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Abstract: This paper uses integrated Data Envelopment Analysis (DEA) models to rank all extreme and 

non-extreme efficient Decision Making Units (DMUs) and then applies integrated DEA ranking method 

as a criterion to modify Genetic Algorithm (GA) for finding Pareto optimal solutions of a Multi-Objective 

Programming (MOP) problem. The researchers have used ranking method as a shortcut way to modify 

GA to decrease the iterations of GA. The modified algorithm reduces the computational efforts to find 

Pareto optimal solutions of MOP problem and can be used to find Pareto optimal solutions of MOP with 

convex and non-convex efficient frontiers. An example is given to illustrate the modified algorithm. 
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1. Introduction 

Data Envelopment Analysis (DEA) and Multiple 

Objective Programming (MOP) are tools that can be 

used in management control and planning. DEA 

introduced by Charnes et al. in 1978, is a mathemati-

cal programming based approach that evaluates the 

efficiency of an organization or, in general, a 

Decision Making Unit (DMU) relative to a set of 

comparable organizations. DEA considers multiple 

inputs and outputs simultaneously, requiring neither a 

priori weights nor a functional form for input/output 

relationships. DEA utilizes mathematical program-

ming to construct an empirical production possibility 

set, and provides a single efficiency score for that 

DMU by comparing to a ‘‘virtual producer’’ on the 

efficient frontier. After introducing the first model in 

DEA, the CCR model by Charnes et al. (1978), 

Banker et al. (1984) developed the DEA technique by 

providing the BCC and FDH models (Tulkens, 

1993). An additional characteristic of DEA that 

has challenged users to improve on insights and 

values derived from the methodology involves the 

efficient set of DMUs, i.e., those with a score of 

1.0. Andersen and Petersen (1993) proposed a 

super-efficiency procedure for ranking efficient 

DMUs. This method ranks only non-extreme 

efficient DMUs. In some cases, the AP model is 

infeasible. In addition to this difficulty, the AP 

model may be unstable because of extreme 

sensitivity to small variations in the data when 

some DMUs have relatively small values for some 

of their inputs.  

In many practical problems such as engineering 

design problems, criteria functions cannot be given 

explicitly in terms of design variables. Under this 

circumstance, values of criteria functions for given 

values of design variables are usually obtained by 

some analyses such as structural analysis, thermo-

dynamically analysis or fluid mechanical analysis. 

These analyses require considerably much 

computation time. Therefore, it is unrealistic to 

apply existing interactive optimization methods to 

those problems.  

MOP is the simultaneous consideration of two or 

more objective functions that are completely or 

partially in conflict with each other. The optimality 

of such optimizations is largely defined through 

the Pareto optimality. Recently, MOP methods 

using genetic algorithms (GA) have been studied 

actively by many authors (Arakawa et al., 1998), 

(Fonseca and Fleming, 1993), (Schafer, 1985) and 

(Tamaki et al., 1996). GAs are useful for 

generating efficient frontiers with two or three 

objective functions. Decision making can be 

easily performed on the basis of visualized 

efficient frontiers. However, these methods have 

some shortcomings; there is a tendency for Vector 

Evaluated Genetic Algorithms (VEGA) (Schafer, 

1985) to generate such solutions that one of the 

objective functions is extremely good. 

Arakawa et al. (Arakawa et al., 1998) used the 



Sh. Razavian and Gh. Tohidi / Journal of Industrial Engineering International 7(15) (2011) 8-14                                                                                 9 

synthetic GA and DEA to generate Pareto optimal 

solution of MOP problem. Yun et al. (2001) 

proposed a method by combining generalized data 

envelopment analysis (GDEA) and GA to 

generate efficient frontiers in MOP problems. 

GDEA removes dominated design alternatives 

faster than methods based on only GA. The 

proposed method can yield desirable efficient 

frontiers. This method, however, has its own 

deficiencies. The most important deficiency is 

when a MOP problem has more than two or three 

objective functions. 

