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Abstract
We consider a rich tanker trailer routing problem with stochastic transit times for chemicals and liquid bulk orders. A typical 
route of the tanker trailer comprises of sourcing a cleaned and prepped trailer from a pre-wash location, pickup and delivery 
of chemical orders, cleaning the tanker trailer at a post-wash location after order delivery and prepping for the next order. 
Unlike traditional vehicle routing problems, the chemical interaction properties of these orders must be accounted for to 
prevent risk of contamination which could impose complex product-sequencing constraints. For each chemical order, we 
maintain a list of restricted and approved prior orders, and a route is considered to be feasible if it complies with the prior 
order compatibility relationships. We present a parallel computation framework that envelops column generation technique 
for large-scale route evaluations to determine the optimal trailer-order-wash combinations while meeting the chemical com-
patibility constraints. We perform several experiments to demonstrate the efficacy of our proposed method. Experimental 
results show that the proposed parallel computation yields a significant improvement in the run time performance. Addition-
ally, we perform sensitivity analysis to show the impact of wash capacity on order coverage.

Keywords Vehicle routing problem · Stochastic transit times · Compatibility constraints · Column generation · Parallel 
computation

Introduction

According to American Chemical Council (ACC), the chem-
ical industry accounts for a $797B enterprise that is pro-
jected to increase its capacity by 18% in 2020, resulting in 
complexity in transportation (Baldwin 2017). For chemical 
and liquid bulk transportation companies such as Schneider 
National, a fleet could be comprised of thousands of trailers, 
across which hundreds of new orders per day are dispatched. 
Over the course of a year, tens of thousands of distinct orders 
may be transported. Unlike classical transportation prob-
lems (Dantzig and Ramser 1959), chemical transportation 
involves two additional constraints: hazardous interaction 
properties among chemicals, and washing decisions (e.g., 
location, wash type) for trailers after delivery. These con-
straints need to be addressed in addition to those involved 

with standard vehicle routing problems, making the problem 
complex. Typically, the customer orders represent requests 
to freight chemicals that are characterized by a set of attrib-
utes consisting of an origin and destination locations, pickup 
and delivery time windows, an order specification, restric-
tions based on prior orders. The execution of each task 
requires several inter-dependent sourcing decisions such as: 
(1) determine suitably cleaned, and configured tanker trail-
ers that are compatible with chemical order requirements, 
(2) check whether the previous contents of the trailer meet 
compatibility rules for the new chemical order, (3) select 
another tank-wash facility (post-wash location) where the 
trailer will be washed and prepped for the subsequent order.

There are two main contributions of this research. Firstly, 
to address large-scale nature of this problem, we show 
how parallel computation framework can be implemented 
for large-scale route evaluations with order compatibility 
checks to significantly reduce the total run time and number 
of iterations required for traditionally used column genera-
tion approach to such problems and determine the optimal 
trailer-order-wash combinations. Secondly, using numeri-
cal experiments, we show the performance of our approach 
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under different scenarios with varying number of trailers, 
orders and tank-wash locations. We also show how order 
incompatibilities impact the choice to trailer and wash selec-
tion. Additionally, we analyze the impact of wash constraints 
(capacity, location, etc.) on the order coverage.

The rest of the paper is organized as follows. “Problem 
description” section  describes the system model and assump-
tions. “Mathematical model” section  presents the mathe-
matical model formulation of the proposed method. Using 
these specialized set of mathematical models, we develop an 
exact solution methodology to solve complex tanker trailer 
routing problems with stochastic transit times. “Solution 
approach” section presents an approach which combines 
column generation technique with parallel computation to 
determine the optimal solution. “Numerical experiments” 
section summarizes numerical experiments conducted for the 
proposed system. It also includes the details of sensitivity 
analysis performed to analyze the impact of several factors on 
the performance of the model. Finally, “Conclusion” section 
summarizes model insights and conclusions.

Literature review

We briefly review the literature related to rich vehicle rout-
ing and stochastic travel times (Table 1).

