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          Abstract 

Representation and modeling of economic uncertainty is addressed by different modeling methods, namely 

stochastic variables and probabilities, interval analysis, and fuzzy numbers, in particular triple estimates. Fo-

cusing on discounted cash flow analysis numerical results are presented, comparisons are made between alter-

native modeling methods, and characteristics of the methods are discussed. 
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1. Introduction 

This paper deals with an intricate issue in economic 

theory, however, from a practical point of view. The 

larger problem area under consideration is that of 

choice under risk and uncertainty and the practical 

perspective is that of modeling of economic uncer-

tainty in practical decision situations. 

Central to the modeling of economic uncertainty is 

the way in which uncertainty is actually represented 

numerically as a meaningful reflection of the charac-

teristics of uncertainty present. Further, the way of 

actually processing the uncertain input variables so 

that additional uncertainty is not introduced and fi-

nally the interpretation and communication of the 

model output variables as a basis for rational decision 

making is important. 

The notion of risk and uncertainty being relevant 

for economic analysis was suggested by Knight [11] 

and the concepts were incorporated into economic 

theory by von Neumann and Morgenstern [21] who 

developed a rational foundation and rules for decision 

making according to expected utility, see also Hertz 

[7]. As far as risk and uncertainty in technology man-

agement is concerned Kyläheiko [12] made an exten-

sive study focusing on economic theory and method-

ology. 

The distinction made by Knight [11] between risk 

(the agent can assign mathematical probabilities to 

the randomness of the decision situation) and uncer-

tainty (the actor cannot assign probabilities) has later 

been disputed by economists arguing that they are 

really representing one and the same thing. This de-

bate is long running and far from being resolved at 

present. In this paper we shall refer to uncertainty not 

in the Knightian way but rather in a more general 

sense that allows us to refer to uncertain economic 

variables by means of a variety of different represen-

tations. 

The traditional approach to representation of uncer-

tainty in economic theory is that of probabilities. An 

uncertain variable may be represented by a probabil-

ity distribution reflecting either the objective nature 

of the variable or the subjective belief of the agent. 

The most common objectivist position argues that the 

probability of a particular event in a particular trial is 

the relative frequency of occurrence of that event in 

an infinite sequence of similar trials. Obviously, the 

idea of infinite repetition is referring to an idealized 

laboratory experiment like rolling an ideal dice an 

infinite number of times. How then, is one to com-

prehend the probability of one-of-a-kind-events, such 

as the probability of a quote leading to an order? 

Consequently, there have been many objections to 

this view of probability arguing that randomness is 

not an objectively measurable phenomenon but rather 

a knowledge phenomenon. Thus probability is rather 

an epistemological and not an ontological issue. This 

epistemic or knowledge view of probability can be 

traced back to Bayes [1] and Laplace [13]. More re-

cently Ramsey [16] asserted that probability is related 

to the knowledge possessed by a particular individual 

and thus probability represents personal belief rather 

than objective knowledge. 
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We shall not take this discussion further but merely 

state that the position taken in this paper is to regard 

probabilities to be a way of representing uncertain 

knowledge. Accordingly, the numerical value of a 

probability is interpreted as being proportional to the 

sum of money a rational individual would be willing 

to pay should a proposition one asserts prove false. 

The measure of uncertainty so defined can be shown 

to obey the axioms of probability theory. 

Probability theory and statistics today represent a 

well established mathematical theory with clear axi-

oms and has reached an advanced stage of develop-

ment. Since criticism has been raised towards prob-

ability theory as being a too normative framework to 

take all the aspects of uncertain judgment into ac-

count, Dubois and Prade [5], we will investigate al-

ternative methods of modeling economic uncertain-

ties like the interval representation and the fuzzy 

number representation. 

The interval representation, Moore [14], lends itself 

to a situation where the knowledge of an uncertain 

parameter is limited to knowing its minimum and 

maximum value whereas nothing else is known. 

Based upon a mathematical theory of interval analy-

sis this approach has shown to be useful in keeping 

track of worst and best cases in economic analyses 

and thus contribute to improved decision processes. 

