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Abstract
This study considers instant decision-making needs of the automobile manufactures for resequencing vehicles before final

assembly (FA). We propose a rule-based two-stage stochastic model to determine the number of spare vehicles that should

be kept in the pre-assembly buffer to restore the altered sequence due to paint defects and upstream department constraints.

First stage of the model decides the spare vehicle quantities, where the second stage model recovers the scrambled

sequence respect to pre-defined rules. The problem is solved by sample average approximation (SAA) algorithm. We

conduct a numerical study to compare the solutions of heuristic model with optimal ones and provide following insights:

(i) as the mismatch between paint entrance and scheduled sequence decreases, the rule-based heuristic model recovers the

scrambled sequence as good as the optimal resequencing model, (ii) the rule-based model is more sensitive to the mismatch

between the paint entrance and scheduled sequences for recovering the scrambled sequence, (iii) as the defect rate

increases, the difference in recovery effectiveness between rule-based heuristic and optimal solutions increases, (iv) as

buffer capacity increases, the recovery effectiveness of the optimization model outperforms heuristic model, (v) as

expected the rule-based model holds more inventory than the optimization model.

Keywords Mixed-model assembly lines � Car resequencing � Heuristics � Stochastic programming

Introduction

Mixed- model assembly lines are common in automobile

industry since they allow to produce a great variety of

products in the same line. The efficiency of the line strictly

depends on production sequence, i.e., scheduled sequence,

which is determined to keep line’s work station loads and

material consumption as smooth as possible. If station

overloading or material shortage occurs, the cycle time

increases, and hence the line throughput decreases (Jadhav

et al. 2015; Rabbani et al. 2016, Rane and Sunnapwar

2017). Therefore, to meet daily demands, it is very

important to keep this scheduled sequence constant during

the manufacturing stages. However, even the production

starts with respect to the scheduled sequence, this sequence

is altered during manufacturing processes due to inten-

tional and unintentional reasons. Intentional sequence

alteration is needed to minimize costs related with down-

stream departments (Ding and Sun 2004; Sun et al. 2015;

Lahmar et al. 2003; Boysen et al. 2012). For instance, paint

shop admires to paint same color of vehicles in large bat-

ches to reduce paint purges. Unintentional sequence alter-

ation occurs due to unpredictable sequence disturbances

such as defective vehicles, material shortages, machine

breakdowns and need instant solutions (Boysen and Zenker

2013; Inman 2003; Meissner 2010).

Recovering the altered sequence is called as car rese-

quencing problem in the literature and firstly introduced by

Parrello et al. (1986). To recover the altered sequence due

to both intentional and unintentional reasons, a pre-

assembly buffer, i.e., painted body stock (Mehrjoo and

Bashiri 2013), is located between paint and FA depart-

ments. This buffer restores the sequence by (i) changing the
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positions of vehicles in the altered sequence, resequencing

function and (ii) inserting spare vehicles instead of defec-

tive vehicles or late vehicles which fell behind more than

buffer capacity, so it is not possible to change the position

of a vehicle by just resequencing, storage function.

There are two types of buffers commonly used in the

industry: ASRS and mix-bank. Even two buffers restore the

altered sequence by their resequencing and storage func-

tions, the difference comes from their working principle.

Every storage unit in ASRS has a unique access, so a

vehicle in the postpaint sequence, i.e., the exit order of

vehicles leaving paint shop, can be inserted into any stor-

age unit; similarly any vehicle in the ASRS buffer can be

released into FA entrance sequence without any prece-

dence rules. However, mix-bank buffer has parallel lanes;

each acts as a queue and works with first-in-first-out (FIFO)

principle.

Studies in the literature except Ding and Sun (2004) and

Gunay and Kula (2017) consider resequencing function of

the buffer rather than its storage function. These studies

can also be classified into two fold: (i) buffer capacity

determination problem, and (ii) FA entrance sequence

determination problem. Inman (2003) determines buffer

capacity of an ASRS type buffer to restore the altered

sequence for a specified service level defined by car

manufacturers. Meissner (2010) also studies buffer capac-

ity determination problem for restoring the altered

sequence for mix-bank type buffer and also compares the

resequencing performances of both ASRS and mix-bank

buffer by measuring the similarity between FA entrance

sequence and scheduled sequence. Gusikhin et al. (2008)

find optimal FA entrance sequence that minimizes the

violation from FA station capacities for ASRS type buffer.

Boysen et al. (2010, 2011) consider same problem for other

common buffer type, pull-off table. They also perform a

numerical study to determine buffer capacity. Extending

these researches on pull-off table, Boysen and Zenker

(2013) propose exact and metaheuristic methods to decide

FA entrance sequence under minimization of FA constraint

violation for mix-bank buffer. Mehrjoo and Bashiri (2013)

propose a decision support system to predict the production

capability of an automobile company for a given produc-

tion plan based on the historical shop floor data. They

consider the stochastic nature of the production environ-

ment in terms of defect occurrences, machine breakdowns,

etc. and suggest a logistic regression-based prediction tool

to do a pre-check on production planning before the

detailed plan on FA sequence and the number of spare

vehicles to be located in the pre-assembly buffer.

