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          Abstract 

In a robust parameter design (RPD) problem, the experimenter is interested to determine the values of con-

trol factors such that responses will be robust or insensitive to variability of the noise factors. Response sur-

face methodology (RSM) is one of the effective methods that can be employed for this purpose. Since quality 

of products or processes is usually evaluated through several quality characteristics or responses, more atten-

tion should be paid to multi-response parameter design to improve quality of several responses simultane-

ously. There are many optimization methods in multi-objective decision-making (MODM) area which could 

be used for this purpose. In this article, some of these optimization techniques are reviewed and a criterion is 

considered to determine the optimum control setting factors for multi-response RPD problems. A sensitivity 

analysis is performed to investigate the effect of different scenarios on the solution. 
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1. Introduction 

In response surface methodology to robust parame-

ter design, the ultimate goal is to identify the settings 

of control factors (x's) which lead to an optimal solu-

tion with a minimum variation. In order to achieve 

this goal, we usually consider two objective functions 

corresponding to the two parameters of a desired 

quality characteristic, namely the mean response 
y

µ  

and the variance response 2

y
σ . Next, settings for the 

control factors are determined such that the values 

achieved for the two objective functions are as close 

to their ideal values as possible. Many authors [19, 23, 

24, 25, 26, 30] consider RPD problems in RSM 

framework. The review paper by Myers et al. [27] 

gives a thorough discussion of RSM. They believe 

that the solution of the robust parameter design prob-

lem in RSM framework would be one of the most 

important areas for research. Most of the published 

literature on robust design methodology is usually 

concerned with a single response. However, a com-

mon problem in product or process design is to de-

termine the optimal parameter levels when there are 

multiple responses that should be considered simulta-

neously. There are different optimization techniques 

available in multi-objective decision-making area that 

could be considered for solving optimization prob-

lems. While dealing with several objective functions, 

due to possible contradiction among the objective 

functions, it is very unlikely to find a setting for con-

trol factors which could optimize all the objective 

functions simultaneously. Hence, in this situation one 

should search for efficient solutions. Usually there 

are many alternative solutions instead of a few single 

point solutions. The string of solutions generated as 

such is referred to as Pareto optimal solutions (POS). 

In other words, POS is the solution that one objective 

function cannot be improved unless at the expense of 

other objective functions. 

Murphy et al. [24] and others believe that most sta-

tistically based multi-response objective functions 

could be formed by combining objective functions 

into a single response. The common statistical tech-
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niques for optimizing a single response have been 

categorized into desirability function and loss func-

tion approaches. The desirability function approach 

originally proposed by Harrington [17] is constructed 

by the geometric average of the individual desirabil-

ity functions of each response. A modified version of 

the desirability function which allows the decision 

maker (DM) to place the ideal target value anywhere 

within the specifications is introduced by Derringer 

and Suich [16]. Derringer [15] added explicit weight-

ing terms to the geometric average of the individual 

desirability functions. Del Castillo et al. [14] noted 

that since these desirability functions are non-

differentiable at the target points, only direct search 

optimization methods are applicable. Thus, they pro-

pose a piecewise continuous desirability function in 

which the non-differentiable points are corrected. 

Latter, different forms of desirability functions are 

proposed by Kim and Lin [20] and Chiao and 

Hamada [10]. The desirability function approach does 

not consider the covariance structure of the responses. 

According to Ko et al. [21], the major advantage of 

the loss function compared to desirability function 

approach is its ability to incorporate both the covari-

ance structure of the responses and the process eco-

nomics. References on loss function approach include 

[1, 3, 29, 31, 32, 36, 37]. The squared-error loss func-

tion proposed by Berger [5] is commonly considered 

as a loss function in estimation problems.  In this 

method, the expected value of loss function can be 

easily expressed by: 
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where Y and T are the actual response and the target 

value, respectively; and 0
A  is a proportional constant 

representing the economic costs of the squared-error 

loss. To provide decision makers with flexible 

weighting of the off-target squared and variance 

components, Box and Jones [8] introduced the fol-

lowing general class of squared-error loss functions, 

where 10 ≤≤ w ,  
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Weighted metric method, henceforth referred to as 

p
L  method, discussed in Section 3 is a general form 

of Equation 2. This method is used by Ardakani and 

Noorossana [2] to solve an RPD problem with a sin-

gle response. 
p

L  method is applicable when robust 

design, in the case of multiple quality characteristics, 

is desirable and unlike loss function methods the cor-

relation structure of the multiple responses does not 

severely affect the resulting analysis. 