The concept of fuzzy set was introduced by Zadeh 

[22] for the purpose of modeling the imprecision and 

ambiguity of ordinary language. It is based on the 

concept of possibility rather than probability and 

translates natural language expressions into the 

mathematical formalism of possibility measures. It is 

widely recognized that possibility is distinct from 

probability. As mentioned earlier probabilities can be 

interpreted as relative frequencies or, more generally, 

imprecise knowledge or belief whereas possibility 

relates to the degree of feasibility and ease of attain-

ment. In this paper the meaning of possibility will be 

intuitively clear from the particular applications pre-

sented. 

2.  Modeling by stochastic numbers and probabili-
ties 

A stochastic variable X={�; �} is characterized by 

its expected value E(X)=� and variance VAR(X)=�
2
, 

where � is the standard deviation. As an example 

{1.000;100} denotes the uncertain volume of sales 

during the next budgetary period, meaning that the 

sales volume is expected to be 1.000 with a standard 

deviation of 100. 

Let X1 and X2 be independent stochastic variables 

with expected values E(X1)=�1 and E(X2)=�2 and 

variances VAR(X1) = �1
2
  and VAR(X2) = �2

2
 . It may 

be shown that basic calculations may be carried out 

according to the formulas shown in Table 1. 

In the general case of Y being a function of m inde-

pendent stochastic variables as: 

 

),...,,{ 21 mXXXYY = ,                                      (1) 

 

we can approximate Y by means of a Taylor series 

(ignoring second and higher order terms): 

 

Y ≅ Y(�1,…,�m) + �Y/�X1(X1-�1)  

   + �Y/�X2(X2-�2) +…+ �Y/�Xm(Xm-�m),      (2) 

 

where �Y/�Xj is the partial derivative of Y with re-

spect to Xj calculated at (�1,…, �m). 

The variance is thus approximated by: 

VAR(Y)=�2≅(�Y/�X1)
2·�1

2+… 

             +(�Y/�Xm)2 · �m
2
,                                 (3) 

 

whereas the expected value is: 

 

E(Y) = � = Y(�1,…, �m).                                   (4) 

 

Obviously, in order to evaluate the results of a par-

ticular model in terms of � and � an explicit formula 

(1) must be constructed and partial derivatives with 

respect to all variables (2) must be calculated. The 

procedure is quite simple in itself and does not re-

quire specific knowledge of the probability distribu-

tions of the variables involved besides the expected 

value and standard deviations. However, in cases of 

complex models having many variables the deriva-

tion and calculation of the partial derivatives may 

become elaborate. 

3.  Modeling by intervals 

Recently it has been suggested to use intervals in 

order to represent uncertainties in connection with 

worst - and best - case (WBC) evaluation of eco-

nomic consequences of technological development, 

Schjær-Jacobsen [17,18]. The interval approach was 

originally developed in 1962 by Moore [14,15] in 

order to be able to keep track of the lower and upper 

bounds to the exact result when carrying out numeri-
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cal calculations on digital computers with a finite 

number of significant digits. Following Moore [15] 

we define an interval number as an ordered pair [a;b] 

of real numbers with a ≤ b. It may also be defined as 

an ordinary set of real numbers x such that a ≤ x ≤ b, 

or: 

 

[a;b] = {x | a ≤ x ≤ b}.                                 (5) 

 

If the basic operations addition, subtraction, multi-

plication, and division is denoted by the symbol # we 

can define operations on two intervals I1 = [a1;b1] 

and I2 = [a2;b2] based on the set-theoretic formula-

tion: 

 

I1 # I2 = {x # y | a1 ≤ x ≤ b1,a2 ≤ y ≤ b2}.      (6) 

 

Instead of this set-theoretic definition we may give 

alternative definitions in terms of endpoints of the 

resulting intervals by the formulas quoted in Table 1. 

It should be mentioned that whereas the rules for ba-

sic calculations with intervals are commutative and 

associative they are not distributive. 

