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Abstract: This paper proposes an efficient algorithm based on memetic algorithm (MA) for a redundancy 

allocation problem without component mixing (RAPCM) in a series-parallel system when the redundancy 

strategy can be chosen for individual subsystems. Majority of the solution methods for the general RAPCM 

assume that the type of a redundancy strategy for each subsystem is pre-determined and known a priori. In 

general, active redundancy has traditionally received greater attention; however, in practice both active and 

cold-standby redundancies may be used within a particular system design. The choice of the redundancy 

strategy then becomes an additional decision variable. Thus, the problem is to select the best redundancy 

strategy, component and redundancy level for each subsystem in order to maximize the system reliability 

under system-level constraints. Due to its complexity and NP-hardness, it is so difficult to optimally solve 

such a problem by using traditional optimization tools. To validate the performance of the proposed MA in 

terms of solution quality, a number of test problems are examined and the robustness of this algorithm is 

then discussed. Finally, the related results are reported and it is shown that the proposed MA performs well.  
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1. Introduction 

The main goal of reliability engineering is to 

improve system reliability. In the initial design 

activity, redundancy allocation is a direct way of 

enhancing the system reliability. The redundancy 

allocation problem (RAP) involves the 

simultaneous selection of components and a 

system-level design configuration that can 

collectively meet all design constraints in order to 

optimize some objective functions, such as system 

cost and/or reliability (Coit and Smith, 1995). In 

this problem, there are several types of different 

components with different levels of cost, reliability, 

weight, and other characteristics.  

The RAP is first modeled by Fyffe et al. (1968) 

who solved this problem with a dynamic 

programming algorithm. In general, the RAP is 

known to be an NP-hard problem (Chern, 1992) and 

solved by using a number of optimization 

approaches for different formulations, as 

summarized in Kuo et al. (2001) and Gen and Yun 

(2006). The problem can be classified into two 

main groups. 

1) RAP without component mixing (RAPCM): 

Those problems where a mix of components 

within a subsystem is not allowed; that is, a 

single component type is available for 

redundancy. 

2) RAP with a mix of components (RAPMC): 

Those problems where a mix of components 

is allowed within a subsystem; that is, the 

numerous component types are available for 

redundancy in parallel. 

The RAPMC is first solved by Coit and Smith 

(1995, 1996). They used a genetic algorithm (GA) 

to solve this problem in a series-parallel system 

with k-out-of-n:G subsystems. Coit and Smith 

(1996) solved the RAPMC with a hybrid algorithm. 

This hybrid algorithm is constructed by a 

combination of GA and neural network approaches. 

Hsieh (2002) developed a linear programming 

approach to approximate the integer nonlinear 

RAPMC. Ramirez-Marquez et al. (2004) 

reformulated the objective of this problem 

maximizing the minimum subsystem reliability, and 

then solved using integer programming. Tavakkoli-

Moghaddam and Safari (2007) represented a new 

mathematical model for the RAPMC. There are a 

number of methods for solving of the RAPMC, 

such as tabu search (Kulturel-Konak et al., 2003), 

ant colony optimization (Liang and Smith, 2004), 

simulated annealing (Kim et al., 2004), immune 

algorithm (Chen and You, 2005), heuristic method 

(You and Chen, 2005), variable neighborhood 

descent algorithm (Liang and Wu, 2005), variable 

neighborhood search (Liang and Chen, 2007), 

hybrid algorithm (Nahas et al., 2007), and an exact 
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method based on the improved surrogate constraint 

method (Onishi et al., 2007). 

In general, the RAPCM has been formulated by 

considering active redundancy. Coit (2001) 

presented a problem formulation and solution 

methodology for the this problem when the 

redundancy strategy of all subsystems is cold-

standby. Choosing a particular redundancy strategy 

for each subsystem is much more realistic and 

provides a better tool for the designers.  

Coit and Liu (2000) presented a new problem 

formulation and solution method for the RAPCM 

when a system design includes multiple subsystems 

designed with either active or cold-standby 

redundancy.  

This solution method assumes that the 

redundancy strategy (i.e., active or cold-standby) 

for each subsystem is pre-determined. However, the 

choice of redundancy strategy (i.e., active or cold-

standby) for each subsystem is much more realistic 

and provides a better tool for the designers. 