Next section provides a brief review on some of the 

existing optimization methods that could be applied 

to robust design problems. In section 3, the 
p

L  

method and its application in multiple robust prob-

lems is discussed. Section 4 presents a numerical ex-

ample using the proposed method. Concluding re-

marks are provided in the final section. 

2. RSM approaches to RPD problems 

This section provides an overview on two RSM 

approaches, namely the single and dual model ap-

proaches considered by many researchers in RPD. 

The paper by Robinson et al. [34] is a useful refer-

ence which reviews these approaches. In dual model 

approach, responses are fitted to the mean and vari-

ance separately. This approach was developed by 

Myers and Carter [25] for solving problems where 

the experimenter can identify a primary response 

function 
P

Y  that is to be optimized subject to some 

specified value θ  of a secondary response, 
S

Y . In 

other words, the problem is to optimize 
P

Y  subject to 

θ=
S

Y . Depending on the goal, 
P

Y  and 
S

Y  can be 

characterized as 
y

µ  or 2

y
σ . It is assumed that in a 

region of interest R, both responses can be estimated 

by fitting second-order response surface models. The 

sample means and variances of the responses from 

what is called as the outer array advocated by Ta-

guchi are taken as the data for fitting the responses. 

After estimating the location and dispersion parame-

ters, Lagrangian multipliers are used to find optimum 

solution. Vining and Myers [38] proposed a response 

surface approach to solve the dual response model 

with the added constraint 2ρ=′XX  for restricting the 

search area to a spherical region of radius ρ . How-

ever, since the constraints in the optimization prob-

lem all involve equalities, we cannot often find a fea-

sible solution. To overcome this obstacle, one can 

replace the equality in the constraint with an inequal-

ity and apply the method proposed by Del Castillo 

and Montgomery [13] which uses generalized re-

duced gradient (GRG) algorithm to optimize the 

problem. A common approach to solve the above 

problem was to set the primary response equal to a 

specific value and then optimize the second response. 

For the case of target is best where one is trying to 

keep the mean µ  at a specified target value T, Lin 
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and Tu [23] proposed a different approach minimiz-

ing 22 ˆ)ˆ( σµ +− T . This approach is based on the 

definition of mean squares error (MSE) and leads to a 

substantial reduction in the response variability when 

a small bias is allowed in the response. They demon-

strated that their approach is superior to those pro-

posed by Vining and Myers [38] and Del Castillo and 

Montgomery [13]. Copeland and Nelson [11] pro-

posed a method which allows decision maker to de-

termine maximum distance from target. They also 

showed that their method is as effective as the ap-

proach proposed by Lin and Tu [23]. They used the 

Nelder-Mead simplex procedure proposed by Nelder 

and Mead [28]. They also proposed objective func-

tions for the larger is better and smaller is better sce-

narios.  

The second approach referred to as single model 

was introduced by Welch et al. [39]. In this approach, 

both control and noise factors are considered simulta-

neously in a single design called a combined array. 

Useful references on the combined array and its ap-

plications include [6, 7, 25, 27, 35]. These designs 

typically require fewer runs than Taguchi’s crossed 

arrays used in the dual model and also allow the ex-

perimenter to estimate potentially important interac-

tions. The response model is generally given in the 

following form: 

 

ε+′+′+′+′+= ∆zxγzBxxβxzx 0β),(y         (3) 

 

where ),( zxy , )1( ×
x

rx , and )1( ×zrz  denote the 

response matrix, control factors vector, and noise 

variables vector, respectively. The quantity 0
β is the 

intercept, β  is a vector of coefficients for the linear 

effects in control variables, B  contains the coeffi-

cients for the quadratic effects in control factors and 

the control×control interactions, γ is a vector of co-

efficients for the linear effects in the noise variables, 

and ∆  contains the coefficients of the interaction ef-

fects between control and noise factors that is critical 

for the success of RPD. The experimental error, i.e. 

the error due to the inability of the model to explain 

the real physical phenomenon, is defined by ε . It is 

assumed that 
iε ’s in the experiment follow a normal 

distribution with mean zero and variance 2σ . The 

response surface model for the mean, assuming 

0z =)(E , is given by: 

 

[ ] 0E ( , ) β .y ′ ′= + +x z x β x Bx                            (4) 

The response surface model for the process vari-

ance is given by 

 

[ ] ( ) 2

εVar ( , ) Var ,y σ
′ ′= + +

  
x z γ ∆ x z           (5) 

 

or equivalently 
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ε
σ+′+
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z
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where z
)Var( Σz = is usually assumed to be I2

z
σ . 