One of the classes of rich vehicle routing problems deals 
with systems of heterogeneous fleet of vehicles (Sherali 
et al. 2013; Yousefikhoshbakht et al. 2013; Goel and Vidal 
2014; Cacchiani and Salazar-González 2017). Heterogene-
ous vehicle routing problem was first introduced by Golden 
et al. (1984) that operates under an unlimited fleet of vehi-
cles that differ in terms of vehicle type, capacity, and costs. 
The authors presented several heuristic approaches as well 
as techniques to determine a lower bound and underestimate 
of the optimal solution. Later, Taillard (1999) introduced 
heterogeneous fixed fleet vehicle routing problem (HFVRP) 
operating under pre-defined vehicles; more relevant to our 
research. Ceselli et al. (2009) propose a column generation 
based algorithm to solve a rich vehicle routing problem 
(VRP) in which they compute a daily plan for a heterogene-
ous fleet of vehicles that depart from various depots and 
must visit a set of customers to deliver certain goods. For 
a detailed review of the application of column generation 
in vehicle routing problems, we suggest the reader to refer 
Feillet (2010). Choi and Tcha (2007) develop an integrated 
column generation and dynamic programming based schema 
approach to generate tight bounds on the optimal solution 
for heterogeneous vehicle routing problem. Unlike these 
works, our research investigates a large-scale rich vehicle 
routing problem for chemical transportation while consid-
ering prior order compatibility relationships and provides 
optimal trailer-order-wash combinations.

Table 1  Tabular representation of literature review

Authors Homogeneous 
or heterogeneous 
VRP

Deterministic or 
stochastic transit 
times

Research methodology and findings

Golden et al. (1984) Heterogeneous Deterministic Presented several heuristic approaches as well as techniques to deter-
mine a lower bound and underestimate of the optimal solution

Ceselli et al. (2009) Heterogeneous Deterministic Proposed a column generation based algorithm in which they com-
pute a daily plan for vehicles that depart from various depots and 
must visit a set of customers to deliver certain goods

Choi and Tcha (2007) Heterogeneous Deterministic Developed an integrated column generation and dynamic program-
ming based schema approach to generate tight bounds on the 
optimal solution

Afshar-Bakeshloo et al. (2016) Heterogeneous Deterministic Developed a mixed integer linear programming (MILP) model which 
efficiently uses piecewise linear functions (PLFs) to linearize a 
nonlinear fuzzy interval in order to incorporate customer satisfac-
tion into other linear objectives

Woensel et al. (2003) Homogeneous Stochastic Developed a heuristic approach that combines the ant colony opti-
mization algorithm with congestion component that was modeled 
using a queuing approach to traffic flows

Jula et al. (2006) Homogeneous Stochastic Proposed a solution approach that uses a dynamic programming 
based approximate solution method to find the best route with 
minimum expected cost

Tas et al. (2013) Homogeneous Stochastic Solved a problem that considers both transportation costs and service 
costs by a Tabu search algorithm. Further improvements have been 
made by using a post-optimization method

Errico et al. (2016) Homogeneous Stochastic Solved the problem using a two-stage recourse model with priori 
optimization
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Unlike dispatch decisions with pickups and deliveries 
under deterministic travel times (DellAmico et al. 2006; 
Bianchessi and Righini 2007; Qu and Bard 2014; Kır et al. 
2017; Santillan et al. 2018), stochastic transit times (Li et al. 
2010; Tavakkoli-Moghaddam et al. 2012; Lei et al. 2012; 
Yan et al. 2013; Errico et al. 2013) create additional com-
plexity. Woensel et al. (2003) develop a heuristic approach to 
solve a vehicle routing problem with stochastic travel times 
due to potential traffic congestion. The approach combines 
the ant colony optimization algorithm with congestion com-
ponent that was modeled using a queuing approach to traf-
fic flows. Jula et al. (2006) analyze a stochastic traveling 
salesman problem with time windows (STSPTW) under 
stochastic travel and service times. The solution approach 
uses a dynamic programming based approximate solution 
method to find the best route with minimum expected cost. 
Tas et al. (2013) propose a method to solve a vehicle routing 
problem with stochastic travel times and soft time windows. 
The problem that considers both transportation costs and 
service costs has been solved by a Tabu search algorithm 
and further improvements have been made by using a post-
optimization method. Errico et al. (2016) analyze a vehicle 
routing problem under hard time windows using a two-stage 
recourse model with priori optimization. Our research ana-
lyzes intricacies in chemical transportation under soft time 
windows for pickup and deliveries with stochastic transit 
times.