Unfortunately, the RAPCM is not considered 

sufficiently when the redundancy strategy can be 

chosen for individual subsystems. Coit (2003) 

presented an optimal solution for the RAPCM when 

there are some subsystems using active redundancy, 

cold-standby redundancy, or selecting the best 

redundancy strategy. Tavakkoli-Moghaddam et al. 

(2008) applied a GA to solve this problem. 

This paper presents an efficient algorithm based 

on memetic algorithm (MA) for solving of the 

RAPCM when the redundancy strategy can be 

chosen for individual subsystems. Thus, the 

problem is to select the best redundancy strategy, 

component, and redundancy level for each 

subsystem in order to maximize the system 

reliability under system-level constraints.  

In general, the RAPCM has been considered for 

various system structures, such as series, parallel, 

network, and parallel-series. In this paper, we 

consider the series-parallel system that is a common 

system structure used in most system designs. 

Chern (1992) showed that even a simple 

RAPCM in series systems with linear constraints is 

an NP-hard problem, prompting researchers to 

develop meta-heuristic methods to achieve near-

optimal solutions of acceptable quality in 

reasonable computational time. Meta-heuristic 

methods are very efficient in solving such complex 

discrete optimization problems. These methods 

provide more flexibility and require fewer 

assumptions regarding the objective function and 

associated constraints. 

The paper is organized as follows. Sections 2 and 

3 present a review of the redundancy strategies and 

formulate the problem, respectively. Section 4 

proposes a meta-heuristic method based on MA for 

solving the RAPCM when either active or cold-

standby redundancy can be selected for individual 

subsystems. A numerical example and the 

computational results are reported in Section 5 to 

demonstrate the efficiency of this proposed 

methodology, and the conclusions are presented in 

Section 6. 

2. Redundancy strategies 

There are two types of redundancy strategies, 

namely active and standby. If all redundant 

components operate simultaneously from time zero, 

even though the system needs only one at any given 

time, such an arrangement is called active 

redundancy. There are three variants of the standby 

redundancy, namely cold, warm, and hot. In the 

cold standby redundancy, the component does not 

fail before it operates. In the warm standby 

redundancy, the component is more prone to failure 

before operation than the cold standby components. 

In the hot standby redundancy, the failure pattern of 

component does not depend on whether the 

component is idle or in operation.  

The mathematical models for hot standby and 

active redundancy arrangements are the same. In 

the standby redundancy arrangement, the redundant 

components are sequentially used in the system at 

component failure times. Each redundant 

component in the standby arrangement can operate 

only when it is switched on. When the component 

in operation fails, one of the redundant units is 

switched on to continue the system operation 

(Ebling, 1997).  

In the standby redundancy, there are two 

scenarios, namely Case 1 and Case 2, in first 

detecting failure and then switching to good 

components. For Case 1, the failure detection and 

switching hardware or software continually 

monitors the system performance. When it detects a 

failure it activates a redundant component. For Case 

2, a failure is only possible when a switch is 

required. At any time the switch is required, there is 

a constant probability (ρi) that the switching will be 

successful (Coit and Liu, 2000). 

This paper considers redundancy strategies 

consisting of only active (i.e., hot) and cold-standby 

redundancy. The approach used in this paper 

categorizes all subsystems into four sets according 

to the following definitions: 

N  Set of all subsystems with no redundancy, 
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A  Set of all subsystems with active redundancy, 

S Set of all subsystems with cold-standby 

redundancy, 

A&S Set of all subsystems with active or cold-

standby redundancy. 

3. Problem formulation  

Following is the mathematical model of the 

RAPCM for the series-parallel system when the 

redundancy strategy can be chosen for individual 

subsystems with s subsystems and two separable 

linear constraints. The integer nonlinear 

programming problem is presented as follows (Coit, 

2003) 0. 

3.1. Assumptions 

The main assumptions of the presented model 

are given bellow: 

• The states of components and the related 

system have either good or bad options, 

• The component attributes (i.e., reliability, 

cost and weight) are known and deterministic, 

• Two redundancy strategies (i.e., active 

redundancy cold standby) are considered, 

• There is no component repair or preventive 

maintenance, 

• Failures of components are independent 

events, 

• Failed components do not damage the system, 

• The components within the same subsystem 

are the same type.  