Like dual model approach, in this approach, two re-

sponses are also considered, a location response cor-

responding to yµ  and a dispersion response corre-

sponding to yσ  which are necessary to formulate the 

standard RPD problems. Now optimization tech-

niques should be applied to determine factor settings 

which lead to an optimum solution.  

3. Weighted metric method (Lp method)  

A brief discussion on Lp method is given in this 

section. Lp method which is usually discussed in 

MODM references such as [4, 12, 18] is among opti-

mization techniques that combines multiple objec-

tives into a single objective. The weighted Lp distance 

measure of any solution x  from the ideal solution 

)( max j
f x  can be minimized as follows:  

 

( )max 1/

1

{ ( ) ( ) }
k

p
j p

p j j j

j

L w f f
=

= −∑ x x                 (7) 

 

where 
j

w is a non-negative weight assigned to each 

objective function by DM and p  indicates the impor-

tance of each objective function deviation from its 

ideal value. When 1=p  is used, the resulting prob-

lem reduces to a weighted sum of the deviations. 

When 2=p  is used, a weighted Euclidean distance 

of any point in the objective space from the ideal 

point is minimized. When ∞=p  is considered, the 

largest deviation ( )max( ) ( )j

j j jw f f−x x  is mini-

mized, that is, 

 

( ){ }max   ( ) ( )j

j j j
x j

Min Max w f f−x x                (8) 
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which is equivalent to: 

 

( )max

  

. :   

( ) ( )      j

j j j

Min y

s t

y w f f j






≥ − ∀ x x

                   (9) 

 

Chankong and Haimes [9] showed that when Lp 

method is used then all solutions corresponding to 

∞≤≤ p1  and 0w >  are efficient solutions. On the 

other hand, if one considers constrained Lp problems 

then according to Miettinen [26] only ∞L leads to 

pareto optimal solutions. These are two characteris-

tics of the Lp method.  

In Equation 7, it is assumed that objective func-

tions have the same scale. If )(xjf 's do not have the 

same scale then each objective function could be 

made scale-less using either of the following equa-

tions: 

1/
max

max
1

( ) ( )
[ ]

( )

p
jk

j j p

p j j
j j

f f
L w

f=

 −
=   
 
∑

x x

x
             (10) 

or 

1/
max

max min
1

( ) ( )
[ ]

( ) ( )

p
jk

j j p

p j j j
j j j

f f
L w

f f=

 −
=   − 
∑

x x

x x
       (11) 

Since the values of each objective function and the 

quantity of Lp in Equation 11 are between zero and 

one, one could also formulate and solve the problem 

in fuzzy environment.  

4. Numerical example 

The following example comes from a case study 

discussed by Romano et al. [33]. The robust design 

experiment was conducted on the elastic element of a 

force transducer. This example involves a combined 

array design with three control and two noise vari-

ables. Control factors are the three parameters defin-

ing the element configuration, namely lozenge an-

gle 1( )x , bore diameter 2( )x , and half-length of the 

vertical segment 3( )x . Noise factors are the deviation 

of the lozenge angle from its nominal value 1( )z  and 

the deviation of the bore diameter from its nominal 

value 2( )z . The two responses 1y  and 2y  define the 

non-linearity and the hysteresis, respectively. The 

fitted response surface functions for these indicators 

are given by: 

 

213211 148.00771.0155.0361.038.1ˆ xxxxxy −+−−=   

    
1

2
13231 0588.00481.0013.00218.0 zxxxxx −+++  

    
112 01.00116.0 zxz +−                                      (12) 

 

213212 301.0095.0438.0592.064.1ˆ xxxxxy +−++=  

     
321

2
131 0844.0201.0143.0 xxxxxx −+−   

        
110794.0 zx+                                                    (13) 

 

It is assumed that noise factors are uncorrelated and 

122

21
== zz σσ . In the experiment, the corresponding 

deterministic noise factors, i.e. 1z  and 2z , have fixed 

levels. The values of error variances computed by 

Köksoy [22] are 
2

1 0.0003253s =  and 
2

2 0.024s = . 