The main gap in the literature related to rich vehicle rout-
ing decisions is that, in chemical transportation, an integral 
component of selecting a feasible tanker trailer is to ensure 
that its previous contents are chemically compatible with 
that of a prospective order. Even with consideration of inter-
vening washes, this compatibility may need to be checked 
with up to three previous orders, and requirements for seem-
ingly identical chemical compounds may vary according to 
customers, making it much harder to solve.

Problem description

In the chemical and liquid bulk transportation, the fleet 
dispatch problem which addresses the matching of tanker 
trailers to customer orders is a complex problem. Figure 1 
highlights the issues with selecting trailer, wash locations 
for chemical order transportation.

The solid lines of Fig. 1 illustrate a single episode (cov-
erage of a single order) in the life cycle of tanker trailer. In 
this case, a customer order requires order pickup at customer 
location P1 and delivery at consignee location D1 . A suitable 
tanker trailer is identified at wash location W1 and moved 
clean to location P1 for loading. Next, the loaded tanker 
trailer is transported to consignee location D1 . Once the 
unloading is complete at location D1 , the dirty tanker trailer 
is repositioned to wash location W4 , where it is cleaned 
and prepped for its next order. The dashed lines of Fig. 1 
depict an alternative (non-selected) assignment choice for 
the selected trailer to a different order ( W1–P2–D2–W4 ), or 
use of a different trailer for this order ( W2–P1–D1–W4 ). The 
task of the trailer route optimization is to determine optimal 
solutions from the large amount of feasible combinations. 
Pre-wash location alternatives (e.g., W2–P1 ) are considered 
in the context of both costs (e.g., distance) and constraints 
(e.g., inventory balancing). Post-wash alternatives (e.g., D1

–W3 ) attempt to account for future value considerations (next 
orders) based on tanker types/attributes.

Customer-specific requirements also drive the prior-
order compatibility rules that together with trailer physical 
attributes (lining material, heaters, pumps, etc.) determine 
the subset of tanker trailers that are feasible for a particular 
order. Note that the selection of post-wash location could 
strategically position the tanker trailer to serve the subse-
quent order. However, the chemical interaction properties 
of these orders must be accounted for which limits the fea-
sibility and selection of next order in the route. Each order 

Fig. 1  An interpretation of a 
trailer route
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has a list of restricted and approved prior orders (as shown 
in Fig. 2a). Typically, two to three prior order compatibil-
ity checks are required before serving any order. One such 
example addressing the issue with prior order relationships 
is shown in Fig. 2b.

The trailer had previously transported order O1 which 
serves as one of the prior orders for the new set of orders. 
Also, we assume that O1 , O4 are incompatible, O2 , O5 are 
incompatible, and O3 , O6 are incompatible which is very com-
mon in practice. Using this compatibility relationship, for any 
route serving O3 as the first order, the trailer can only serve O6 
as the next order. Similarly, for any route serving O2 as the first 
order, the trailer can only serve O5 as the next order. Note that 
order O4 can never be served as it conflicts with the trailer’s 
prior order O1 . Given the number of distinct options that are 
often available for each decision, the overall number of trailer 
route combinations can be counted in billions.

Mathematical model

Let   be the set of tanker trailers. We define   as the set 
of network nodes comprising of wash locations,  ⊆   , 
pickup locations,  ⊆   , and final delivery locations, 
 ⊆   for customer orders. At the beginning of each 
time period, trailer t ∈   is sourced from the wash loca-
tion w ∈  , i.e., trailer is left at a tank wash at the end of 
each time period. For each trailer t, we maintain a prior 
product matrix ℙt that keeps track of up to three prior 

orders that were covered using trailer t, and a prior prod-
uct requirements matrix ℚt that depends on ℙt and provide 
a list of orders that should not be included in the route for 
trailer t. Next, for a given pickup and delivery location 
pair (poi , foi), poi ∈  , foi ∈   for customer order oi ∈  , 
we define a route of a trailer t as a walk represented by 
rt = (w1, po1 , fo1 ,w2, po2 , fo2 ,w3),w1,w2,w3 ∈  , rt ∈   , 
where wi is the pre-wash and wi+1 is the post-wash for order 
oi, i = 1, 2 . A typical route of a trailer t is shown in Fig. 3. 
For a route to be feasible, it must comply with the chemi-
cal compatibility relationship, i.e., each trailer t should not 
process any restricted set of orders Qo corresponding to 
any individual order o in the prior order vector t.

