min{ },R R
r rj=β β   

max max{ },L L
r rjy y=        

max max{ },R R
r rjy y=  

min min{ },L L
r rj=β β         

max max{ },R R
r rj=β β  

 

Note that a virtual IDMU and virtual ADMU may 

not exist in practical production activity. 

3. Fuzzy DEA models 

Suppose that we have n DMUs. Each DMU j  

( 1 )j , , n= …  produces s different outputs, rjy  

( 1 )r , ,s= … , using m different inputs, ijx  

( 1 )i , ,m= … . DEA models are first developed for 

crisp data and then extended to fuzzy data. Note 
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that fuzzy data can expressed as LR-fuzzy number 

,( , , , )
ij ij

L R L R
ij ij ij ij ij L Rx x x α β=� , i=1,…,m, j=1,…,n 

and ,( , , , )
rj rj

L R L R
rj rj rj rj rj L Ry y y α β ′ ′=� , 1r , ,s= … , 

1j , ,n= …  as the trapezoidal fuzzy numbers where 

first, second, third and forth components display the 

left, right, left spread and right spread of the related 

numbers, respectively. Meanwhile for simplifying, 

data can be described by means of LR-fuzzy num-

bers of the same type as follows: 

 

1 ... , 1,...,i in iL L L i m= = = =  

 

1 ... , 1,...,r rn rL L L r s′ ′ ′= = = =  

 

1 ... , 1,...,i in iR R R i m= = = =  

 

1 ... , 1,...,r rn rR R R r s′ ′ ′= = = =                  (9) 

 

Let the input-oriented CCR model is used with 

fuzzy data. Then, we are developed FDEA models 

with a virtual IDMU and ADMU to get the best and 

the worst possible relative efficiencies, respectively. 

However, the IDMU is a virtual unit, its produc-

tion behavior should be come the goal of each 

DMU. According to Wang and Luo (2006), the ef-

ficiency of the IDMU can be defined as: 

max

1

min

1

M ax

s

r rr
ID m

i ii

u y

v x
θ =

=

=
∑
∑

 

S.t. 

 

1

1

1

s

r rjr

m

i iji

u y
j

v x

=

=

≤ ∀
∑
∑

 

 

, 0 ,r iu v r i≥ ∀                                 (10) 

 

where ru ),,1( sr …=  and iv ),,1( mi …=  being 

the weight on rth output and ith input, respectively. 

Model (10) can be solved through a linear form as 

shown below by performing the Charnes–Cooper 

transformation (1962):

 

max

1

M ax
s

ID r r

r

u yθ
=

=∑  

S.t. 

min

1

1
m

i i

i

v x
=

=∑  

 

1 1

0
s m

r rj i ij

r i

u y v x j
= =

− ≤ ∀∑ ∑  

 

, 0 ,r iu v r i≥ ∀                   (11) 

 

The dual program of (11) is obtained as:  

 

M in IDθ  

S.t. 

 

min

1

n

j ij ID i

j

x x iλ θ
=

≤ ∀∑  

 

max

1

n

j rj r

j

y y rλ
=

≥ ∀∑  

 

0j jλ ≥ ∀                             (12) 

 

When input-output data are LR-fuzzy number, 

(12) can be expressed as the following fuzzy LP 

problem: 

 

M in IDθ  

S.t. 

 

min

1

n

j ij ID i

j

x x iλ θ
=

< ∀∑ � �
�

 

 

max

1

n

j rj r

j

y y rλ
=

> ∀∑ � �
�

 

 

0j jλ ≥ ∀                            (13) 

 

where,  

 
min min min max min( , , , )L R L R
i i i i ix x x α α=�

  
 

max max max min max( , , , )L R L R
r r r r ry y y β β=�

 
 

( )L R L R
ij ij ij ij ijx x , x ,α ,α=�  
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( )L R L R
rj rj rj rj rjy y , y , β , β=�  

 

Using inequality (6) and linear combinations as 

(2), (13) can be transformed as the following equiv-

alent LP model: 

 

Min IDθ  

 

S.t. 