The models in equations 4 and 6 are used to generate 

the mean and variance responses. These responses 

for 1y are as follows: 

 

213211 148.00771.0155.0361.038.1 xxxxx −+−−=µ                     

    2
13231 0481.0013.00218.0 xxxxx +++              (14) 

 
2
1

22
1

2
1 )0116.0()01.00588.0( sx +−++−=σ   (15) 

 

The mean and variance responses for 2y  are corre-

spondingly as follows: 

 

213212 301.0095.0438.0592.064.1 xxxxx +−++=µ       

     
321

2
131 0844.0201.0143.0 xxxxxx −+−            (16) 

 
2
2

2
1

2
1 )0794.0( sx +=σ                                      (17) 

The Lp metric method is used to set control factors 

such that the means responses, i.e. equations 14 and 

16, achieve a target value of one while the variance 

responses, i.e. equations 15 and 17, have minimum 

values. The Lp metric discussed in the previous sec-

tion requires the ideal values for the mean and vari-

ance responses. The ideal values shown in Table 1 

are obtained by optimizing each response individu-

ally in a search area of the form 

1 1,   1, 2,3.
i

x i− ≤ ≤ =  In other words; it is assumed 

that control factors can take values between -1 and 1.  
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Since the ranges of objective functions are very dif-

ferent, Equation 11 is suitable to find optimum points. 

Lp function for this example is as follows: 
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(18) 

 

The quantities of 
maxµ ,

minµ ,
maxσ and 

minσ  are 

the extreme values for corresponding responses in the 

search area. 1T  and 2T  are determined by DM and 

represent the target values for 1µ  and 2µ , respec-

tively. The quantity of w ’s indicate the importance 

of each response determined by DM. Replacing target 

values and ideal values in Equation 18 leads to the 

following optimization problem: 

 














 −
+

−
+














 −
+

−

pp

pp

x

ww

wwMin

01916.0

15492.0

3601.2

1

018761.0

053304.0

1982.1

1

2
4

2
3

1
2

1
1

σµ

σµ

(19) 
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In order to solve this optimization problem, DM 

should select desired weights ( w ’s) in advance. 

These weights determine the importance of each re-

sponse from the viewpoint of DM. For instance, if the 

standard deviation responses are more important to 

the decision maker compared to the mean responses 

then relatively larger values are assigned to 2w  and 

4w . For comparison purposes, one set of weights cor-

responding to twenty one different decision makers’ 

preferences is arbitrary assigned to each objective 

function. A row corresponding to the indifference 

case, i.e. when DM has no priority among responses 

1 2 3 4( 0.25)w w w w= = = = is also considered for 

comparison purposes. Also, three different values of 

p , i.e. 1, 2 and ∞ , are considered to optimize Equa-

tion 19. The optimization module of MATLAB soft-

ware is used for finding optimum solutions. The re-

sults for the Lp metric method for the case of 1p =  

are presented in Table 2.  

Since all Lp solutions are efficient, there is no any 

superiority among these twenty one solutions. Each 

of the solutions has the best values of objective func-

tions from the point of view of the DM. In other 

words, according to the definition of Pareto optimal-

ity, moving from one Pareto optimal solution to an-

other requires a trade-off. As a result, one cannot im-

prove any criterion without worsening the value of at 

least another criterion. Similar analysis was con-

ducted for different values of p . The results for the 

case of p  equal to two and infinitive are presented in 

Tables 3 and 4, respectively.  

In Lp method, an increase in the value of p  indi-

cates that DM makes a more conservative decision in 

trading off among the objective functions. In order to 

determine the effect of p  and w  on solutions, two-

way analysis of variance is used. This analysis helps 

to investigate the effect of p  and w  in the Lp 

method. The three levels of ,p  i.e. 1, 2 and ∞ , and 

twenty one levels of weights are selected as two fac-

tors in two-way ANOVA method. 1,µ  1,σ  2µ  and 

2σ  shown in Tables 2 through 4 are considered as 

response variables. Tables 5 to 8 present the results of 

two-way ANOVA and 95% confidence intervals 

based on pooled standard deviations for each re-

sponse.  

According to the ANOVA results and confidence 

intervals illustrated in Table 5, since the quantity of 

p-values for p  and w  are 0.276 (more than 0.05) 

and zero, respectively, 1µ  is not affected by the value 

of p  but it is affected by .w  Similar analyses can be 

concluded from Tables 7 and 8. Table 6 shows that 

the value of p  has an effect on 1.σ  Thus, we can 

generally conclude that solutions in Lp method are not 

sensitive to the value of p  but, as we expected, Lp 

results are heavily depended on the weights allocated 

to the responses by DM. 