FA entrance sequence determination problem is

dynamic and should be considered in a rolling horizon

fashion. To find the optimal FA entrance order, the prob-

lem must be solved considering all the vehicles in the line.

However, it is not possible to know the sequence of vehi-

cles that leave paint shop in advance since randomly

occurred paint defects mixes the sequence unintentionally.

Additionally, it is not possible to stop the flowing line to

determine optimal FA sequence that perfectly overlaps

with scheduled sequence. The order of the vehicle in the

FA entrance sequence must be decided instantly and there

is no time to wait for the optimal FA entrance sequence.

Boysen et al. (2012) call this type of resequencing as

reactive resequencing. Therefore, the action of whether to

store the coming vehicle in the buffer or allocate it to the

FA entrance sequence must be decided instantly.

Recovery effectiveness of the altered sequence is mea-

sured by Scheduled Sequence Achievement Ratio (SSAR).

SSAR shows the ratio of correctly ordered vehicles in the

FA entrance sequence with respect to scheduled sequence.

To succeed high SSAR, storage function is important as

resequencing function since it is not always possible to

increase SSAR by just changing the positions of vehicles in

the postpaint sequence. Therefore, spare vehicles located in

the buffer can be inserted instead of defective or late

vehicles. Determination of the number of spare vehicles in

the buffer from each model and color is called as buffer

content determination problem. Ding and Sun (2004) pro-

pose a queuing model to determine the number of spare

vehicles stored in the buffer under random defect occur-

rences. However, their model is away from satisfying a

specific match ratio between FA entrance and scheduled

sequence. Their model determines spare vehicles to sustain

a daily production level.

Gunay and Kula (2017) also consider buffer content

problem to maximize SSAR under random paint defect

occurrences. Their model assumes that the resequencing

decision in the FA sequence is performed optimally.

However in practice, before FA, resequencing and storage

functions of the buffer are performed by workers since

there is no time to solve the optimal FA entrance sequence

of vehicles. Therefore, workers need to make instant

decisions in the line. In this study, we propose a rule-based

heuristic model to determine spare vehicle model–color

combinations in the ASRS buffer when workers recover the

scrambled sequence according to pre-defined rules. The

contribution of our study to the literature is in twofold:

(i) consideration of the instant decision making of the

assembly line, (ii) consideration of unintentional sequence

alteration caused by randomly occurred paint defects to

determine number of spare vehicles in the buffer that

maximizes SSAR. Once the buffer content is determined

based on heuristic rules, workers proceed the resequencing

rules to decide FA entrance sequence. Therefore, from the

point of instant decision-making needs of the mixed-model

line, our model determines the number of spare vehicle

content for the case where the resequencing is made with
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respect to the pre-defined rules by workers. Since we

consider randomly occurred paint defects, the problem is

modelled by stochastic programming.

In section ‘‘Two-stage stochastic rule-based model’’, we

propose a two-stage stochastic rule-based model to deter-

mine number of spare vehicles from each model and color

under heuristic rules defined for workers that maximizes

SSAR. Section ‘‘Sample average approximation (SAA)

algorithm’’ discusses our solution methodology, Sample

Average Approximation (SAA) algorithm. Sec-

tion ‘‘Numerical study’’ performs a numerical study to

compare the solutions of rule-based model with optimal

solutions. Section ‘‘Conclusion’’ concludes the paper and

articulates the importance and the contribution of the

problem also discusses the future extension of the study.

Two-stage stochastic rule-based model

Our objective is to determine the number of spare vehicles

kept in the buffer from each model and color to restore the

scrambled postpaint sequence respect to the predefined rules

for workers. Figure 1 illustrates how our proposed model

provides a solution to recover the scrambled postpaint

sequence. Assume a block of postpaint sequence includes

four vehicles S = 4 and ai shows the order of the vehicles

from left to right to properly represent the flow in the post-

paint sequence, aS ¼ ð4; 1; 3; 2Þ. The abbreviations ‘‘M’’ and

‘‘C’’ represent the model type and the color of the vehicles.

For instance, M1C5 shows that the vehicle is Model 1 type

and its color number is 5. Defective vehicles in the sequence

are represented as n xð Þ ¼ ð1; 0; 0; 0Þ, where ‘‘1’’ indicates

that the fourth vehicle in the block is defective. The pre-

assembly buffer restores the scrambled postpaint sequence

before FA by its resequencing and storage functions. Rese-

quencing function is performed with the empty locations in

the buffer. Therefore, there should be enough space in the

buffer for resequencing vehicles before FA. In Fig. 1; all the

vehicles except the defective ones (1, 3, 2) are temporarily

stored in the buffer and then released according to the

scheduled sequence. Since the fourth vehicle is defective, it

is taken from the line to touch-up area for repainting. A same

model and color spare vehicle is released instead of defective

vehicle (4th). The first stage of our stochastic model deter-

mines the number of spare vehicles from each model and

color, i.e., buffer content, needs to be stored in the buffer.