In some situations many DMUs are efficient 

and the decision maker wants to select only one 

DMU among them as the most efficient DMU. 

For instance, to identify the most efficient, 

Facility Layout Design (FLD) Ertay et al. (2006) 

proposed a DEA/AHP methodology. Amin and 

Toloo (2007) extended their work and proposed 

an integrated DEA model based on a common set 

of weights to select the most DMU under- assumption 

of constant returns to scale (CRS). Amin (2008) 

showed in some situations the most efficient 

DMU among DMUs with CRS is not single and 

proposed a nonlinear programming problem to 

obtain a single most CCR-efficient DMU. 

This paper uses Amin's model (2008) as an 

integrated ranking DEA model to rank all extreme 

and non-extreme efficient DMUs. Then, the 

researchers have used integrated ranking DEA 

model as a criterion and modify GA to find Pareto 

optimal solution of MOP problem. This method 

can be used to find Pareto optimal solutions of a 

MOP problem with more than tree objective 

functions or problems with non-convex efficient 

frontiers. It reduces the computational efforts to 

solve MOP problems. 

The rest of this paper is organized as follows: 

Section 2 provides a background of MOP and DEA. 

In Section 3 the researchers have used integrated 

DEA ranking model to rank all extreme and non-

extreme efficient DMUs. In Section 4, the researchers 

have used integrated DEA ranking method to modify 

GA. Section 5 discusses an example that applies the 

modified GA. Finally, Section 6 presents the 

concluding remarks.  

2. Background 

2.1. The MOP problem 

An MOP problem is defined as follows: 

( )r
)x(,f),...,x(f)x(fmin 1=  

{ }l,...,j,)x(gRxSx.t.s j
n 10 =≤∈=∈   (1) 

where, f1(x),….,fl(x) are objective functions, 

x=(x1,…,xn)
r
 is decision variables vector and 

S represents the feasible region of Problem (1).  

Definition 1. Sx̂ ∈  is a Pareto optimal solution 

of problem (1) if there exist no Sx̂ ∈  such that 

f(x)� f( x
�

) and f(x)� f( x
�

). 

The Pareto optimal solutions of Problem (1) 

are found by the approaches such as the aspiration 

level technique, lexicography (Sawaragi et al., 

1985). But, these approaches require a long time 

particularly when the problems have many 

objective functions. 

2.2. The DEA models 

Suppose we have a set of n  peer DMUs, 

DMUj ( 1, , )j n= � , with multiple inputs 

xij=(1,…,m), and multiple outputs yrj(r=1,…,s). 

The DEA model for measuring the relative 

efficiency of DMUo under an assumption of 

constant returns to scale is the CCR model, 

Charnes et al. (1978). This model is a fractional 

linear program which can be transformed into the 

following linear program: 
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In some situations the efficient DMU is not unique 

and the decision maker wants to select the most 

efficient DMU among efficient DMUs. Amin (2008) 

proposed the following programming problem to 

obtain a single most CCR-efficient DMU: 
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where, 
*ε  is computed by the following model 

(2008): 
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Arakawa et al. (1998) used the combination of 

the DEA and the GA method to find efficient 

solutions of an MOP problem. In this method 

individual’s values in constraints considered as 

the DEA model inputs and criterion function 

values for each individual considered as DEA 

model outputs. See Figure 1, where each DMU 

has two inputs and one same output. DEA 

efficient frontier can be used as an approximation 

to the MOP efficient frontier (see Figure 1, 

(Arakawa et al., 1998; Yun et al., 2001)).  

Yun et al. (2001) proposed GDEA method 

which, also, includes basic DEA models the 

efficiency of DMUs in GDEA model is obtained 

by the following model. 
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where α  is defined in terms of the problem 

variables and for j=1,…,n, we have; 

 

 

Figure 1: GA with DEA method and DEA efficiency. 
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Efficient frontier in GDEA model based on 

different α  is showed in Figure 2, (Yun et al., 

2001). 