 
Table 1. The maximum and minimum values of objective func-

tions. 

Response Min Max Range 

1µ  0.6522 1.8504 1.1982 

1σ  0.053304 0.072065 0.018761

2µ  1.0713 3.4314 2.3601 

2σ  0.15492 0.17408 0.01916 
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Table 2. Lp optimum solutions for 1p = . 

No. 1w  2w  3w  4w  1x  2x  3x  1µ  1σ  2µ  2σ  p
L  

1 0.1 0.1 0.1 0.7 0.038039 -1 -1 1.462 0.062231 1.3082 0.15495 0.100295 

2 0.1 0.1 0.3 0.5 0.03967 -1 1 1.5916 0.062216 1.114 0.15495 0.112151 

3 0.1 0.1 0.5 0.3 0.041229 -1 1 1.5913 0.062201 1.1143 0.15495 0.121457 

4 0.1 0.1 0.7 0.1 0.046362 -1 1 1.5903 0.062153 1.1153 0.15496 0.130839 

5 0.1 0.3 0.1 0.5 0.14505 -1 -1 1.4379 0.061228 1.3428 0.15535 0.189002 

6 0.1 0.3 0.3 0.3 0.2079 -1 1 1.5614 0.060639 1.1509 0.1558 0.197105 

7 0.1 0.3 0.5 0.1 0.42871 -1 1 1.526 0.058579 1.2166 0.15861 0.193396 

8 0.1 0.5 0.1 0.3 0.3936 -1 -1 1.3859 0.058906 1.4409 0.15804 0.249039 

9 0.1 0.5 0.3 0.1 0.95568 -1 1 1.4603 0.05371 1.4525 0.1725 0.198509 

10 0.1 0.7 0.1 0.1 1 -1 -1 1.2842 0.053304 1.7846 0.17408 0.156963 

11 0.3 0.1 0.1 0.5 0.12541 1 -1 1.0691 0.061412 2.3088 0.15524 0.124324 

12 0.3 0.1 0.3 0.3 0.10167 -1 -1 1.4475 0.061634 1.3282 0.15513 0.20145 

13 0.3 0.1 0.5 0.1 0.19295 -1 1 1.564 0.060779 1.1472 0.15568 0.216207 

14 0.3 0.3 0.1 0.3 0.27082 0.92753 -1 1.0098 0.060051 2.4348 0.1564 0.19431 

15 0.3 0.3 0.3 0.1 0.61367 -1 -1 1.3449 0.056862 1.5486 0.1624 0.252023 

16 0.3 0.5 0.1 0.1 1 0.56736 1 1.0015 0.053304 2.5034 0.17408 0.164076 

17 0.5 0.1 0.1 0.3 0.26022 1 -1 1 0.06015 2.4618 0.15629 0.11988 

18 0.5 0.1 0.3 0.1 0.29931 0.90736 -1 1 0.059785 2.4562 0.15673 0.229094 

19 0.5 0.3 0.1 0.1 0.71091 0.20157 -1 1 0.055963 2.4578 0.16488 0.156271 

20 0.7 0.1 0.1 0.1 0.26768 0.98199 -1 1 0.060081 2.4607 0.15637 0.105582 

21 0.25 0.25 0.25 0.25 0.24288 -1 -1 1.4167 0.060312 1.3785 0.15612 0.236079 

 

 

Table 3. Lp optimum solutions for 2p = . 