Determining the buffer content is critical to recover the

postpaint sequence. If the desired model–color vehicle is not

stored in the buffer, it will not be possible to restore the

postpaint sequence. The second stage of the model decides

the releasing order of the vehicles to FA yijkh, based on the

rules defined for workers that maximizes SSAR. In Fig. 1

respect to the solution of the second stage model, the FA

sequence is determined as a0S ¼ ðS½4�; 3; 2; 1Þ, where S[4]

shows that a spare vehicle is released instead of 4th vehicle.

Our first stage variable, which shows the number of

vehicles, should be kept in the pre-assembly buffer from

each model j and color k xjk is decided before random event

nð Þ, paint defects, occurred. Following, according to the

realization of paint defects, FA entrance sequences of

vehicles are decided based on the rules defined for workers

that maximizes SSAR. The rules defined for workers are

below:

Rule 1 Defective vehicles must be taken off the line.

Rule 2 The sequence alteration is performed for each

block of ‘‘NLV’’ vehicles. Let b shows the block number,

any vehicle in the previous or next blocks must not be

assigned to block b.

Rule 3 For every block of NLV vehicles, assign vehicles

to FA sequence as close as scheduled sequence.

Rule 4 Remaining vehicles for each block should be

randomly assigned. However, capacity constraint of FA

for each model j must not be violated. If this is not

possible, leave empty spaces between difficult models to

avoid overloading in FA stations.

Model parameters

S ¼ Sequence size

M ¼ Total type of vehicles

C ¼ Total number of colors

dijk nð Þ ¼ 0; if ith model j and color k car is defective

1; otherwise

�

Hj : Sj ¼ no more thanHjvehicle is allowed out of Sjvehicles

Fig. 1 Recovering the postpaint

sequence by two-stage

stochastic model
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NLV ¼ Number of vehicles in a block that is resequenced

BC ¼ Buffer capacity e ¼ Very small number BM

¼ Very big number

Decision variables

xjk ¼ number of model j color k vehicles in the buffer

Decision expressionsj

Subscripts

i : The position number of the vehicles

in the postpaint sequence i ¼ 1; . . .; S

h : The position number of the vehicles

in the FA entrance sequence h ¼ 1; . . .; S

j : The number of different models j ¼ 1; . . .;M

k : The number of different colors k ¼ 1; . . .;C

In the following model, we write all the rules as a linear

constraint. Our first stage problem is presented by Eqs. (1)

and (2). The objective function in Eq. (1) maximizes

scheduled sequence achievement ratio, SSAR. According

to constraint in Eq. (2), the number of spare vehicles must

not exceed the buffer capacity.

max
x

f xð Þ ¼ E Q x; nð Þ½ � ð1Þ

XM
j¼1

XC
k¼1

xjk �BC ð2Þ

Objective function Qðx; nÞ in Eq. (1) is the objective

function of the second stage problem presented by Eqs. (3–

17) below. The objective function Qðx; nÞ maximizes the

SSAR and written as in Eq. (3).

maxQðx; nÞ ¼ 1�
PM

j¼1

PC
k¼1

PS
h¼1 cjkhðnÞ

S

 !
� 100 ð3Þ

dijk nð Þ ¼
XS
h¼1

yijkh nð Þ

8i ¼ 1; . . .; S; j ¼ 1; . . .;M; k ¼ 1; . . .;C

ð4Þ

XM
j¼1

XC
k¼1

yijkh nð Þ ¼ 0

8i ¼ 1; . . .; S; h\
i

NLV
� e

� �
� NLV þ 1

ð5Þ

XM
j¼1

XC
k¼1

yijkh nð Þ ¼ 0 8i ¼ 1; . . .; S; h[
i

NLV

� �
� NLV

ð6Þ

yijkh nð Þ þ zjkh nð Þ[BM dijk nð Þ þ scjkh � 2
� �

8i ¼ 1; . . .; S; j ¼ 1; . . .;M; k ¼ 1; . . .;C;

i

NLV
� e

� �
� NLV þ 1� h� i

NLV

� �
� NLV

ð7Þ

scjkh ¼
1; if model j and color k car is assigned to position h in the scheduled sequence

0; otherwise

�

yijkh nð Þ ¼ 1; if ithmodel j color k car in the postpaint sequence is assigned to hthposition in FA sequence

0; otherwise

�

zjkh nð Þ ¼ 1; if model j and color k car in the buffer is assigned to hth position in FA entrance sequence

0; otherwise

�

fjkh nð Þ ¼ 1; if model j color k car is assigned to hthposition in the FA entrance sequence