3.2.  Notations 

S   Number of subsystems, 

ni   Number of components used in subsystem 

i, (i = 1, 2, …, s),  

N     Set of ni , (n1, n2 , ..., ns),  

nmax, i  Upper bound for ni , (ni  ≤ nmax, i    ∀i) , 

mi   Number of available component choices 

for a subsystem i, (i = 1, 2, …, s), 

zi    Index of component choice used for a 

subsystem i, (zi ∈ {1, 2, …, mi}),   

z     Set of zi , (z1, z2 , ..., zs),  

t     Mission time, 

R(t; z, n) System reliability at time t for designing 

vectors z and n, 

rij (t)  Reliability at time t for the j-th available 

component for subsystem i,  

λij , kij   Scale and shape parameters for the 

Gamma distribution 
 1
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C, W     System-level constraint limits for cost and 

weight, 

cij , wij   Cost and weight for the j-th available 

component for subsystem i,  

ρi (t)   Failure-detection/switching reliability at 

time t (Case 1: Continuous detector / 

switch operation),  

ρi   Failure-detection/switching reliability at 

time t (Case 2: Switch active only in 

response to a failure ). 

3.3. Mathematical model  
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The objective function (1) determines the 

redundancy strategy, component type, and the 

quantity of components in each subsystem to 

achieve the maximum system reliability. 

Constraints (2) and (3) consider the available cost 

and weight, respectively. To calculate ),;( nztR , 

Eqs. (4) and (5) are presented for the system 

reliability in two cases as follows: 

Case 1: Continuous detector/switch operation:

 



A redundancy allocation problem with the choice of … 

9 
 

( )( )( ; , ) 1 1 ( )
i

i

n

iz

i A

R t z n r t
∈

= − −∏

  

1
( )

1 0

( ) ( ) ( ) ( )
i

i i i

tn
j

iz i iz iz

ji S

r t u f u r t u du
−

=∈

 
× + − 

 
∑∏ ∫ ρ

 

( )
iiz

i N

r t
∈

×∏                                                                (4) 

Case 2: Switch active only in response to a failure: 
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The exact techniques for reliability optimization 

problems are not necessarily desirable because it is 

very hard to obtain the exact solution. Because of 

the difficulties of applying exact techniques, a 

major focus of this paper is to attempt reliability 

optimization using the proposed MA. This 

algorithm can be considered as a very practical tool 

to solve such complex problems successfully.  

4. Memetic algorithms 

In the field of evolutionary computation, it is 

well known that the effectiveness of evolutionary 

algorithms can be enhanced by incorporating 

problem-dependant local search heuristics. These 

approaches are often called memetic algorithms, 

which are similar to genetic algorithms but usually 

incorporate neighborhood search techniques such as 

local search, tabu search, or simulated annealing 

(Moscato, 1989). However, the performance of the 

MA highly depends on the structure of the problem 

under consideration. In this paper, we propose a 

MA to solve the RAPCM when the redundancy 

strategy can be chosen for individual subsystems as 

described in the following subsections. 

 

4.1. Solution encoding 

Each possible solution (i.e., phenotype) to this 

problem is a collection of redundancy strategies, 

selected components, and in  parts in parallel  

(ni  ≤ nmax, i) for each subsystem. ni parts can be 

chosen only in one combination amongst the mi 

available components. The solution encoding is a 

3×s matrix. The first, second and third rows 

represent the redundancy strategy, type of selected 

components and the number of selected 

components, respectively.  

The subsystem representations are then placed 

into adjacent columns to complete the matrix 

representation. Fig. 1 shows an example of 

encoding solution with s=14. This matrix represents 

a prospective solution with two of the first 

component used in parallel with active redundancy 

for the first subsystem; two of the second 

component used in parallel with cold standby 

redundancy for the second subsystem, and the like. 

4.2. Initial population 

The initial population is determined by two 

methods. The one is the new heuristic method, 

which is described as below, and another is the 

random method.  

In this algorithm, the population size of the 

initial population is 8. One of the initial populations 

is found by the heuristic method and the others are 

found by a random method. 