Let (lo,p, uo,p) be the time windows at pickup for order o 
and (lo,f , uo,f ) be the time windows at delivery for order o. 
Each trailer route rt incurs a cost Crt

 comprised of transit costs, 
empty mile costs, bonuses and penalties. Empty mile cost is 
the cost incurred for every mile traveled by a trailer t without 
carrying any orders while traveling to and fro from a wash 
location. A bonus may be gained in the form of discounts 
in some situations like a post-wash location offering some 
discounts for any trailer t getting washed there during specific 
set of times. A penalty cost will be incurred when a trailer t 
either delivers an order o later than the delivery time windows 
(lo,f , uo,f ) or does not cover that order at all. Note that at the 
end of each delivery, trailer t is required to undergo a special-
ized tank-wash operation. Finally, at the end of time period, 
the tanker is left at the post-wash facility.

Fig. 2  a Restricted and approved list of orders. b An illustration of prior order relationships
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Expected earliness and expected delay

We assume stochastic transit times to capture the impact of 
traffic/weather delays. We also assume negligible waiting 
time for the trailers at the wash stations to get cleaned. How-
ever, this can be generalized by shifting the arrival times or 
changing the distribution parameters of the transit times. 
Some of the most commonly used distributions for the tran-
sit times are normal, log-normal and gamma distributions 
(Fan et al. 2005; Lecluyse et al. 2009; Tas et al. 2013).

We assume that travel time �g,h,rt follows Gamma distribu-
tion � (�(g, h, rt), �(⋅)) where �(g, h, rt) is the shape param-
eter, �(⋅) is the inverse scale parameter, and g, h refer to the 
two nodes of the arc (g, h) traveled in route rt by the trailer 
t. Then, the cumulative distribution function of the transit 
t imes for  the arc  (g ,   h)  can be given by: 
��(g,h,rt),�(⋅)

(�) = ∫ �

0

(e−q∕�(⋅))q�(g,h,rt )−1

� (�(g,h,rt))(�(⋅))
�(g,h,rt )

dq . Let dkoi be the total 

distance traveled by the trailer t from its starting location to 
cover order oi at location type k, k = p, f  (pickup or delivery 
location). Using the additive property of Gamma distribution 
and our assumption of negligible waiting times, the shape 
and scale parameters of the arrival time of trailer t for order 
oi at location type k, k = p, f  can be given as: �ik = �dkoi

 , and 
�ik = �.

Let �ik be the expected earliness for order oi, i = 1, 2 at 
location type k, k = p, f  . Then �ik can be defined in Eq. (1) 
as:

Then, the expected earliness �rt
 for route rt for trailer t can 

be given by Eq. (2):

Similarly, let �ik be the expected delay for order oi, i = 1, 2 
at location type k, k = p, f  . Then �ik can be defined in Eq. 
(3) as:

(1)

�ik = ∫
loi ,k

0

(loi,k − q)
(e−q∕�ik )q�ik−1

� (�ik)(�ik)
�ik

dq

= loi,k ∫
loi ,k

0

(e−q∕�ik )q�ik−1

� (�ik)(�ik)
�ik

dq − ∫
loi ,k

0

(e−q∕�ik )q�ik

� (�ik)(�ik)
�ik

dq

= loi,k ∫
loi ,k

0

(e−q∕�ik )q�ik−1

� (�ik)(�ik)
�ik

dq − ∫
loi ,k

0

(e−q∕�ik )q(�ik+1)−1

� (�ik+1)

�ik

(�ik)
(�ik+1)

�ik

dq

= loi,k ∫
loi ,k

0

(e−q∕�ik )q�ik−1

� (�ik)(�ik)
�ik

dq − �ik�ik ∫
loi ,k

0

(e−q∕�ik )q(�ik+1)−1

� (�ik + 1)(�ik)
�ik+1

dq

=
(

loi,k��dkoi
,�(loi,k) − ����dkoi

+1,�(loi,k)
)