0; otherwise

�

cjkh nð Þ ¼ 1; if violation occurs b=w FA and scheduled sequence in the hth position for model j and color k

0; otherwise

�
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yijkh nð Þ þ zjkh nð Þ� e dijk nð Þ þ scjkh
� �

þ 1

8i ¼ 1; . . .; S; j ¼ 1; . . .;M; k ¼ 1; . . .;C;

i

NLV
� e

� �
� NLV þ 1� h� i

NLV

� �
� NLV

ð8Þ

fjkh nð Þ ¼
XS
i¼1

yijkh nð Þ þ zjkh nð Þ

8j ¼ 1; . . .;M; k ¼ 1; . . .;C; h ¼ 1; . . .; S

ð9Þ

cjkh nð Þ� scjkh � fjkh nð Þ
8j ¼ 1; . . .;M; k ¼ 1; . . .;C; h ¼ 1; . . .; S

ð10Þ

XC
k¼1

XminfhþSj�1;Sg

h0 ¼h

fjkh0 nð Þ � 1�
XC
k¼1

fjkhðnÞ
 !

BM�Hj

8j ¼ 1; . . .;M; h ¼ 1; . . .; S

ð11Þ
XM
j¼1

XC
k¼1

fjkh nð Þ� 1 8h ¼ 1; . . .; S ð12Þ

XS�1

i¼1

XM
j¼1

XC
k¼1

XS
h¼iþ1

yijkhðnÞ� 1 ð13Þ

XM
j¼1

XC
k¼1

yijkh nð Þ i� hð Þ þ
XM
j¼1

XC
k¼1

xjk �BC

8i[ h; i ¼ 2; . . .; S; h ¼ 1; . . .; S� 1

ð14Þ

xjk �
XS
h¼1

zjkh nð Þ 8j ¼ 1; . . .;M; k ¼ 1; . . .;C ð15Þ

yijkh nð Þ; zjkh nð Þ; cjkh nð Þ� 0; 1f g
8i ¼ 1; . . .; S; j ¼ 1; . . .;M; k ¼ 1; . . .;C; h ¼ 1; . . .; S

ð16Þ

xjk 2 Zþf g 8j ¼ 1; . . .; M; 1; k ¼ 1; . . .; C ð17Þ

According to Rule 1, defective vehicles are re-sent to

paint and not released to FA. This rule is written in Eq. (4).

Since resequencing decision is made for each block

includes ‘‘NLV’’ vehicles, vehicles in block ‘‘b’’ cannot

jump forward to a previous block ‘‘b - 1’’ in the FA

entrance sequence as constraint (5) shows. Similarly,

vehicles in block ‘‘b’’ cannot jump backward to following

block ‘‘b ? 1’’ as in constraint (6). Rule 2 is satisfied by

both constraints (5) and (6). Size of a block ‘‘NLV’’is kept

small enough to allow workers making sequence adjust-

ments. It is bounded with five vehicles in our numerical

study.

Equations (7) and (8) are written to satisfy Rule 3.

According to rule 3; every coming ‘‘NLV’’ vehicles from

paint shop are resequenced with respect to the scheduled

sequence. Equation (9) shows the FA entrance sequence of

vehicles. FA entrance sequence both includes vehicles

arriving from postpaint sequence, yijkh nð Þ and spare vehi-

cles stored in the buffer, zjkh nð Þ. Equation (10) compares

the FA entrance and scheduled sequence. This equation is

written for Rule 3. Equation (11) prevents assembly con-

straint violation for each vehicle model type. Equation (12)

allows leaving spaces between vehicles in the FA entrance

sequence. Rule 4 which is satisfied by Eqs. (11) and (12)

assigns vehicles to the FA sequence to prevent model

constraint violations and leaves empty spaces between

difficult models to avoid overloading in FA.

Equations (13–17) are needed to solve the rule-based

heuristic model and do not involve the rules defined to

workers. Equation (13) guarantees that at least one vehicle

must jump ahead in the FA entrance sequence (see Inman

2003). Equation (14) is written to satisfy capacity con-

straint. Buffer capacity should be large enough to tem-

porarily store vehicles in the postpaint sequence for

changing the positions and store spare vehicles. Not all the

spare vehicles in the buffer may be released to the FA

entrance sequence as seen in Eq. (15). Lastly, Eqs. (16–17)

present the variable types used in the model.

Sample average approximation (SAA)
algorithm

Calculation of the expected scheduled sequence achieve-

ment ratio E½Q x; nð Þ� is difficult when number of scenarios

is large (Santoso et al. 2005). In our problem, the number

of scenario depends on sequence size, number of model

and color types. SAA is a simulation based algorithm used

to predict the expectation of the true problem by sampling

(Kleywegt et al. 2001). The idea is predicting the objective

function and solution of the true problem by taking a

sample size of N and solve the problem in Eq. (18) known

as SAA problem. In Eq. (18), x and cT shows the optimal

spare vehicles in the buffer of SAA problem, i.e., first stage

variable, and the cost occurred due to first stage variable x,

respectively. However, no cost occurs according to first

stage variable x. Therefore, the SAA problem in Eq. (18) is

rewritten as in Eq. (19). The optimal solution and the first

stage variable of the true problem are presented by z� and

x� respectively. The optimal solution and the first stage

variable of the SAA problem are presented by zN and bx. As
the size of N increases, the difference between the optimal

solution z� and SAA problem zN converges to very small

number e.

bzN ¼ max
x�X

cTxþ 1=N

XN
n¼1

Qðx; nnÞ
 !