4.2.1. Heuristic method 

Step 0: Find the component type in each subsystem 

that is the maximum reliability at time t . For 

example, we have:  

 

}31133223423422{

1413121110987654321

 

  

 

 

 

 

Subsystem 

   1 2 3 4 5 6 7 8 9 10 11 12 13 14  

Redundancy strategy 1   A S N A S S N N N S S A A S   

Type of component selected 2   1 2 4 3 4 2 1 3 2 1 3 1 2 4   

Number of component 3   2 2 1 5 3 2 1 1 1 4 2 3 1 2   

 
Figure 1: Encoding solution.
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Step 1: Allocate one type of component, which is 

found in Step 0 in each subsystem. 

Step 2: Report the solution and stop. 

 

4.3.  Fitness function 

The fitness function is defined as the summation 

of the objective and a dynamic penalty function 

determined by the relative degree of infeasibility. 

To provide an efficient search through the 

infeasible region but to ensure that the final best 

solution is feasible, the modified dynamic penalty 

function proposed by Coit and Smith (1996) is 

adopted.  

4.4. Crossover breeding operator  

Parents are selected at random, and then the 

proposed crossover breeding operator is applied 

with crossover probability (or rate) of 0.55. In this 

paper, we find this rate to be best according to our 

experimental results. One offspring is produced by 

a uniform crossover breeding operator. This 

operator first generates a random crossover mask, 

and then exchanges the respective subsystems 

between parents according to the mask. A crossover 

mask is simply a binary s×1 matrix (Gen and 

Cheng, 1997). Another offspring is produced by the 

modified uniform crossover operator. For this 

operator, the crossover mask generates as follows: 

1. Subsystems with the lowest and highest 

reliability among the candidate solutions are 

determined. 

2. All bits in the crossover mask for these two 

subsystems consist of zeros and ones. 

4.5. General mutation operator 

The mutation operator performs random 

perturbations to the selected solutions. Mutation  

results maintain diversity of solution. This 

procedure avoids premature convergence to local 

optimum and facilitates jumps in the solution space. 

In this algorithm, as depicted in Fig. 2, first a 

random matrix in size of solution matrix is created.  

Each value within the solution matrix is altered at 

random if the related value in the mutation matrix is 

smaller than the mutation rate. In this algorithm, the 

mutation rate is 0.33. This rate also works well for 

most MA solutions. 

4.6. Max-Min mutation operator 

Because the considered system structure is 

series-parallel, then the reliability of system is 

calculated by product of all subsystems. In each 

system, the subsystem with min of reliability within 

all subsystems has a bad effect in reliability of 

system. Max-Min mutation operator is trying to 

bring to closer the reliability of subsystems. For 

each candidate solution, this operator selects 

subsystems with the highest reliability and lowest 

reliability among the all subsystems and then 

randomly mutates the number of allocated 

components in each selected subsystem. Fig. 3 

shows a typical max-min mutation used in the 

proposed MA. 

4.7. Local search for the RAPCM 

Local search (LS) algorithms are the basal 

component in MA. LS algorithms are improvement 

heuristics that search in the neighborhood of the 

current solution for a better one. If a better solution 

is found, the current solution is replaced and the 

neighborhood search is started again. If no further 

improvement can be made, a local optimum is 

found (i.e., there is no better solution in the 

neighborhood of the current solution) (Merz and 

Katayamab, 2004).  

To avoid the local maximum quickly, the LS 

designed for the proposed MA is applied in each 

generation. After each generation, each solution can 

be classified as follow:  

 

1.Feasible solution 

a. Additional component can be added to any 

subsystem because the remaining resources 

are available for any component. 

 

b. No additional component can be added to any 

subsystem because the remaining resources 

are unavailable for any component. 

 

2.Infeasible Solution: No additional component can 

be added to any subsystem because the 

remaining resources are unavailable for any 

component. 

 

To extend the search space so as to find better 

quality solutions, one of the three following LSs is 

employed for each solution, which is found in each 

generation. 
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4.7.1.  Method 1 

If the solution is feasible and additional 

component can be added to any subsystem the 

method 1 is applied. 

Step 0: Find the subsystem with the minimum 

reliability at time t in all subsystems. 