 

min

1

n
L L

j ij ID i

j

x x iλ θ
=

≤ ∀∑  

 

min

1

n
R R

j ij ID i

j

x x iλ θ
=

≤ ∀∑  

 

min

1 1

n n
L L L

j ij j ij ID i

j j

x xλ λ α θ
= =

− ≤∑ ∑  

              

maxL
ID i iθ α− ∀  

 

min

1 1

n n
R R R

j ij j ij ID i

j j

x xλ λ α θ
= =

+ ≤∑ ∑  

               

minR
ID i iθ α+ ∀  

 

max

1

n
L L

j rj r

j

y y rλ
=

≥ ∀∑  

 

max

1

n
R R

j rj r

j

y y rλ
=

≥ ∀∑  

 

max

1 1

n n
L L L

j rj j rj r

j j

y yλ λ β
= =

− ≥∑ ∑  

              

minL
r rβ− ∀  

 

max

1 1

n n
R R R

j rj j rj r

j j

y yλ λ β
= =

+ ≥∑ ∑  

               

maxR
r rβ+ ∀  

 

0j jλ ≥ ∀   (14) 

Therefore, the optimal value of (14) provides an 

evaluation of the efficiency of IDMU in which all 

the possible values of the different variables for all 

the DMUs at all the possibility levels are consi-

dered. Model (15) is utilized to determine the best 

relative efficiency of DMU p  using the efficiency 

of IDMU (with exact data) (Wang and Luo, 2006): 

1

1

M ax

s

r rpr
p m

i ipi

u y

v x
θ =

=

=
∑
∑

 

S.t. 

 

max

1

min

1

s

r rr
IDm

i ii

u y

v x
θ ∗=

=

≥
∑
∑

 

 

1

1

1

s

r rjr

m

i iji

u y
j

v x

=

=

≤ ∀
∑
∑

 

 

, 0 ,r iu v r i≥ ∀                               (15) 

 

Model (15) can be expressed as the following li-

near programming problem: 

 

1

M ax
s

p r rp

r

u yθ
=

=∑  

S.t. 

 

1

1
m

i ip

i

v x
=

=∑  

 

max min

1 1

0
s m

r r i ID i

r i

u y v xθ ∗

= =

− ≥∑ ∑  

 

1 1

0
s m

r rj i ij

r i

u y v x j
= =

− ≤ ∀∑ ∑  

 

, 0 ,r iu v r i≥ ∀            (16) 

 

The dual program of (16) is as follows: 

 

M in pθ  

S.t. 
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min

1

n

ID i j ij p ip

j

x x x iθ λ λ θ∗ ∗

=

+ ≤ ∀∑  

max

1

n

r j rj rp

j

y y y rλ λ∗

=

+ ≥ ∀∑  

0λ∗ ≤  

 

0j jλ ≥ ∀         (17) 

 

Now, since input-output data are LR-fuzzy num-

ber and IDθ ∗
 is taken from (14), the best relative ef-

ficiency of DMU p  can be determined through the 

following model: 

 

M in pθ  

 

S.t. 

 

min

1

n

ID i j ij p ip

j

x x x iθ λ λ θ∗ ∗

=

+ < ∀∑� � �
�

 

max

1

n

r j rj rp

j

y y y rλ λ∗

=

+ > ∀∑� � �
�

 

0λ∗ ≤  

 

0j jλ ≥ ∀            (18) 

 

Similarly, suppose that we have:   

 

( , , , )L R L R
rj rj rj rj rjy y y β β=�   

max max max min max( , , , )L R L R
r r r r ry y y β β=�

  

min min min max min( , , , )L R L R
i i i i ix x x α α=�

 

( , , , )L R L R
ij ij ij ij ijx x x α α=�

 
 

Therefore, (18) can be transformed as the follow-

ing equivalent LP model: 

 

M in pθ  

S.t. 

min

1

n
L L L

ID i j ij p ip

j

x x x iθ λ λ θ∗ ∗

=

+ ≤ ∀∑  

 

min

1

n
R R R

ID i j ij p ip

j

x x x iθ λ λ θ∗ ∗

=

+ ≤ ∀∑  

 

min max

1

n
L L L

ID i j ij ID i

j

x xθ λ λ θ α λ∗ ∗ ∗ ∗

=

+ −∑  

                   

1

n
L L L

j ij ip ip ip ip

j

x iλ α θ θ α
=

− ≤ − ∀∑  

 

min min

1

n
R R R

ID i j ij ID i

j

x xθ λ λ θ α λ∗ ∗ ∗ ∗

=

+ +∑  

                    