ð18Þ
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bzN ¼ max
x�X

1=N

XN
n¼1

Qðx; nnÞ
 !

ð19Þ

The steps of the SAA are as below:

Step (1) Generate R independent samples each of size

N. For each r = 1,…, R, solve the SAA problem (Eq. 19)

and calculate objective value bzrN and optimal solution bxrN
for each rth sample. Optimal solution bxrN is a vector which

shows the optimal number of spare vehicles in each

model–color, bxrN ¼ bx11; . . .; bxjk; . . .;bxMC

� �
:

Step (2) Calculate the expected objective value z of R

problems in step 1, z ¼ 1
R

PR
r¼1 bzrN , and find the maxi-

mum of solutions bx� ¼ argmaxbxr
N

bzrN	 

. The first stage

variable that achieves maximum solution, bx�, is the

estimator of the optimal spare vehicle model–color

combination in the buffer that maximizes SSAR.

Step (3) Fix the first stage variable that achieves

maximum solution, bx� as a first stage decision variable

and increase the sample size from N to N‘. Then solve

the second stage problem bzN0 ðbx�Þ, which is the determi-

nation of FA sequence of vehicles under bx� spare

vehicles are allocated into the pre-assembly buffer

bzN0 bx�ð Þ ¼ 1
N 0
PN 0

n¼1

Qðbx�; nnÞ.
Step (4) Estimate the optimality gap bzN 0 bx�ð Þ � z and the

variance of the gap br2bzN0 ðbx�Þ�z
¼ br2

z þ br2bzN0 ðbx�Þ where

variance of bzN 0 bx�ð Þ equals to br2bxN‘ bx�ð Þ ¼
1

N0ðN0�1Þ

PN 0

n¼1

½Q bx�; nnð Þ � bzN0 bx�ð Þ� and variance of z equals to

br2
z ¼ 1

RðR�1Þ
PR
r¼1

ðbzrN � zÞ2.

If optimality gap bzN 0 bx�ð Þ � z is sufficiently small then

stop, otherwise increase R, N and N‘ and repeat steps 1

through 4. In our study, we stop when the optimality gap is

less than % 0.2.

Numerical study

In this part of the study, we perform two set of experi-

ments. First part includes the evaluation of the run time of

the SAA algorithm while the second part includes the

comparison of the SSAR levels obtained from rule-based

model and optimal resequencing model. The model is

solved by GAMS 23.5.2 using CPLEX solver. All

numerical examples are run on an Intel(R) Core(TM)2 Duo

2.67 GHz CPU PC with 2 GB of memory.

In numerical examples, we assume that there are three

different model types say Model 1, Model 2, Model 3 and

five different colors say Color 1,…,Color 5. The FA con-

straints for each model type are H1 : S1 ¼ 1=3, H2 : S2 ¼
1=3 and H3 : S3 ¼ 2=3, respectively. To evaluate the run

time of the SAA algorithm, we consider four different

sequence sizes: 50, 100, 200 and 400 vehicles under dif-

ferent buffer capacities: 15, 30, 60 and 120 vehicles. For

each sequence size, we run the algorithm for five different

randomly generated sequences and then report the average

the run times on Table 1. For instance, the average run time

for five different sequences is 4.8 min for sequence size of

50 vehicles.

The company produces 600 vehicles in a day. In

Table 1, we solve the problem size of 200 vehicles in

22.1 min and 300 vehicles in 85.5 min. Since the solution

time increases exponentially as the sequence increases, the

problem can be solved for each shift which includes 300

vehicles. The company shares the production requirements

with suppliers 3–4 days before the production starts

(Boysen et al. 2012), so company has enough time to solve

and make necessary adjustments for spare vehicle pro-

duction. Once the company determines the optimal number

of spare vehicles from each model and color combination,

workers will decide on the FA entrance sequence instantly

according to the defined rules.

Second part of the numerical study includes a numerical

study for calculating the SSAR under different levels of

defect rate, buffer capacity and paint entrance ratio (PER).