(2)�rt
=

∑

i=1,2

∑

k=p,f

(

loi,k��dkoi
,�(loi,k) − ����dkoi

+1,�(loi,k)
)

Fig. 3  A typical route of a trailer t 
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Then, the expected lateness �rt
 for route rt for trailer t can be 

given by Eq. (4):

Bulk dispatch model

Next, we present the optimization model corresponding to 
the proposed bulk dispatch problem. Let xrt ∈ x be a binary 
variable that takes the value 1 if trailer route rt is selected, 
and 0 otherwise. We define additional sets of routes as 
shown in Table 2.

The proposed dispatch optimization problem can be best 
described with a set partitioning formulation with side con-
straints as model P1 as follows:

In the above formulation, the objective defined by Eq. 
(5) minimizes the total cost that includes the follow-
ing costs terms: total cost of the route, 

∑

rt∈ Crt
xrt , total 

penalty cost for not covering an order by any trailer route, 
∑

rt∈(�rt
+ �rt

) , and 
∑

o∈ Bo�o , where Bo and �o are the cor-
responding penalty cost and slack variable associated with 
not covering order o with any trailer route. Main constraints 

(3)

�ik = ∫
∞

uoi ,k

(q − uoi ,k)
(e−q∕�ik )q�ik−1

� (�ik)(�ik)
�ik

dq

= ∫
∞

uoi ,k

(e−q∕�ik )q�ik

� (�ik)(�ik)
�ik

dq − uoi ,k ∫
∞

uoi ,k

(e−q∕�ik )q�ik−1

� (�ik)(�ik)
�ik

dq

= ∫
∞

uoi ,k

(e−q∕�ik q(�ik+1)−1

� (�ik+1)

�ik

(�ik )
(�ik+1)

�ik

dq − uoi ,k ∫
∞

uoi ,k

(e−q∕�ik )q�ik−1

� (�ik)(�ik)
�ik

dq

= �ik�ik ∫
∞

uoi ,k

(e−q∕�ik )q(�ik+1)−1

� (�ik + 1)(�ik)
�ik+1

dq − uoi ,k ∫
∞

uoi ,k

(e−q∕�ik )q�ik−1

� (�ik)(�ik)
�ik

dq

=
(

��dkoi
(1 − ��dkoi

+1,� (uoi ,k)) − uoi ,k(1 − ��dkoi
,� (uoi ,k))

)

(4)

�rt
=

∑

i=1,2

∑

k=p,f

(

��dkoi
(1 − ��dkoi

+1,�(uoi,k)) − uoi,k(1 − ��dkoi
,�(uoi,k))

)

(5)P1 ∶ z1 = min
∑

rt∈
Crt

xrt +
∑

rt∈
(�rt

+ �rt
) +

∑

o∈
Bo�o

(6)
∑

rt∈t

xrt + �t = 1, ∀t ∈ 

(7)
∑

ro∈o

xro + �o = 1, ∀o ∈ 

(8)
∑

rw∈w

xrw ≤Kw, ∀w ∈ 

include: Eq. (6) which ensures that for each piece of trailer 
t, we can only have one route scheduled in the optimal solu-
tion, Eq. (7) which ensures that each order o can be assigned 
to a route or it can be unscheduled, Eq. (8) which prevents 
over-capacity at a tank wash w where Kw is the capacity at 
tank wash w.

The bulk dispatch model presented in formulation P1 is 
a combinatorial problem with TO2W2 feasible routes in the 
worst case. For instance, a problem with 500 trailers, 500 
orders, and 20 wash locations could result in about 50 bil-
lion routes in the worst case. In such cases, the conventional 
branch-and-bound approach is not tractable. However, this 
class of problems have been proved to be solved to optimal-
ity using column generation approach which transforms the 
standard branch-and-bound approach into branch-and-price 
(Ceselli et al. 2009; Feillet 2010). In the column generation 
method, particularly we relax integrality conditions and take 
only a subset of the decision variables ( 1 ∈  ) into con-
sideration thus transforming the Master Problem [the linear 
relaxation of (5–8)] into a Restricted Master Problem.