1

n
R R R

j ij ip ip ip ip

j

x iλ α θ θ α
=

+ ≤ + ∀∑  

 

max

1

n
L L L
r j rp

rj
j

y y y rλ λ∗

=

+ ≥ ∀∑  

max

1

n
R R R
r j rp

rj
j

y y y rλ λ∗

=

+ ≥ ∀∑  

max min

1

n
L L L
i j i

rj
j

y yλ λ β λ∗ ∗

=

+ −∑  

               

1

n
L L L

j rj rp rp

j

y rλ β β
=

− ≥ − ∀∑  

 

max max

1

n
R R R
r j r

rj
j

y yλ λ β λ∗ ∗

=

+ +∑  

               

1

n
R R R

j rj rp rp

j

y rλ β β
=

+ ≥ + ∀∑  

 

0λ∗ ≤                                                              (19) 

 

0j jλ ≥ ∀  

 

 

When input-output data are LR-fuzzy number, 

the efficiency of the ADMU can be expressed as the 

following fuzzy LP problem: 
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Ma x ADϕ  

 

S.t. 

 

max

1

n

j ij AD i

j

x x iλ ϕ
=

> ∀∑ � �
�

 

 

1

n

j rj rp

j

y y rλ
=

< ∀∑ � �
�

 

 

0j jλ ≥ ∀                          (20) 

 

Similarly, (20) can be obtained by the following 

LP: 

 

M ax ADϕ  

 

S.t. 

 

max

1

n
L L

j ij AD i

j

x x i
=

≥ ∀∑λ ϕ  

 

max

1

n
R R

j ij AD i

j

x x i
=

≥ ∀∑λ ϕ  

 

max

1 1

n n
L L L

j ij j ij AD i

j j

x x
= =

− ≥∑ ∑λ λ α ϕ  

              
minL

AD i i− ∀ϕ α  

 

max

1 1

n n
R R R

j ij j ij AD i

j j

x x
= =

+ ≥∑ ∑λ λ α ϕ  

               
maxR

AD i i+ ∀ϕ α  

 

min

1

n
L L

j rj r

j

y y r
=

≤ ∀∑λ  

 

min

1

n
R R

j rj r

j

y y r
=

≤ ∀∑λ  

 

min max

1 1

n n
L L L L

j rj j rj r r

j j

y y r
= =

− ≤ − ∀∑ ∑λ λ β β  

min min

1 1

n n
R R R R

j rj j rj r r

j j

y y r
= =

+ ≤ + ∀∑ ∑λ λ β β  

 

0j j≥ ∀λ                                         (21) 

 

   Note that, in (21), we have: 

 

 ( , , , ),L R L R
rj rj rj rj rjy y y= β β�

  
 

max max max min max( , , , )L R L R
i i i i ix x x= α α�

 
 

and 

 

( )L R L R
ij ij ij ij ijx x , x ,α ,α=�

 
 

( 1,2,...,i m=  , 1,2,...,r s=  , 1,2,..., )j n= . 

 

Let AD
∗ϕ be the worst efficiency of the ADMU 

with fuzzy data, its efficiency is clearly worse than 

other units. Model (22) is utilized to determine the 

worse relative efficiency of DMU p  using the effi-

ciency of ADMU (with exact data) (Wang and Luo, 

2006): 

1

1

M in

s

r rpr
p m

i ipi

u y

v x

=

=

=
∑
∑

ϕ  

S.t. 

 

min

1

max

1

s

r rr
A Dm

i ii

u y

v x

∗=

=

≤
∑
∑

ϕ  

 

1

1

1

s

r rjr

m

i iji

u y
j

v x

=

=

≥ ∀
∑
∑

 

 

, 0 ,r iu v r i≥ ∀                   (22) 

 

The fractional programming problem (22) can be 

expressed as the following linear programming: 

1

M in
s

p r rp

r

u y
=

= ∑ϕ  

S.t. 
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1

1
m

i ip

i

v x
=

=∑  

min max

1 1

0
s m

r r i A D i

r i

u y v x
∗

= =

− ≤∑ ∑ ϕ  

1 1

0
s m

r rj i ij

r i

u y v x j
= =

− ≥ ∀∑ ∑  

, 0 ,r iu v r i≥ ∀    (23) 

 

The dual of the above model can be formulated 

as follows: 

M ax pϕ  

S.t. 