PER is the ratio of vehicles that are in the correct position

according to scheduled sequence before paint shop. For

high PER levels, the match between paint entrance and

scheduled sequence is high and the match is low for low

PER levels vice versa. In the numerical study, we consider

a sequence of 50 vehicles that includes three different

model types and five different colors. PER is considered in

four different levels: 30, 50, 70, 90%; defect rate in three

levels: 10, 20, 30%; lastly buffer capacity in two levels: 10

and 15 vehicles. Totally, we perform 4 9 3 9 2 = 24

experiments for rule-based resequencing model. The

Table 1 Run time performance

of the SAA algorithm
Sequence size, S (vehicles) Buffer capacity, BC (vehicles) Run time (min)

50 15 4.8

100 30 8.5

200 60 22.1

300 120 85.5
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results of the numerical study and the comparison of the

rule-based model with optimal resequencing model (Gunay

and Kula 2017) are tabulated in Table 2 based on average

SSAR levels and 95% confidence intervals (CI). The 95%

CI of SSAR for both two models are given in the paren-

thesis. For instance at 30% PER level with 10% defect rate

under 10 vehicles buffer capacity, the average SSAR and

95% confidence interval are 74.83 and 74.2–75.5%,

respectively, for optimal resequencing model. For the same

parameters, the average SSAR and 95% confidence interval

are 64.2 and 63.4–65.2% for rule-based heuristic model.

The mean SSAR difference between optimal resequencing

and rule-based heuristic model is 10.63%.

In Table 2 at low PER levels, since rule-based model

rebuilds the FA entrance sequence according to the defined

rules rather than optimization, mean SSAR difference is

high relative to high PER levels. As PER level raises, i.e.,

the number of vehicles which is correctly ordered with

respect to the scheduled sequence increases, there will be

less change in the positions of vehicles; so the mean dif-

ference between optimal resequencing and rule-based

model decreases. Generally, after 50% PER levels, there is

no difference between rule-based model and optimal

resequencing model. Therefore, if a certain level of simi-

larity between scheduled sequence and paint entrance

sequence is achieved, i.e., above 50% PER, rule-based

heuristic model can be used instead of optimal rese-

quencing model. As a second insight, the difference

between optimal and heuristic solution is very sensitive to

the PER rather than defect rate and buffer capacity. At 30%

PER in all defect rates and buffer capacities optimal

resequencing model outperforms. However in other PER

levels, it is possible to achieve same SSAR levels with

optimal resequencing model by increasing the buffer

capacity or decreasing the defect rate. This insight leads

manufacturers that if the coordination between paint and

FA is poor, rule-based heuristic model will not be effective

as optimal resequencing model.

Table 2 shows that as defect rate increases, the mean

SSAR difference between two models increases. The rea-

son can be explained as follows: when defect rate increa-

ses, new position assignment of vehicles would be limited

and would not be flexible as lower defect rate case so the

mean SSAR of both models get closer. Numerical study in

Table 2 Comparison of mean SSAR for optimal resequencing model (Gunay and Kula 2017) and rule-based resequencing model

PER

(%)

Defect rate

(%)

Buffer capacity

(vehicle)

Mean SSAR for optimal resequencing

model (%)

Mean SSAR for rule-based

model (%)

Mean SSAR

difference (%)

30 10 10 74.83 (74.2–75.5) 64.2 (63.4–65.2) 10.63

30 20 10 68.73 (67.7–69.7) 59.37 (58.4–60.3) 9.36

30 30 10 58.10 (56.9–59.3) 54.17 (53.2–55.2) 3.93

30 10 15 85.03 (84.2–85.9) 74.43 (73.6–75.2) 10.60

30 20 15 75.20 (74.3–76.1) 66.27 (65.0–67.5) 8.93

30 30 15 68.03 (66.7–69.3) 61.47 (60.4–62.5) 6.56

50 10 10 77.93 (77.1–78.8) 76.13 (74.9–77.4) No difference

50 20 10 70.77 (69.8–71.8) 69.77 (68.7–70.9) No difference

50 30 10 62.7 (61.4–64.0) 62.23 (61.1–63.4) No difference

50 10 15 89.20 (88.5–89.9) 85.73 (84.6–86.9) 3.47

50 20 15 81.20 (80.1–82.3) 78.03 (77.0–79.0) 3.17

50 30 15 72.97 (71.7–74.3) 71 (69.8–72.2) No difference

70 10 10 83 (82.1–84.0) 78.53 (77.5–79.5) 4.47

70 20 10 72.83 (71.7–74.0) 73.53 (72.5–74.6) No difference

70 30 10 64.97 (63.8–66.2) 63.53 (62.4–64.7) No difference

70 10 15 90.30 (89.6–91.0) 90.13 (88.9–91.3) No difference

70 20 15 84.2 (83.2–85.2) 82.83 (81.6–84.0) No difference

70 30 15 76.90 (75.7–78.1) 73.4 (72.3–74.6) 3.5

90 10 10 93 (92.2–93–9) 91.03 (90.0–92.0) 1.97

90 20 10 85.40 (84.0–86.9) 82.93 (81.8–84.1) No difference

90 30 10 78.02 (77.1–79.0) 73.73 (72.4–75.1) 4.29

90 10 15 95.90 (95.2–96.6) 96 (95.1–97.0) No difference

90 20 15 90.70 (89.7–91.7) 88.8 (87.8–89.8) No difference

90 30 15 83.07 (81.7–84.4) 82 (80.7–83.3) No difference
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Table 2 also shows that enlargement of the buffer capacity

increases the mean SSAR difference between two models.