In the case where the interval function to be evalu-

ated is a monotone function of the intervals over their 

entire range the calculation is trivial. The resulting 

interval end points may simply be calculated at the 

end points of the variables. In the case of the interval 

function not being monotonic it is a different situa-

tion. 

A simple example is the calculation of the non-

monotonic expression Y = I (1 – I ) where I is an 

interval, I = [0;1]. Straight forward application of the 

above mentioned formulas gives the result Y = [0;1] 
which obviously is a too wide interval. According to 

the fundamental definition of basic operations on in-

tervals based upon set-theory (6), Moore [15],        

the narrowest possible resulting interval should be    

Y = [0;¼]. In this paper the terms “true” or “correct” 

is used to indicate the narrowest possible bounds that 

can be calculated for an uncertain number. By using 

iterative global optimization methods, see Hansen 

[6], correct results may be obtained to an accuracy 

specified by the user. This feature has been imple-

mented in the add-in module Interval Solver 2000 for 

MS-Excel, Hyvönen and De Pascale [8,9].  

4.  Modeling by fuzzy numbers 

Since the introduction by Zadeh [22] fuzzy sets and 

fuzzy numbers have found a wide range of applica-

tions within the areas of engineering, management, 

and finance. A fuzzy set is a class of objects with a 

continuum of grades of membership defined by a 

membership function ranging from zero to one. The 

fuzzy set concept provides a convenient way of keep-

ing precisely track with imprecise, vague, and uncer-

tain informative statements such as “the class of all 

large investments”, “costs will be considerably re-

duced in the coming period”, and “the turn over will 

be a little larger next year”. 

Following Zadeh [22] a fuzzy set A in X where X is 

a space of points (objects) with a generic element of 

X denoted by x, i.e. X = {x}, is characterized by a 

membership function fA(x) which associates with 

each point in X a real number in the interval [0;1]. 

The value of the membership function fA(x) at x 

represents the “grade of membership” of x in A. Thus 

the closer the value of fA(x) to unity, the higher the 

grade of membership of x in A. Note, that when A is 

an ordinary set, i.e. non-fuzzy, the membership func-

tion can take only two values 0 and 1. 

In other words, a fuzzy set is a set of ordered pairs 

(x, fA(x)) as: 

 

A = {(x, fA(x)) | x ∈ X}.                                   (7) 

 

It may also be useful to define the ordinary (non-

fuzzy) set Aα as the α-cut of A: 

 

Aα = {x ∈ X | fA(x)≥α, 0≤α ≤1}.                  (8) 

 

In this paper we are mainly interested in the con-

cept of fuzzy numbers as a means of representing un-

certain or fuzzy information, Dubois and Prade [3,4]. 

In addition to the simplest fuzzy number, namely the 

interval (5), we also make use of the triangular fuzzy 

number, Chiu and Park [2], that can be defined the 

following way using real numbers a ≤ c ≤ b: 

 

f(x) = (x-a)/(c-a)  a ≤ x ≤ c,             (9a) 

   f(x) = (b-x)/(b-c)          c ≤ x ≤ b,            (9b) 

f(x) = 0    otherwise.           (9c) 

 

Full basic operations on triangular fuzzy numbers 

may be facilitated by introducing the left L(α) and 

right R(α) representation of a fuzzy number F, refer 

to the α-cut (8): 

 

F = [L(α); R(α)],                                         (10a) 
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where 

 

L(α) = a + (c-a)α       α ∈ [0,1],               (10b) 

 

and 

 

R(α) = b + (c-b)α      α ∈ [0,1].                (10c) 

 

Observe that in (10), F is written as an interval with 

upper and lower bounds depending on α. This means 

that addition, subtraction, multiplication, and division 

can be carried out by means of the interval formulas 

in Table 1 by all values of α. In the general case 

membership functions of arbitrary complexity may 

result and make the practical calculations prohibi-

tively elaborate. One way of overcoming this diffi-

culty is to limit the calculations to a small number of 

values of α. As an example of this consider the triple 

estimate defined by α-cuts corresponding to the val-

ues α = 0 and α = 1, refer to (8). 