 

max

1

n

AD i j ij p ip

j

x x x i
∗ ∗

=

+ ≥ ∀∑ϕ λ λ ϕ  

min

1

n

r j rj rp

j

y y y r
∗

=

+ ≤ ∀∑λ λ  

0∗ ≤λ  

 

0j j≥ ∀λ       (24) 

 

Now, since input-output data are LR-fuzzy num-

ber and 
IDϕ∗

 is taken from (21), the worst possible 

relative efficiency of DMU p  can be determined 

through the following model:  

 

M ax pϕ  

S.t. 

max

1

n

AD i j ij p ip

j

x x x i
∗ ∗

=

+ > ∀∑ϕ λ λ ϕ� � �
�

 

min

1

n

r j rj rp

j

y y y r
∗

=

+ < ∀∑λ λ� � �
�

 

0∗ ≤λ  

 

0j j≥ ∀λ       (25) 

where  

 

( , , , )L R L R
rj rj rj rj rjy y y= β β�

 

( , , , )L R L R
ij ij ij ij ijx x x= α α�

 

max max max min max( , , , )L R L R
i i i i ix x x= α α�

 

 
min min min max min( , , , )L R L R
r r r r ry y y= β β�  

 

Similarly, model (25) can be transformed as the 

following equivalent LP model: 

 

Ma x pϕ  

S.t. 

 

max

1

n
L L L

ID i j ij p ip

j

x x x i
∗ ∗

=

+ ≥ ∀∑ϕ λ λ ϕ

 

 

max

1

n
R R R

ID i j ij p ip

j

x x x i
∗ ∗

=

+ ≥ ∀∑ϕ λ λ ϕ  

 

max min

1

n
L L L

AD i j ij AD i

j

x x
∗ ∗ ∗ ∗

=

+ −∑ϕ λ λ ϕ α λ  

                     

1

n
L L L

j ij p ip p ip

j

x i
=

− ≥ − ∀∑λ α ϕ ϕ α  

 

max max

1

n
R R R

AD i j ij AD i

j

x x
∗ ∗ ∗ ∗

=

+ +∑ϕ λ λ ϕ α λ  

                     

1

n
R R R

j ij p ip p ip

j

x i
=

+ ≥ + ∀∑λ α ϕ ϕ α  

 

min

1

n
L L L
r j rj rp

j

y y y r
∗

=

+ ≤ ∀∑λ λ  

min

1

n
R R R
r j rj rp

j

y y y r
∗

=

+ ≤ ∀∑λ λ  

min max

1

n
L L L
r j rj r

j

y y
∗ ∗

=

+ −∑λ λ β λ  

1

n
L L L

j rj rp rp

j

y r
=

− ≤ − ∀∑λ β β  
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min min

1

n
R R R
r j rj r

j

y y
∗ ∗

=

+ +∑λ λ β λ  

              

1

n
R R R

j rj rp rp

j

y r
=

+ ≤ + ∀∑λ β β  

 

0∗ ≤λ  

 

0j j≥ ∀λ                                            (26) 

 

Let 
*

j
θ  and 

j
ϕ∗

 be the best and the worst possible 

relative efficiencies of DMU j , respectively. These 

two distinctive efficiency assessments may lead to 

completely different results. Hence, it is essential to 

consider them together to give an overall assess-

ment of each DMU. Wang and Luo (2006) propose 

that the coefficient closeness value should be calcu-

lated in the similar manner as used in the technique 

for order preference by similarity to ideal solution 

(TOPSIS). Coefficient closeness considers the dis-

tances from the ideal (to be minimized) and for the 

nadir (to be maximized) simultaneously through the 

TOPSIS formula as follows: 

 

( ) ( )

j AD

j

j AD ID j

CC

∗ ∗

∗ ∗ ∗ ∗

−
=

− + −

ϕ ϕ

ϕ ϕ θ θ
                    (27) 

 

Obviously, 0 1
j

CC≤ ≤  where 1,2,...,j n= . The 

bigger difference between 
j

ϕ∗
 and 

AD
ϕ∗

 and the 

smaller difference between 
*

j
θ  and 

ID
θ ∗

 mean the 

better the performance of DMU j . Note that over-

all ranking for all DMUs provides in uncertain en-

vironment based on the jCC  index.  