Smaller size buffers restrict the position change of vehicles

therefore the difference between optimal and rule-based

heuristic resequencing model decreases or even same

results are obtained from both models. However, larger

size buffers allow to change many of the vehicles‘ posi-

tions, so optimal resequencing model outperforms.

Table 3 reports the buffer content of the experiments in

Table 2 in terms of model types, colors and quantity. In

Table 3, the numbers in the parenthesis show the quantity

stored in the pre-assembly buffer from each type of vehi-

cle. In all experiments rule-based resequencing model

stores more spare vehicles than optimal resequencing

model. A trade-off between holding a large inventory and

Table 3 Comparison of spare vehicles located in the buffer for rule-based and optimal resequencing model (Gunay and Kula 2017)

PER (%) ASRS capacity, BC = 10;

NLV = 5 rule-based

resequencing

ASRS capacity, BC = 10

optimal resequencing

ASRS capacity, BC = 15;

NLV = 5 rule-based

resequencing

ASRS capacity, BC = 15

optimal resequencing

Defect rates Defect rates Defect rates Defect rates

10% 20% 30% 10% 20% 30% 10% 20% 30% 10% 20% 30%

30 M2C1 (1)

M2C3 (1)

M2C4 (1)

M3C3 (1)

M3C4 (2)

M3C5 (2)

M2C1 (1)

M2C3 (1)

M2C4 (1)

M3C1 (2)

M3C3 (2)

M3C4 (1)

M3C5 (1)

M1C3 (1)

M2C1 (1)

M2C3 (1)

M2C4 (1)

M3C1 (2)

M3C3 (2)

M3C4 (1)

M3C5 (1)

– – – M1C3 (1)

M2C1 (1)

M2C3 (1)

M2C4 (1)

M3C1 (2)

M3C3 (2)

M3C4 (1)

M3C5 (1)

M1C5 (1)

M2C1 (1)

M2C4 (1)

M3C1 (2)

M3C3 (3)

M3C4 (2)

M3C5 (1)

M1C2 (1)

M1C3 (2)

M1C4 (1)

M2C1 (1)

M2C2 (1)

M2C3 (1)

M3C1 (2)

M3C3 (1)

M3C4 (3)

M3C5 (1)

M2C4(2)

M3C1(2)

M3C2(1)

M1C2(1)

M2C1(1)

M3C2(3)

M3C3(1)

M3C4(1)

M3C5(1)

M1C3(1)

M3C1(2)

M3C3(2)

M3C4(1)

M3C5(2)

50 M1C3 (1)

M2C1 (1)

M2C5 (1)

M3C1 (1)

M3C2 (1)

M3C3 (1)

M3C4 (2)

M1C3 (1)

M2C1 (1)

M2C5 (1)

M3C1 (2)

M3C2 (1)

M3C3 (1)

M3C4 (1)

M1C2 (1)

M1C3 (1)

M2C1 (1)

M2C3 (1)

M2C5 (1)

M3C1 (1)

M3C2 (1)

M3C4 (2)

M3C5 (1)

M1C3(1)

M1C4(1)

M1C4(1)

M2C5(1)

M3C1(1)

M3C3(1)

M1C4(1)

M1C5(1)

M2C3(1)

M3C1(1)

M1C3 (1)

M1C4 (1)

M2C1 (1)

M2C5 (1)

M3C1 (2)

M3C3 (1)

M3C4 (1)

M3C5 (2)

M1C3 (1)

M1C4 (1)

M1C5 (1)

M2C1 (1)

M2C3 (1)

M2C5 (1)

M3C1 (1)

M3C3 (1)

M3C4 (1)

M3C5 (1)

M1C3 (1)

M2C1 (1)

M2C3 (1)

M2C5 (1)

M3C1 (2)

M3C2 (1)

M3C3 (2)

M3C4 (2)

M3C5 (1)

M1C3(1)

M2C1(1)

M2C5(1)

M3C1(2)

M3C2(1)

M3C4(1)

M1C3(1)

M1C5(1)

M2C1(1)

M3C1(2)

M3C2(2)

M3C3(1)

M1C5(1)

M2C3(1)

M2C5(1)

M3C1(2)

M3C3(3)

M3C4(1)

70 M1C4 (1)

M2C1 (1)

M2C3 (1)

M3C1 (2)

M3C2 (1)

M3C3 (2)

M1C2 (1)

M2C1 (1)

M2C3 (1)

M3C1 (2)

M3C3 (1)

M3C4 (1)

M3C5 (2)

M1C3 (1)

M2C1 (1)

M2C2 (1)