At each column generation iteration, we solve the 
Restricted Master Problem. Then, we search for new col-
umns (or potential routes) with minimum negative reduced 
cost. The negative reduced cost �−rt of each column (or 
route) rt is given by:

where �t is the non-negative dual variable associated with 
the t-th constraint of the set (6), �o is the non-negative dual 
variable associated with the o-th constraint of the set (7), art ,o 
takes the value of 1 if route rt covers order o or 0 otherwise, 
�w is the non-negative dual variable associated with the w-th 
constraint of the set (8) and art ,w takes the value of 1 if route 
rt contains tank wash w or 0 otherwise.

Solution approach

Note that the model under consideration entails large volume 
of orders and trailers which results in two competing objec-
tives: (1) determining optimal trailer-order-wash combina-
tions, (2) improving the run time performance for our large-
scale problem. Typically in the literature, some variant of 
shortest path algorithm is used to determine the routes with 
the least reduced cost as a candidate to enter the feasible set 
for next iteration of column generation approach. However, 
this method has a limitation to only add one route at a time 
and adding multiple routes is combinatorial in nature, result-
ing in more iterations to solve the problem. To overcome this 
deficit, we develop efficient parallel computation framework 
(see “Candidate route selection” section) to significantly 

(9)

�−rt = (Crt
+ �rt

+ �rt
) − �t −

∑

o∈
art ,o�o −

∑

w∈
art ,w�w

Table 2  Additional sets of routes

Notation Description

t
,t ∈  The set of routes for trailer t

o
,o ∈  The set of routes that cover order o

w
,w ∈  The set of routes using tank wash w
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expedite the evaluation of multiple route choices with order 
compatibility checks while reducing the number of column 
generation iterations. Figure 4 provides the framework of 
our proposed integrated approach.

The first step in our solution approach is to generate all 
feasible routes with single orders and wash locations. Then, 
the next step is to solve the LP relaxation of Restricted Mas-
ter Problem (which considers only a subset of the decision 
variables). Next, the single order routes and the dual values 
from the LP relaxation are used to generate second order 
routes. We employ efficient parallel computation technique 
in this step. While generating routes with two orders, we 
make sure that the orders are chemically compatible by look-
ing at the prior orders table in which we have the details of 
up to three prior orders. Next, the set of single order and 
two order routes is fed to the optimization model. Finally, 
the process terminates if the solution is integral. Otherwise, 

we repeat the process with single order routes until we get 
an optimal integer solution.

Candidate route selection

This step generates and evaluates trailer routes while 
respecting the model constraints presented in “Mathematical 
model” section . Considering the fact that the route evalua-
tion process requires several chemical compatibility checks 
for orders, candidate route selection process can be inher-
ently parallelized by extending single order routes. This can 
be done using the parallel computation technique which is an 
efficient way to reduce the run time of the model by running 
several tasks in parallel with the help of multiple processors. 
The detailed procedure of the parallel computation technique 
is presented in Algorithm 1.

Fig. 4  Proposed solution 
approach

Algorithm 1 Candiate Route Selection using Parallel Computation

1: procedure SecondOrder(route r, orders, washes)
2: for order o in orders do
3: r1 ← add order o to route r
4: compatibilityflag ← Is order o compatible with r1
5: if (compatibilityflag == True) then
6: for wash w in washes do
7: r2 ← add wash w to route r1
8: if route r2 has minimum negative reduced cost then
9: RouteSelect ← r2

return RouteSelect
10:
11: procedure InitiateParallelTasks
12: ParallelTaskList ← []
13: for SingleOrderRoutes r do
14: ParallelTask ← SecondOrder(r, orders, washes)
15: ParallelTaskList ← ParallelTask
16: execute ParallelTaskList
17: for ParallelTask pTask in ParallelTaskList do
18: SelectedSecondOrderRoutes ← get value from pTask
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The first step in our technique is to generate n feasible 
routes with single order. Then, the next step involves route 
generation with two orders using each single order route. 
This is accomplished using the procedure Secondorder. 
In order to do this task, first we look at the prior orders 
table to check if the orders are chemically compatible. 
If they are compatible, then we generate routes with two 
orders. Next, for every single order route, we select the 
best two order routes with minimum negative reduced 
cost. Then, the final step in our framework combines the 
list of all the selected two order routes by joining all the 
parallel threads from n single order routes. The paral-
lelization of the entire process is done with the help of 
procedure InItIateParalleltaSkS. Note that we also have 
the capability to aggregate single order routes to limit the 
number of active threads.