   In the next section, a numerical experiment is 

presented to illustrate the proposed approach. It is 

obvious, if inputs and outputs are assumed to be 

symmetrical triangular membership functions, then 

the two constraints associated with the main values 

reduce to only one, and can be eliminated since it is 

redundant as a consequence of the symmetry. 

4. Numerical example  

A simple numerical example with fuzzy single-

input and single-output was introduced by Leon et 

al. (2003). We will consider this example with its 

data listed in Table 1 and it should be noted, each 

DMU consumes a symmetrical triangular fuzzy in-

put to produce a symmetrical triangular fuzzy out-

put. The efficiencies of DMUs with proposed me-

thod in Leon et al. (2003) are listed in last column 

of Table 1.  

From Table 1 we see A, B, C and G are efficient 

with proposed method in Leon et al. (2003). Their 

final result for efficient units is the fuzzy set as fol-

lows: 

 

fE =� {(A, 1), (B, 0.3), (C, 1), (G, 0.9)} 

 

Now, we use our proposed models with virtual 

IDMU and ADMU for these DMUs. The IDMU 

and ADMU are shown in the last two rows of Table 

1.The resulting efficiency scores and CC values are 

listed in Table 2. 

From Table 2 that the DEA models based on 

IDMU evaluations DMUs A and C are efficient, 

while other DMUs are not efficient. On the other 

hand, is based on ADMU appraisals C is the best 

DMU, which is followed by DMUs A, B, D, E and 

G, respectively, and both F and H are the worst 

DMU. When IDMU and ADMU efficiencies ob-

tained are aggregated with CC index for each DMU, 

a fully ranking order is achieved that are shown in 

the fourth and fifth columns of Table 2. The overall 

ranking from proposed models is nearly like to re-

sult of Leon et al. such as A and C that are impor-

tant for analyst because they can be pattern for fu-

ture variation in input-output data of other DMUs. 

5. Conclusions 

In this paper, two kinds of fuzzy DEA models 

based on virtual IDMU and IDMU are suggested 

for evaluating the efficiencies of DMUs with fuzzy 

input and output data. The two distinctive efficien-

cies are integrated using a closeness coefficient in-

dex. Using the obtained CC index for each DMU, 

the overall ranking can be provided. The proposed 

models for performance assessment of DMUs in 

fuzzy environment can be applied easily in analyz-

ing management evaluation problem of units. It can 

be concluded that the proposed fuzzy DEA models 

extend BCC model to more general forms where 

crisp, fuzzy and hybrid data can be handled easily. 

Because uncertainty always exists in human think-

ing and judgment, fuzzy DEA models can play an 

important role for perceptual evaluation problems 

comprehensively existing in the real world. 
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Table 1. Fuzzy data of DMUs in numerical example and Leon et al. (2003) results. 

Loen et al. efficiency Output Input DMUs 

1 (3, 1, 1) (3, 2, 2) A 

1 (2.5, 1, 1) (4, 0.5, 0.5) B 

1 (6, 1, 1) (4.5, 1.5, 1.5) C 

0.75 (4, 1.25, 1.25) (6.5, 0.5, 0.5) D 

0.6429 (5, 0.5, 0.5) (7, 2, 2) E 

0.605 (3.5, 0.5, 0.5) (8, 0.5, 0.5) F 

1 (6, 0.5, 0.5) (10, 1, 1) G 

0.6923 (2, 1.5, 1.5) (6, 0.5, 0.5) H 

- (6, 0.5, 1.5) (3, 2, 0.5) IDMU 

- (2, 1.5, 0.5) (10, 0.5, 2) ADMU 

 
 

 
Table 2. The efficiencies by proposed models. 

Ranking CC ADMU efficiency IDMU efficiency DMUs 

2 0.379 1.6118 1 A 

3 0.330 1.5425 0.6667 B 

1 0.508 2.4608 1 C 

4 0.323 1.5189 0.6429 D 

5 0.274 1.2986 0.6 E 

7 0.191 1 0.4235 F 

6 0.265 1.2557 0.6 G 

8 0.193 1 0.4615 H 

  - 3 IDMU 

  0.3922 - ADMU 
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