M2C3 (1)

M3C3 (4)

M3C4 (1)

M2C1(1)

M2C3(1)

M3C2(1)

M3C3(1)

M1C4(1)

M2C3(1)

M3C1(2)

M2C3(1)

M3C2(1)

M3C3(1)

M3C4(1)

M3C5(2)

M2C1 (1)

M2C3 (1)

M3C1 (2)

M3C2 (1)

M3C3 (4)

M3C4 (1)

M1C3 (1)

M2C1 (1)

M2C2 (1)

M2C3 (1)

M3C1 (3)

M3C2 (1)

M3C3 (2)

M3C5 (1)

M1C2 (1)

M2C1 (1)

M2C3 (1)

M2C4 (1)

M3C1 (4)

M3C2 (1)

M3C3 (4)

M3C4 (1)

M2C1(1)

M2C2(1)

M2C3(1)

M3C1(3)

M3C2(1)

M3C4(1)

M3C5(1)

M2C1(1)

M2C2(1)

M2C3(1)

M3C1(1)

M3C3(2)

M3C4(2)

M3C5(1)

M1C2(1)

M2C1(1)

M3C1(2)

M3C3(2)

M3C4(2)

M3C5(2)

90 M2C1 (1)

M2C4 (1)

M3C1 (2)

M3C3 (2)

M3C5 (2)

M1C2 (1)

M1C3 (1)

M1C5 (1)

M2C1 (1)

M2C3 (1)

M3C1 (1)

M3C2 (1)

M3C3 (1)

M3C4 (1)

M3C5 (1)

M1C2 (1)

M2C1 (1)

M2C2 (1)

M2C3 (2)

M2C5 (1)

M3C1 (1)

M3C3 (1)

M3C5 (2)

M1C2(1)

M2C1(1)

M2C4(1)

M3C1(1)

M3C2(1)

M3C3(1)

M1C4(1)

M2C1(1)

M2C3(1)

M2C4(1)

M3C1(1)

M3C3(2)

M3C4(1)

M1C4(1)

M2C1(1)

M2C4(1)

M3C1(1)

M3C3(2)

M3C4(2)

M1C5 (1)

M2C1 (1)

M2C4 (1)

M3C1 (2)

M3C2 (2)

M3C3 (3)

M1C5 (1)

M2C1 (1)

M2C3 (1)

M2C4 (1)

M3C1 (1)

M2C2 (1)

M3C3 (1)

M3C4 (2)

M3C5 (1)

M1C2 (1)

M2C1 (1)

M2C3 (1)

M2C4 (2)

M3C1 (2)

M3C3 (3)

M3C4 (3)

M2C1(1)

M2C3(1)

M2C4(1)

M3C1(3)

M3C2(1)

M3C3(1)

M3C5(1)

M2C1(1)

M2C4(1)

M3C1(1)

M3C2(2)

M3C4(2)

M3C5(2)

M1C2(1)

M2C1(1)

M2C2(1)

M2C4(1)

M3C1(1)

M3C2(1)

M3C3(1)

M3C4(1)

M3C5(2)
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ceasing the production to decide optimal FA entrance order

should be made.

Conclusion

In this paper, we develop a two-stage stochastic rule-based

model to determine spare vehicles located in ASRS buffer

for rebuilding the scrambled postpaint sequence before FA.

The model considers unintentional sequence alteration due

to paint defects and the need of instant decision-making of

the assembly line. Therefore, the number of spare vehicles

from each vehicle model–color combination is determined

according to the rules performed by workers on the line to

resequence the altered sequence. Even different rules are

performed by other automobile firms, the spare vehicle

content of the buffer can be determined based on these

rules. Once the spare vehicles that should be located in the

buffer are decided, workers make instant sequence

adjustments to restore the sequence and no stoppages occur

to wait for the optimal FA entrance order.

We solve the problem with SAA since the number of

scenarios exponentially increases due to sequence size and

number of model, color type. Then, we perform a numer-

ical study to compare the performance of rule-based model

with optimal resequencing model. According to numerical

study, (i) as the coordination between paint and FA

increases to determine scheduled sequence, i.e., high PER,

rule-based model performs as good as optimal resequenc-

ing model. (ii) rule-based model is more sensitive to the

PER rather than defect rate and buffer capacity, at low PER

optimal resequencing outperforms even defect rate or

buffer capacity increases. (iii) as defect rate increases, the

mean SSAR difference between two models increase, (iv)

the increase on buffer capacity increases the mean SSAR

difference between two models. (v) rule-based model holds

larger inventory and, however, responses quickly, so a

trade-off between holding large inventory and ceasing the

production to decide optimal FA entrance should be made.

A future extension of the study can be performed to

determine spare vehicle content for mix-bank type buffer.

Decreasing the solution time of the model is another

direction of the study. By using the metaheuristics, the

solution time can be decreased; so the spare vehicle content

determination can be performed for a daily production at

once.
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