Based on the above and also as a generalization of 

Kaufmann and Gupta [10], we may now define basic 

operations on triple estimate triangular fuzzy num-

bers F1 and F2 by the formulas found in Table 1: 

 

F1 = [a1; c1; b1], 

F2 = [a2; c2; b2]. 
 

In the general case when calculating uncertain 

functions with triple estimate fuzzy number argu-

ments care must be taken in order to produce true 

lower and upper limits. As an example consider the 

non-monotonic expression Y = F (1 – F), where F 

denotes a triple estimate, F = [0; ½; 1]. The true tri-

ple estimate value of this expression turns out to be   

Y = [0; ¼; ¼], which is not obtained by straightfor-

ward calculations because the variable F appears 

twice in the expression. The remedy may be to use 

Interval Solver 2000, Hyvönen and De Pascale [8,9], 

to calculate true lower and upper bounds by applica-

tion of global optimization. 

5.  Discounted cash flow analysis 

Considered the net present value NPV calculated 

over n periods by the following function: 

 

NPV = a0 + a1(1+r1)
-1 + a2(1+r1)

-1 (1+r2)
-1 

         +…+ an(1+r1)
-1(1+r2)

-1…(1+rn)
-1,    (11) 

where r1, r2, …, rn are the discount rates of interest 

and the net cash flow in the i
th

 period is given by the 

following expression: 

 

ai = Xi1Xi2+Xi3+Xi4+…+Xim i=0,…,n.     (12) 

 

In practice, investment decisions are often taken 

based upon the NPV being positive and in cases of 

uncertain input parameters it is important to know the 

resulting uncertainty of NPV in order to match with 

the risk preferences of the decision makers, Schjær-

Jacobsen et al. [19]. 

6. Stochastic modeling 

Let the relevant uncertain parameters in (11) and 

(12) be represented by the following known inde-

pendent stochastic variables: 

 

Xij = {�ij, �ij} i = 0,…,n  and  j = 1,…,m, 

 

and  

 

ri = {�i, �i}  i = 0,…,n.                            (13) 

 

While the expected value � of NPV is easily calcu-

lated by inserting the expected values of the stochas-

tic variables in formulas (12) and (13), we get for the 

variance �
2
 of NPV by means of (3): 

 
2
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where �NPV/�Xij is the partial derivative of NPV 

with respect to Xij calculated at �ij and �NPV/�ri is 

the partial derivative of NPV with respect to ri calcu-

lated at �i. 

For the partial derivatives with respect to the X’s in 

(14) we get for the 0
th

 period: 

 

0201/ XXNPV =∂∂ , 

0102/ XXNPV =∂∂ , 

 . 

 . 

 . 

1/ 0 =∂∂ jXNPV         mj ,...,3= .                  (15) 

 

For the first period we get 

 
1

11211 )1(/ −+=∂∂ rXXNPV , 

1
11112 )1(/ −+=∂∂ rXXNPV , 

  . 

  . 

  . 
1

11 )1(/ −+=∂∂ rXNPV j    mj ,...,3= .          (16) 

 

Likewise, for the second period we get: 

 
1

2
1

12221 )1()1(/ −− ++=∂∂ rrXXNPV , 

1
2

1
12122 )1()1(/ −− ++=∂∂ rrXXNPV , 

  . 

  . 

  . 
1

2
1

12 )1()1(/ −− ++=∂∂ rrXNPV j  j=3,…m. (17) 

 

For the i
th

 period, the partial derivatives are: 

 

,)1...()1()1(/ 11
2

1
121

−−− +++=∂∂ iii rrrXXNPV  

,)1...()1()1(/ 11
2

1
112

−−− +++=∂∂ iii rrrXXNPV  

,)1...()1()1(/ 11
2

1
1

−−− +++=∂∂ iij rrrXNPV  

                                mj ,...,3= .                           (18)          

Finally, the partial derivatives with respect to the 

rate of interests in (14) are calculated. 

 

1
2

2
12

2
111 )1()1()1(/ −−− ++−+−=∂∂ rrararNPV  

               ,)1(...)1()1(... 11
2

2
1

−−− +++−− nn rrra  

 

...)1()1(/ 2
2

1
122 −++−=∂∂ −−

rrarNPV  

               ,)1(...)1()1( 12
2

1
1

−−− +++− nn rrra  

 . 