Step 1: Add one component in subsystem found in 

Step 0, if and only if the solution quality can be 

improved and the constraint is satisfied; else, go to 

Step 2. 

Step 2: Report the solution and stop. 

4.7.2.  Method 2 

If the solution is feasible and no additional 

component can be added to any subsystem, Method 

2 is applied. 

 

Step 0: Find the subsystem with the maximum 

reliability at time t in all subsystems. 

Step 1: Find the subsystem with the minimum 

reliability at time t in all subsystems. 

Step 2: Remove one component in subsystem found 

in Step 0 and add one component in subsystem 

found in Step 1, if and only if the solution quality 

can be improved and the constraint is satisfied; else, 

go to Step 3. 

Step 3: Report the solution and stop. 

4.7.3.  Method 3 

If the solution is infeasible the method 3 is 

applied. 

Step 0: Find the subsystem with the maximum 

reliability at time t in all subsystems. 

Step 1: Remove one component in subsystem found 

in Step 0 if and only if the solution quality can be 

improved and the constraint is satisfied; else, go to 

Step 2. 

Step 2: Report the solution and stop. 

4.8.  Selection 

After operator breeding, the p best solutions 

among the previous generation and the new child 

are retained to form the next generation.  

4.9. Stopping condition 

The proposed MA is terminated after a pre-

selected number of generations. A reasonable 

number of generations is 30.   

5. A numerical example 

To evaluate the performance of the proposed MA, 

a typical example taken from Fyffe et al. (1968) 0 is 

first solved. A series–parallel system is connected 

by 14 parallel subsystems, and each subsystem has 

three or four components of choice.  

Time to failure distribution for all components is 

exponential. Component cost, weight, and the 

exponential distribution parameters are given in 

Table 1. The objective is to maximize the system 

reliability at t=100 hours, given the constraints for 

the system cost (C=130 max) and the system weight 

(W=170 max).  

For each subsystem, active or cold-standby 

redundancy can be used, and the reliability of a 

switch at 100 hours is 0.99 for all subsystems. The 

maximum number of the allocated components is 6 

(i.e., 6
4

1

≤∑
=j

ijn ) within any subsystem. 

Because of the stochastic nature of the proposed 

MA, four experiments are performed for 30-

generation each and the best feasible solution 

amongst the four is selected and reported as the 

final and best solution. The maximum reliability 

identified by the proposed MA is shown in Table 2. 

In this table, the proposed MA is compared with 

optimal solution. 

To compare the performance of the proposed 

MA, 33 test problems are solved. These problems 

are a modified version of the problems given in 

Nakagawa and Miyazaki (1981). The data sets of 

these problems are shown in Table 1 and various 

weights of the available resource from 159 to 191 

are considered.  

The computational results of this proposed 

algorithm is shown in Table 3. As shown in this 

table, the computational result of the proposed MA 

is better than the GA represented by Tavakkoli-

Moghaddam et al. (2008). The standard deviation 

of the fitness function is an important measure of 

the algorithm robustness. 

In Fig. 4 for each problem, the standard deviation 

of fitness function of the proposed method is very 

low. This implies that the proposed approach is 

robust and credible. The standard deviation of the 

fitness function is an important measure of the 

algorithm robustness.  



J. Safari and R. Tavakkoli-Moghaddam 

12 
 

 

Table 1: Parameter setting for the given problem. 

i 

Choice 1 (j = 1) Choice 2 (j = 2) Choice 3 (j = 3) Choice 4 (j = 4) 