No. 1w  2w  3w  4w  1x  2x  3x  1µ  1σ  2µ  2σ  p
L  

1 0.1 0.1 0.1 0.7 0.23566 -0.70293 -1 1.358 0.06038 1.5328 0.15605 0.175168 

2 0.1 0.1 0.3 0.5 0.25039 -1 -0.75486 1.4322 0.060242 1.3545 0.15619 0.188818 

3 0.1 0.1 0.5 0.3 0.29137 -1 0.36069 1.5024 0.059859 1.2451 0.15664 0.193904 

4 0.1 0.1 0.7 0.1 0.38516 -1 1 1.5326 0.058985 1.2021 0.15791 0.191038 

5 0.1 0.3 0.1 0.5 0.35303 -0.81898 -1 1.3541 0.059284 1.5271 0.15743 0.229744 

6 0.1 0.3 0.3 0.3 0.39984 -1 -0.21834 1.4416 0.058848 1.3512 0.15814 0.2343 

7 0.1 0.3 0.5 0.1 0.52549 -1 1 1.5119 0.05768 1.2515 0.16044 0.220345 

8 0.1 0.5 0.1 0.3 0.46532 -0.91755 -1 1.3525 0.058239 1.5248 0.15926 0.252167 

9 0.1 0.5 0.3 0.1 0.59784 -1 0.44521 1.4592 0.057009 1.3523 0.16203 0.233758 

10 0.1 0.7 0.1 0.1 0.65126 -1 -1 1.3384 0.056514 1.5689 0.16332 0.231301 

11 0.3 0.1 0.1 0.5 0.26458 -0.00788 -1 1.2066 0.06011 1.9226 0.15634 0.200269 

12 0.3 0.1 0.3 0.3 0.31276 -0.78083 -1 1.3552 0.05966 1.5287 0.1569 0.236855 

13 0.3 0.1 0.5 0.1 0.39219 -1 -1 1.3862 0.058919 1.4403 0.15802 0.245243 

14 0.3 0.3 0.1 0.3 0.40769 -0.21733 -1 1.2045 0.058775 1.913 0.15827 0.241634 

15 0.3 0.3 0.3 0.1 0.53701 -0.97524 -1 1.3526 0.057573 1.5248 0.16068 0.255703 

16 0.3 0.5 0.1 0.1 0.6054 -0.44954 -1 1.2046 0.056939 1.9137 0.16221 0.238709 

17 0.5 0.1 0.1 0.3 0.30792 0.20969 -1 1.1448 0.059705 2.0777 0.15684 0.206898 

18 0.5 0.1 0.3 0.1 0.41979 -0.57972 -1 1.2841 0.058662 1.7048 0.15846 0.257747 

19 0.5 0.3 0.1 0.1 0.53789 -0.13224 -1 1.1437 0.057565 2.0693 0.1607 0.22868 

20 0.7 0.1 0.1 0.1 0.41391 0.18199 -1 1.111 0.058717 2.1563 0.15837 0.203907 

21 0.25 0.25 0.25 0.25 0.40939 -0.86981 -1 1.3531 0.058759 1.5256 0.15829 0.250958 
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Table 4. Lp optimum solutions for p = ∞ . 

No. 1w  2w  3w  4w  1x  2x  3x  1µ  1σ  2µ  2σ  p
L  

1 0.1 0.1 0.1 0.7 0.22694 -0.0063 0.00125 1.3018 0.060461 1.7671 0.15596 0.025188 

2 0.1 0.1 0.3 0.5 0.21649 -1 -0.40353 1.4634 0.060559 1.3042 0.15587 0.024791 

3 0.1 0.1 0.5 0.3 0.21153 -1 0.48613 1.5255 0.060605 1.207 0.15583 0.014248 

4 0.1 0.1 0.7 0.1 0.23105 -1 1 1.5575 0.060423 1.1569 0.156 0.005637 

5 0.1 0.3 0.1 0.5 0.40801 0 0 1.2407 0.058772 1.8893 0.15827 0.020088 

6 0.1 0.3 0.3 0.3 0.48984 -0.70215 0.16658 1.3875 0.058011 1.5136 0.15973 0.03234 

7 0.1 0.3 0.5 0.1 0.59741 -1 1 1.502 0.057013 1.2799 0.16202 0.037056 

8 0.1 0.5 0.1 0.3 0.57709 0 0 1.1877 0.057201 2.0122 0.16155 0.015665 

9 0.1 0.5 0.3 0.1 0.75903 -1 0.27041 1.4228 0.055518 1.4531 0.16623 0.035286 

10 0.1 0.7 0.1 0.1 0.80642 -0.01851 0.004839 1.1257 0.055082 2.1837 0.16763 0.010491 

11 0.3 0.1 0.1 0.5 0.28492 0.12608 -1 1.1712 0.05992 2.0119 0.15656 0.035265 

12 0.3 0.1 0.3 0.3 0.49854 -0.7915 -1 1.3154 0.05793 1.6212 0.1599 0.024658 

13 0.3 0.1 0.5 0.1 0.41587 -1 -1 1.3816 0.058699 1.4509 0.1584 0.018163 

14 0.3 0.3 0.1 0.3 0.48984 0 0 1.2147 0.058011 1.9474 0.15973 0.040142 

15 0.3 0.3 0.3 0.1 0.49853 -0.7915 -1 1.3154 0.05793 1.6212 0.1599 0.025992 

16 0.3 0.5 0.1 0.1 0.75903 -0.0173 0.004304 1.1387 0.055518 2.1449 0.16623 0.034727 