 . 

 . 

.)1...()1()1(/ 21
2

1
1

−−− +++−=∂∂ nnn rrrarNPV (19) 

7. Comparison of alternative modeling methods 

Consider the case of a possible investment in de-

veloping, manufacturing, and selling of an industrial 

product over a period of 5 years modeled by the for-

mulas (11) to (19). Prior to the investment decision 

being taken a discounted cash flow analysis must be 

carried out in order to analyze the consequences of 

the future cash flows being known only with uncer-

tainty. The following numerical calculations are all 

concerned with the same case, however with alterna-

tive representations of the uncertain variables. 

We start out by representing all the uncertain val-

ues by means of their minimum and maximum values 

and the results of this interval modeling are shown in 

Table 2a.  

The resulting net present value is [-3.532; 3.514] 

which is probably not satisfying a decision maker to 

authorize this project from a financial point of view 

because of a substantial possibility of creating a nega-

tive net present value. 

The next method to be considered is the modeling 

by stochastic variables and the input variables in   

Table 2b have been generated from uniform probabil-

ity distributions corresponding to the intervals in   

Table 2a.  

All input variables in Table 2b have been created 

from the input variables [a;b] in Table 2a by trans-

forming them into uniform probability distributions 

with � = (a+b)/2 and �
2
 = (b-a)

2
/12. 

The resulting net present value is seen to have an 

expected value of -111 and a standard deviation of 

470. A risk averse decision maker would probably 

not go ahead with the project because of the negative 

expected net present value and the relatively low 

probability of a positive result. 
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Table 1. Formulas for basic calculations with alternative representations of uncertain variables. 

 
 Independent stochastic variables 

{�;�} = {�1;�1} # {�2;�2} 

Intervals 

[a;b] = [a1;b1] # [a2;b2] 

Triple estimates 

[a;c;b] = [a1;c1;b1] # [a2;c2;b2] 

Addition 
� = �1 + �2; 

�
2 = �1

2 + �2
2 

a = a1 + a2; 

b = b1 + b2 

a = a1 + a2; 

c = c1 + c2; 

b = b1 + b2 

Subtraction 
� = �1 - �2; 

�
2 = �1

2 + �2
2 

a = a1 - b2; 

b = b1 - a2 

a = a1 - b2; 

c = c1 - c2; 

b = b1 - a2 

Multiplication 
� = �1·�2; 

�
2 ≅ �1

2·�2
2 + �2

2·�1
2 

a = min(a1a2, a1b2, b1a2, b1b2); 

b = max(a1a2, a1b2, b1a2, b1b2) 

a=min(a1a2,a1b2,b1a2,b1b2); 

c=c1c2; 

b=max(a1a2,a1b2,b1a2,b1b2) 

Division 

� = �1/�2; 

�
2 ≅ �1

2/�2
2 + �2

2·�1
2/�2

4, 

if �2 � 0 

a=min(a1/b2,a1/a2,b1/b2,b1/a2,); 

b=max(a1/b2,a1/a2,b1/b2, b1/a2), 

if 0 ∉ [a2; b2] 

a=min(a1/b2,a1/a2,b1/b2,b1/a2,); 

c=c1/c2; 

b=max(a1/b2,a1/a2,b1/b2,b1/a2), 

if 0 ∉ [a2; b2] 
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Table 2a. Discounted cash flow analysis by interval analysis (Interval Solver 2000, overall absolute and relative precision 10-6). Input variables are shaded. 