λij kij cij wj λij kij cij wj λij kij cij wj λij kij cij wj 

1 0.00532 2 1 3 0.000726 1 1 4 0.00499 2 2 2 0.00818 3 2 5 

2 0.00818 3 2 8 0.000619 1 1 10 0.00431 2 1 9 - - - - 

3 0.0133 3 2 7 0.0110 3 3 5 0.0124 3 1 6 0.00466 2 4 4 

4 0.00741 2 3 5 0.0124 3 4 6 0.00683 2 5 4 - - - - 

5 0.00619 1 2 4 0.00431 2 2 3 0.00818 3 3 5 - - - - 

6 0.00436 3 3 5 0.00567 3 3 4 0.00268 2 2 5 0.000408 1 2 4 

7 0.0105 3 4 7 0.00466 2 4 8 0.00394 2 5 9 - - - - 

8 0.0150 3 3 4 0.00105 1 5 7 0.0105 3 6 6 - - - - 

9 0.00268 2 2 8 0.000101 1 3 9 0.000408 1 4 7 0.000943 1 3 8 

10 0.0141 3 4 6 0.00683 2 4 5 0.00105 1 5 6 - - - - 

11 0.00394 2 3 5 0.00355 2 4 6 0.00314 2 5 6 - - - - 

12 0.00236 1 2 4 0.00769 2 3 5 0.0133 3 4 6 0.0110 3 5 7 

13 0.00215 2 2 5 0.00436 3 3 5 0.00665 3 2 6 - - - - 

14 0.0110 3 4 6 0.00834 1 4 7 0.00355 2 5 6 0.00436 3 6 9 

 

Table 2: Comparison between the MA and optimal solutions. 

 Optimal solution Proposed algorithm 

i zi ni Redundancy zi ni Redundancy 

1 3 4 Active 1 3 Active 

2 1 2 Cold-standby 1 2 Active 

3 4 3 Active 4 2 Cold-standby 

4 3 3 Cold-standby 2 2 Cold-standby 

5 2 3 Active 3 2 Active 

6 2 2 Cold-standby 4 2 Cold-standby 

7 1 2 Cold-standby 3 2 Active 

8 3 2 Cold-standby 1 3 Cold-standby 

9 1 2 Cold-standby 3 2 Active 

10 2 3 Cold-standby 2 3 Active 

11 3 2 Cold-standby 3 2 Cold-standby 

12 4 2 Cold-standby 4 2 Cold-standby 

13 2 2 Active 1 2 Active 

14 3 2 Cold-standby 3 2 Active 

Computational time 715 (Sec.)  526 (Sec.) 

System reliability 0.9863  0.9719 

Resources 

consumed 

Weight 170  170 

Cost 123  106 
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Table 3:  Results of the proposed MA and its comparison with the GA (Tavakkoli-Moghaddam et al., 2008). 

P
ro

b
le

m
 

W
ei

g
h

t 

C
o

n
st

ra
in

t 

GA (Tavakkoli-

Moghaddam et al., 

2008) 

Proposed MA N
o

te 

Best 

feasible  

solution 

Standard 

deviation 

Trial 1 Trial 2 Trial 3 Trial 4 Best feasible  solution 
Standard 

deviation Reliability Reliability Reliability Reliability Reliability Cost Weight 