17 0.5 0.1 0.1 0.3 0.39205 0.19485 -1 1.1162 0.05892 2.1441 0.15802 0.029934 

18 0.5 0.1 0.3 0.1 0.49868 -0.5008 -1 1.2451 0.057929 1.8045 0.1599 0.024652 

19 0.5 0.3 0.1 0.1 0.66926 -0.18118 -1 1.1166 0.056348 2.1487 0.16378 0.046242 

20 0.7 0.1 0.1 0.1 0.49899 0.14816 -1 1.088 0.057926 2.2138 0.15991 0.024636 

21 0.25 0.25 0.25 0.25 0.49854 -0.7915 -1 1.3154 0.05793 1.6212 0.1599 0.061644 

 

 

Table 5. Confidence intervals and two-way ANOVA for 1µ .  

Two-way ANOVA: 

Source  DF     SS        MS       F    P-value 

P        2  0.01998  0.0099892   1.48  0.240 

W       20  1.60730  0.0803650  11.91  0.000 

Error   40  0.26991  0.0067478 

Total   62  1.89719 

 

Confidence Intervals:  

P       Mean  --+---------+---------+---------+------- 

1    1.32116          (------------*-----------) 

2    1.33473                (------------*-----------) 

inf  1.29204  (-----------*------------) 

             --+---------+---------+---------+------- 

              1.260     1.290     1.320     1.350 
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Table 6. Confidence intervals and two-way ANOVA for 1σ . 

Two-way ANOVA: 

Source  DF      SS        MS        F   P-value 

P        2  0.0000147  0.0000073  6.18  0.005 

W       20  0.0002091  0.0000105  8.82  0.000 

Error   40  0.0000474  0.0000012 

Total   62  0.0002712 

 

Confidence Intervals:  

P         Mean  ---------+---------+---------+--------- 

1    0.0593095                    (--------*-------) 

2    0.0586869           (-------*-------) 

inf  0.0581289  (-------*-------) 

                ---------+---------+---------+--------- 

                      0.05820   0.05880   0.059400 

 

 

Table 7.  Confidence intervals and two-way ANOVA for 2µ . 

Two-way ANOVA: 

Source  DF     SS       MS       F    P-value 

P        2   0.1939  0.096973   2.29  0.114 

W       20   8.8529  0.442644  10.46  0.000 

Error   40   1.6925  0.042312 

Total   62  10.7393 

 

Confidence Intervals:  

P       Mean   -+---------+---------+---------+-------- 

1    1.69172              (----------*-----------) 

2    1.60415   (-----------*----------) 

inf  1.73794                    (----------*----------) 

             -+---------+---------+---------+-------- 

              1.520     1.600     1.680     1.760 

 

 

Table 8.  Confidence intervals and two-way ANOVA for 2σ . 

Two-way ANOVA: 

Source  DF      SS         MS      F    P-value 

P        2  0.0000202  0.0000101  1.59  0.217 

W       20  0.0009270  0.0000463  7.29  0.000 

Error   40  0.0002542  0.0000064 

Total   62  0.0012013 

 

Confidence Intervals:  

P        Mean  ----+---------+---------+---------+----- 

1    0.159215        (-----------*----------) 

2    0.158690  (----------*-----------) 

inf  0.160063               (-----------*----------) 

               ----+---------+---------+---------+----- 

                 0.1580    0.1590    0.1600    0.1610 
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5. Conclusion 

 

In this paper, Lp method was introduced as a ve-

hicle for optimizing multiresponse problems. This 

method was applied to a multiresponse example to 

generate efficient solutions. In addition, a sensitiv-

ity analysis was conducted for different values of  p 

and w  to evaluate the performance of the proposed 

method. The results indicate that the optimization 

method heavily depends on the weight w  allocated 

to each response by the decision maker. However, 

the solutions obtained by this method are robust 

with respect to p . One of the advantages of the 

proposed method is its ability and flexibility to gen-

erate efficient solutions regardless of the values of 

p  and w . 
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