($1000) YEAR 0 YEAR 1 YEAR 2 YEAR 3 YEAR 4 

Turnover  [4.200;5.200] [12.400;14.100] [15.900;18.100] [13.800;15.600] 

Margin (%)  [44,50;45,50]% [45,00;47,00]% [45,50;48,50]% [44,00;48,00]% 

Direct cost  [-2.886;-2.289] [-7.755;-6.572] [-9.865;-8.188] [-8.736;-7.176] 

Margin  [-1.869;2.366] [5.580;6.672] [7.234;8.779] [6.072;7.488] 

Marketing cost [-1.050;-950] [-1.000;-800] [-975;-700] [-800;-600] [-800;-600] 

Indirect production cost  [-950;-700] [-1.375;-1.225] [-675;-525] [-675;-525] 

RD&E cost [-3.050;-2.950] [-1.700;-1.400] [-350;-250] [-150;-50] [-150;-50] 

Operating income [-4.100;-3.900] [-1.781;-534] [2.880;4.452] [5.609;7.604] [4.447;6.313] 

Investment [-5.100;-4.900] [-2.200;-1.900]   [0;700] 

Net cash flow [-9.200;-8.800] [-3.981;-2.434] [2.880;4.452] [5.609;7.604] [4.447;7.013] 

Rate of interest r (%)  [8,50;9,50] % [9,00;11,00] % [9,50;12,50] % [10,50;13,50]% 

Discounted cash flow [-9.200;-8.800] [-3.669;-2.223] [2.369;3.764] [4.102;5.871] [2.865;4.901] 

Net present value [-3.532;3.514]     

 

 

 

Table 2b. Discounted cash flow analysis by stochastic variables, formulas (11) to (19). Input variables (shaded cells) are derived from uniform probability 

distributions corresponding to the interval input variables in Table 2a, however converted to the form {�; �}. 

($1000) YEAR 0 YEAR 1 YEAR 2 YEAR 3 YEAR 4 

Turnover  [4.700;289] [13.250;491] [17.000;635] [14.700;520] 

Margin (%)  [45,00;0,29]% [46,00;0,58]% [47,00;0,87]% [46,00;1,15]% 

Direct cost  [-2.585;160] [-7.155;276] [-9.010;368] [-7.938;328] 

Margin  [2.115;131] [6.095;239] [7.990;333] [6.762;293] 

Marketing cost [-1.000;29] [-900;58] [-838;79] [-700;58] [-700;58] 

Indirect production cost  [-825;72] [-1.300;43] [-600;43] [-600;43] 

RD&E cost [-3.000;29] [-1.550;87] [-300;29] [-100;29] [-100;29] 

Operating income [-4.000;41] [-1.160;182] [3.657;257] [6.590;342] [5.362;303] 

Investment [-5.000;58] [-2.050;87]   [350;202] 

Net cash flow [-9.000;71] [-3.210;202] [3.657;257] [6.590;342] [5.712;364] 

Rate of interest r (%)  [9,00;0,29]% [10,00;0,58]% [11,00;0,87]% [12,00;0,87]% 

Discounted cash flow [-9.000;71] [-2.945;184] [3.050;215] [4.952;262] [3.832;251] 

Net present value [-111; 470]     
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Table 3a. Discounted cash flow analysis by triple estimates. Minimum and maximum values identical to Table 2a, most possible values obtained by ordi-

nary (crisp) calculations. Input variables in shaded cells. 

($1000) YEAR 0 YEAR 1 YEAR 2 YEAR 3 YEAR 4 

Turnover  [4.200;5.000;5.200] [12.400;14.000;14.100] [15.900;18.000;18.100] [13.800;15.500;15.600] 

Margin (%)  [44,50;45,00;45,50]% [45,00;46,00;47,00]% [45,50;47,00;48,50]% [44,00;46,00;48,00]% 

Direct cost  [-2.886;-2.750;-2.289] [-7.755;-7.560;-6.572] [-9.865;-9.540;-8.188] [-8.736;-8370;-7.176] 

Margin  [-1.869;2.250;2.366] [5.580;6.440;6.672] [7.234;8.460;8.779] [6.072;7.130;7.488] 

Marketing cost [-1.050;-1.000;-950] [-1.000;-900;-800] [-975;-800;-700] [-800;-700;-600] [-800;-700;-600] 

Ind. prod. cost  [-950;-750;-700] [-1.375;-1.275;-1.225] [-675;-575;-525] [-675;-575;-525] 