1 159 0.9641 0.0150 0.9439 0.963 0.9564 0.9691 0.9691 109 159 0.0108  

2 160 0.9629 0.0211 0.9688 0.9592 0.9604 0.9506 0.9688 102 160 0.0074  

3 161 0.9636 0.0290 0.9583 0.9464 0.9663 0.9602 0.9663 105 160 0.0083  

4 162 0.9564 0.0197 0.9643 0.941 0.9513 0.9609 0.9643 100 164 0.0105  

5 163 0.9675 0.0180 0.9642 0.9575 0.9698 0.9483 0.9698 107 163 0.0093  

6 164 0.9619 0.0208 0.9606 0.9678 0.9538 0.948 0.9678 113 165 0.0086  

7 165 0.9454 0.0125 0.9564 0.9632 0.9522 0.9614 0.9632 105 164 0.0050  

8 166 0.9647 0.0180 0.9567 0.9613 0.967 0.9574 0.967 96 165 0.0047  

9 167 0.9614 0.0273 0.956 0.9604 0.9592 0.9639 0.9639 103 167 0.0033  

10 168 0.9669 0.0270 0.956 0.9556 0.9621 0.9687 0.9687 99 168 0.0062  

11 169 0.9602 0.0137 0.9695 0.9491 0.9588 0.9591 0.9591 98 169 0.0083  

12 170 0.9705 0.0150 0.9616 0.9537 0.9691 0.9719 0.9719 106 170 0.0082  

13 171 0.9639 0.0047 0.9609 0.9562 0.9647 0.9581 0.9647 109 171 0.0037  

14 172 0.9608 0.0048 0.9685 0.9525 0.9661 0.9521 0.9685 111 172 0.0087  

15 173 0.9717 0.0210 0.9588 0.9514 0.9767 0.963 0.9767 96 172 0.0106  

16 174 0.9707 0.0136 0.9676 0.9586 0.9603 0.9549 0.9676 107 172 0.0053  

17 175 0.9681 0.0120 0.9693 0.9576 0.97 0.9689 0.97 109 174 0.0059  

18 176 0.9703 0.0083 0.9605 0.9629 0.9661 0.9708 0.9708 117 176 0.0045  

19 177 0.9738 0.0144 0.9758 0.9805 0.9617 0.9723 0.9758 122 176 0.0080  

20 178 0.9734 0.0117 0.9615 0.9661 0.9497 0.9713 0.9661 113 177 0.0092  

21 179 0.9756 0.0046 0.9839 0.951 0.976 0.9795 0.9839 115 178 0.0148  

22 180 0.9834 0.0144 0.9792 0.9839 0.976 0.9749 0.9839 120 179 0.0040  

23 181 0.9741 0.0086 0.9708 0.9831 0.9775 0.9774 0.9831 113 179 0.0050  

24 182 0.9797 0.0065 0.9841 0.9643 0.9823 0.9809 0.9841 128 181 0.0092  

25 183 0.9737 0.0082 0.9756 0.9823 0.9767 0.9818 0.9823 117 182 0.0034  

26 184 0.9804 0.0246 0.9807 0.9847 0.978 0.9866 0.9866 184 130 0.0039  

27 185 0.9844 0.0136 0.9841 0.9714 0.9721 0.9772 0.9841 117 185 0.0059  

28 186 0.9821 0.0080 0.9839 0.9696 0.9797 0.9684 0.9839 114 185 0.0076  

29 187 0.9815 0.0098 0.9751 0.9816 0.9853 0.9849 0.9853 129 187 0.0047  

30 188 0.9771 0.0163 0.9874 0.9772 0.9845 0.9716 0.9874 122 188 0.0071  

31 189 0.9861 0.0067 0.9812 0.9847 0.9828 0.9721 0.9847 123 188 0.0056  

32 190 0.9863 0.0092 0.987 0.9804 0.9862 0.9587 0.987 126 188 0.0132  

33 191 0.9856 0.0107 0.9727 0.9836 0.978 0.9865 0.9865 127 190 0.0061  

Note:  represents the best solution found by the proposed MA is superior to the best solution found by the GA (Tavakkoli-Moghaddam , 2008). 
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Figure 2: Example of the general mutation. 
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Figure 4: Standard deviation of the fitness functions. 

 

 

In Fig. 5 for each problem, the standard deviation 

of fitness function of the proposed method is very 

low. This implies that the proposed approach is 

robust and credible. Because of the computational 

results and the standard deviation of fitness function 

of the proposed MA is better than GA, then the 

proposed MA is better than GA, which is 

represented by Tavakkoli-Moghaddam et al. (2008). 

6. Conclusion 

In this paper, we have proposed a memetic 

algorithm (MA) to solve a novel, mathematical 

model of a redundancy allocation problem without 

component mixing (RAPCM) for a series-parallel 

system, where either active or cold-standby 

redundancy can be selected for individual 

subsystems. The choice of redundancy strategies for 

each subsystem is much more realistic and provides 

a better tool for the designers. 

In general, this problem is not easy to solve in 

real cases, especially for large sizes. This is the 

motivation of using meta-heuristic methods for 

solving such a hard and complex problem. We have 

thus proposed the MA for solving this problem, 

which are more flexible in the sense that the 

practitioners are not limited to a single solution. 

Finally, it is showed that the computational results 

of our proposed MA are near-optimal solutions and 

the related result of this algorithm is better than the 

genetic algorithm (GA). All future researches can 

be classified in two main groups as follows: 

1. Develop the new mathematical model. As shows 

in Section 3.1, in the presented mathematical model, 

there are a lot of assumptions. We can develop this 

mathematical model by deleting these assumptions.   

2. Use another solution method. There are a lot of 

meta heuristics that can be useful for solution, such 

as tabu search, ant colony system, simulated 

annealing, immune algorithm, heuristic method, 

variable neighborhood descent algorithm, variable 

neighborhood search, and hybrid algorithms. 
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