Yun et al. (2001) proposed a method to 

eliminate the defects which were in the Arakawa 

et al. (1998) model. They defined inputs for 

GDEA model as follows; 
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Yun et al. (2001) used (6) and converted 

model (1) to the following model: 
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Figure 2: Efficient frontiers with different α . 

We will use the properties of GDEA model 

and integrated DEA ranking method (see Section 

3) to generate convex and non-convex efficient 

frontiers of the MOP problems. 

3. Ranking all of efficient DMUs using the 

integrated DEA models 

This section uses the proposed model by Amin 

(2008), Model (3), to rank all extreme and non-

extreme efficient DMUs. To this end, let 

1 1{ , , }( {1, , })qE j j n= ⊆� �  be the indices set 

of CCR extreme and non-extreme efficient 

DMUs. Because, by CCR model at least a DMU 

is efficient, therefore 1E  is nonempty.  

To determine most efficient DMU among 

DMU 1, ,j �  DMU
qj , using common set of 

weights, we consider Model (3) with CCR 

efficient DMUs. Therefore, we have the following 

model: 

1
1

1

0

Ej,xw

,dM.t.s

Mmin

m

i
iji

j

∈≤

≥−

�
=

 

 1
1 1

0 Ej,dxwyu j

s

r

m

i
ijirjr ∈=+−� �

= =

  

,E
n

Ej
j 11

1

−=�
∈

θ  

{ } 1

1

1001

0

Ej,,,d,

Ej,d

jjj

jjj

∈∈≥≥

∈=−

θβ

βθ
 

 

s,...,r,u

m,...,i,w

*
r

*
i

1

1

=≥

=≥

ε

ε
                                            (9) 

where 1E  is the cardinality of E1 and 
*ε  is 

computed by the following model, which is a 

modification of Model (4): 
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Let di
*
 =0 using Model (11), where 11 Ei ∈ . As 

noted in Amin (2008), DMU i1 is the most 

efficient DMU among DMU j1,…,.DMU jq. 

Therefore, it has the highest rank, i.e. its rank is 1. 

Now, we remove DMU
1i among CCR efficient 

DMUs and define E2 as:  
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suppose that:  
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where DMUi1,…, DMUip-1 are 1
st
,…,(p-1)

th
 most 

efficient DMUs using E1, E2, …, Ep-1, 

respectively. And, 
*ε  is computed using the 

following model: 
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If di
*
 =0 using Model (12), where pp Ei ∈ , 

then the rank of DMUip is p. Therefore, to rank all 

of extreme and non-extreme efficient DMUs, we 

have the following algorithm. 

Stage 1: set p=1 and solve Model (9), and let 

DMU
pi

be the most efficient DMU, 

Stage 2: set p=p+1 and Ep+1=Ep-{ip}, where p�1, 

Stage 3: if 1=pE , then stop, where pE  is the 

cardinality of Ep.  

Stage 4: solve Model (11) and go to Stage 2. 

Theorem: By Models (9) and (11) rank score of 

every efficient DMU is unique. 

Proof: According to Theorem in Amin (2008) 

each iteration, say p
th

 iteration, Model (11) finds 

a single DMU, say DMU
pi , as most efficient 

DMU among DMUs, DMUk1,…, DMUkq-p+1. 

So, the rank of DMU
pi as a single DMU is p.  

Therefore, using the above algorithm we can 

rank all extreme and non-extreme efficient 

DMUs and every efficient DMU has unique 

rank score. 

4. Application the integrated DEA ranking 

model to modify GA 

For each Sx ∈ , using (6) we can construct a 

DMU with s inputs and one output, where output 

quantity is 1. Therefore, when p members are 

selected in the primary stage of the proposed 

algorithm, we can construct p DUMs with s inputs 

and one output. Then, we evaluate these DMUs by 

Model (2) (or Model (8)) to obtain 
*
oθ  (or 

*
o∆ ). 