RD&E cost [-3.050;-3.000;-2.950] [-1.700;-1.500;-1.400] [-350;-300;-250] [-150;-100;-50] [-150;-100;-50] 

Oper. income [-4.100;-4.000;-3.900] [-1.781;-900;-534] [2.880;4.065;4.452] [5.609;7.085;7.604] [4.447;5.755;6.313] 

Investment [-5.100;-5.000;-4.900] [-2.200;-2.000;-1.900]   [0;600;700] 

Net cash flow [-9.200;-9.000;-8.800] [-3.981;-2.900;-2.434] [2.880;4.065;4.452] [5.609;7.085;7.604] [4.447;6.355;7.013] 

Rate of interest  [8,50;9,00;9,50]% [9,00;10,00;11,00]% [9,50;11,00;12,50]% [10,50;12,00;13,50]% 

Disco. cash flow [-9.200;-9.000;-8.800] [-3.669;-2.661;-2.223] [2.369;3.390;3.764] [4.102;5.324;5.871] [2.865;4.263;4.901] 

Net present val. [-3.532;1.317;3.514]     

 

 

 

Table 3b. Discounted cash flow analysis by stochastic variables, formulas (11) - (19). Input variables (shaded cells) are derived from triangular probabil-

ity distributions corresponding to the triple estimate input variables in Table 3a, however converted to the form {�; �}. 

($1000) YEAR 0 YEAR 1 YEAR 2 YEAR 3 YEAR 4 

Turnover  [4.800;216] [13.500;389] [17.333; 507] [14.800;374] 

Margin (%)  [45,00;0,20] % [46,00;0,41] % [47,00; 0,61] % [46,00;0,82] % 

Direct cost  [-2.640;119] [-7.290;217] [-9.186; 289] [-7.992;236] 

Margin  [2.160;98] [6.210;187] [8.147; 261] [6.808;211] 

Marketing cost [-1.000;20] [-900;41] [-825;57] [-700; 41] [-700;41] 

Ind. prod. cost  [-800;54] [-1.292;31] [-592; 31] [-592;31] 

RD&E cost [-3.000;20] [-1.533;62] [-300;20] [-100; 20] [-100;20] 

Oper. income [-4.000;28] [-1.073;134] [3.793;199] [6.755; 266] [5.416;218] 

Investment [-5.000;41] [-2.033;62]   [433;155] 

Net cash flow [-9.000;50] [-3.106;148] [3.793;199] [6.755; 266] [5.849;267] 

Rate of interest  [9,00;0,20] % [10,00;0,41] % [11,00; 0,61] % [12,00;0,61] % 

Disco. cash flow [-9.000;50] [-2.850;134] [3.163;167] [5.075; 203] [3.924;182] 

Net present val. [313;355]     
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The Tables 3a and 3b display similar results of cal-

culations, however starting out in Table 3a with triple 

estimates created by inserting most possible values 

between the minimum and maximum values shown in 

Table 2a.  

Obviously, from Table 3a, the net present value is 

now [-3.532; 1.317; 3.514] and thus the investment 

appears to be more attractive than it was previously 

(Table 2a) although it is still quite possible to end up 

with a negative net present value. Note, that taking 

only the conventional “crisp” net present value of 

1.317 into account would leave the decision maker 

with no reservations toward to the profitability of the 

project. Results using stochastic variables in Table 3b 

show an expected net present value of 313 and a 

standard deviation of 355. It is worth noting that all 

input variables in Table 3b have been created from 

the input variables [a;c;b] in Table 3a by transform-

ing them into triangular probability distributions with     

� = (a+b+c)/3 and �
2
 = (a

2
+b

2
+c

2
-ab-ac-bc)/18. 

An interesting observation based on the calcula-

tions reported in Tables 3a and 3b follows. Although 

the input variables (triangular fuzzy numbers in Table 

3a and triangular probability distributions in Table 

3b) have been derived from identical basic data, i.e. 

triple estimates [a;c;b], the resulting net present val-

ues may lead to alternative rhetorical arguments.  

In the case of triangular fuzzy number representa-

tion the most possible net present value is 1.317 

whereas the expected net present value in case of a 

representation by triangular probability distributions 

is 313, a quite substantial difference. Does this differ-

ence make the project less attractive from a probabil-

ity point of view than from a possibility point of 

view? Not necessarily, the two figures may not be 

directly compared! The point is that although the  

basic input data are identical the arithmetic operations 

in the probability case are different from the opera-

tions in the possibility case and thus generates differ-

ent numerical values of the resulting net present    

values.  

In the case of probabilities one may say that the 

characteristic value of the net present value (i.e. the 

expected value) is determined solely by the expected 

values of the input distributions.  

In the case of possibilities the characteristic value 

of the net present value (i.e. the most possible value) 

is determined solely by the most possible value of the 

input distributions. In other words, the most probable 

values of the probabilistic input variables are not 

propagated through the calculations defined by sto-

chastic arithmetic (see the formulas in Table 1). 

8. Conclusion 

In this paper alternative ways of modeling eco-

nomic uncertainty have been investigated. Economic 

variables have been represented and handled compu-

tationally in the following ways: 

• Ordinary numbers, also called “crisp” num-

bers, computed by a standard spreadsheet 

program MS-Excel. 

• Double estimates, like intervals [a;b] com-

puted by Interval Solver 2000 as an add-in 

module for MS-Excel, and stochastic vari-

ables {�;�} computed by means of approxi-

mate formulas developed for the particular 

economic models considered. 

• Triple estimates of the form [a;c;b], being 

simplifications of triangular fuzzy numbers, 

computed by ordinary calculations in combi-

nation with Interval Solver 2000. 

One may ask which one of the modeling techniques 

mentioned should be preferred. First of all, it should 

be remembered that we try to handle imperfect 

knowledge by representing it in terms of uncertain 

numbers. Consequently, that representation should be 

chosen that most closely reflects the kind of imper-

fect knowledge at hand. Or on the contrary, that kind 

of knowledge should be retrieved that most closely 

enables us to make conclusions relevant to the deci-

sion situation at hand. 

In the case of the interval modeling approach, 

clearly you only need to know the true minimum and 

maximum values of the input variables. By applying 

Interval Solver 2000 you will then easily arrive at the 

true minimum and maximum values of the output 

variables. The worst and best case argument goes like 

this: provided the input variables stay within their 

bounds the output variables also will in the case of 

the triple estimate modeling approach you might even 

benefit from the advantage of being able to identify 

the most possible outcome by tracing the most possi-

ble values of the input variables. Once an ordinary 

spread sheet model for “crisp” calculations is devel-

oped it may be intervallized by Interval Solver 2000. 

From a communicative point of view the triple esti-

mate approach is easily understood as an extension of 

an ordinary ”crisp” calculation by adding true worst 

and best cases. 

On the other hand, if the independent variables are 

known in terms of expected values and standard de-

viations only the stochastic approach might be useful.  
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The complication is that for each particular model 

the formulas governing the resulting standard devia-

tions have to be derived. However, once derived the 

application is straight forward. Specific knowledge 

about the precise shape of the probability distribu-

tions is not needed and will not be known for the de-

pendent variables either, except for the fact that in 

case of more complex models (typically more than 

15-20 variables, according to experience) the depend-

ent variables will be close to normal distributions. 

Thus 1% or 5% fractiles may be used instead of 

worst- and best cases to indicate practical limits to 

probable outcomes. One of the drawbacks of the sto-

chastic model still is the difficulty of communicating 

with people unfamiliar with probabilities and statis-

tics. Further to the approaches in this paper compari-

sons with Monte Carlo simulations may be found in 

Schjær-Jacobsen [20]. In this paper we have focused 

on the representation and calculation aspects in order 

to evaluate the modeling characteristics and qualities 

of competing approaches. Nevertheless, it should be 

born in mind that the crucial point in practical appli-

cations to decision making still is the ability of the 

decision maker to “know” something about the future 

states of the world subject to uncertainty and then, 

simultaneously, to be able to handle that uncertainty 

in adequate ways. 
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