If we multiple the inputs of DMUo by 
*
oθ , then 

it lies on the DEA efficient frontier. In other 

words we approach to the MOP efficient frontier 

(see Figures 4.a and 4.b which is corresponding to 

DEA efficient frontier), while with Yun et al. 

(2001) or Arakawa et al. (1998) algorithms we 

should repeat them about 20 to 30 times, so that 

the member or the originated DMUs can be placed 

on the frontier. Therefore, we may use Model (11) 

as a criterion to select the next population 

iteration. That is by ranking all DMUs using 

Model (11), extreme and non-extreme efficient 

DMUs, which lie on efficient frontier DUMs with 

better ranks are selected to generate the next 

population. This method is a shortcut to decrease 

the iterations of GA to find the Pareto efficient 

solution of MOP problem. Therefore, in brief we 

have the following algorithm which is a 

modification of proposed algorithm by Yun et al. 

(2001) and is called the modified genetic 

algorithm. 

Stage 1: (Initialization). Generate p-individuals 

randomly. Here, the number of p is given 

before hand. 

Stage 2: (Crossover-Mutation). Make p/2- pairs 

randomly among the population. Making 

crossover each pair generates a new 

population. Mutate them according to the 

given probability of mutation. 

Stage 3: (Evaluation of fitness by GDEA). Evaluate 

the GDEA-efficiency by solving the 

problem (8) and project all DMUs on DEA 

efficient frontier. 

Stage 4: (Selection). Select p- p − individuals 

from current population in the third 

stage, in terms of the obtained ranking 

scores from Model (11). 

The process Step 2-Step 4 is continued until 

the number of generations attains a given number.  
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5. Example 

Consider the following nonlinear bi-objective 

problem. 
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Now we compare the obtained results of the 

proposed algorithm with Arakawa et al. (1998) 

and Yun et al. (2001) algorithms. Figures 5.a and 

5.b show the results with 30 repetitions using 

Arakawa et al. (1998) and Yun et al. (2001) 

algorithms, respectively. There exist some 

deficient solutions, which they lead us to an 

inaccurate frontier. But in the modified method 

(see Figure 5.c) the efficient frontier which is 

appropriate, will exist after a several repetition, 

adding that 90% of the solutions are efficient. 

Moreover, if we have more repetition, up to 30 

times, the accuracy enhances up to %99. It is 

remarkably attractive to mention that the members 

dominated by other members in the repetition are 

closed to the optimized Pareto’s solution. 

                                    
 

                                    Figure 3.a: Objective functions values space.     Figure 3.b: Corresponding DEA efficient frontier and projection. 

                                                
 

                                 Figure 4.a:  Some Pareto optimal solutions.        Figure 4.b: All DMUs on the corresponding DEA efficient frontier. 

 

 

             Figure 5.a: Arakawa et al.'s (1998) method.       Figure 5.b: Yun et al.'s (2001) method.            Figure 5.c: Using the proposed method. 

6. Conclusion 

This paper used the integrated DEA models to 

rank all of efficient DMUs. Then, the researchers 

used the proposed integrated DEA ranking 

method to modify GA for finding the Pareto 

efficient solutions of MOP problem. The modified 

GA reduces the computational efforts and can be 

used to generate convex and non-convex Pareto 

efficient frontiers of MOP problems, and can also 

be applied to solve the MOP problems with two or 

several objective functions. In other words the 

f2 
f2 

f1 f1 

f2 
f2 

f1 f1 



14                                                                                 Sh. Razavian and Gh. Tohidi / Journal of Industrial Engineering International 7(15) (2011) 8-14 

researchers have used a shortcut in order to 

decrease the iterations of GA for finding the 

Pareto efficient solutions of MOP problem. 
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