Numerical experiments

In this section, we discuss numerical experiments to com-
pare the performance of our solution approach under differ-
ent scenarios. We conduct two sets of experiments. For each 
set of experiments, we consider ten different scenarios with 
varying number of trailers and orders (50–300 trailers and 
75–400 orders) as shown in Table 3.

For each scenario, the trailers are equally spread at the 
wash location at the beginning, i.e., same number of trailers 
start from the wash locations. Each order has restrictions on 
two to three orders for their prior orders. The wash capacity 
at each tank wash is set to 10. The algorithms are coded in 
JAVA, and all the experiments are conducted on two hard-
ware: (1) Workstation—Intel Xenon processor 6C, 3.6 GHz 
with 32 GB RAM, (2) Server—Intel Xenon 24C, 3.2 GHz 
with 256 GB RAM. The first set of experiments analyze the 
impact of thread pool size on run rime performance (see 
“Run time performance under different scenarios” section ). 
The second set of experiments analyze the impact of wash 
constraints on order coverage (see “Impact of wash capac-
ity” section).

Run time performance under different scenarios

In order to parallelize route generation and evaluation on the 
data sets, first we need to figure out the optimal number of 
processor threads. For instance, for Scenario 10, we perform 
five experiments with different thread pool sizes to analyze 
the impact of thread pool size on run time performance. The 
Scenario 10 has 300 trailers, 400 orders and 20 tank-wash 

Table 3  Different scenarios for experiments

Scenario Trailers Orders Tank washes

Scenario 1 50 75 20
Scenario 2 75 100 20
Scenario 3 100 125 20
Scenario 4 125 150 20
Scenario 5 150 200 20
Scenario 6 175 225 20
Scenario 7 200 250 20
Scenario 8 225 275 20
Scenario 9 250 300 20
Scenario 10 300 400 20

Fig. 5  a Run time performance: column generation step. b Run time performance: total time
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locations. Experimental results suggest that 6 core worksta-
tion provides maximum performance with 15 threads and 
24 core server provides maximum performance with 100 
threads. We analyze ten scenarios to examine the perfor-
mance of our model using the proposed parallel computa-
tion framework. For each scenario, we compare the run time 
performance of our proposed approach with the traditional 
approach (no parallel computation) under two cases: (1) time 
taken to complete single column generation iteration (see 
Fig. 5a) (2) total time taken to complete the algorithm (see 
Fig. 5b).

For a single column generation iteration, the run time 
increases exponentially with the increase in number of 
trailers and orders due to increase in the number of route 
evaluations. We also observe a significant reduction in the 
run time in our proposed approach. However, for the total 
time case, we observe three main trends/zones in the graph: 

(1) Zone 1: Scenario 1–Scenario 6 (2) Zone 2: Scenario 
6–Scenario 7 and (3) Zone 3: Scenario 7–Scenario 10. Note 
that the total time depends on the run time for each column 
generation step as well as the number of iterations needed 
to converge. In Zone 1, we observe an increasing trend as 
the problem size increases due to increase in the number of 
feasible routes. We also observe fairly constant number of 
column generation iterations to reach convergence. However, 
in Zone 2, the number of column generation steps start to 
decrease due to fairly large amount of candidate routes gen-
erated for the optimization model. This increases the chance 
for the column generation process to find the optimal routes 
in only one iteration. Finally, in Zone 3, the number of col-
umn generation steps can no longer be further reduced (only 
one iteration needed) and the total run time starts to increase 
with the problem size. Note that our proposed approach tries 
to balance column generation iterations and their run time to 

Fig. 6  Run time performance comparison on workstation and server

Fig. 7  Impact of prior order compatibility relationship on performance
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achieve a significant improvement in the performance. The 
final results from Fig. 5a, b indicate a 85% improvement in 
run time using the proposed parallel computation approach. 
Given the fact that every single order route is independent, 
route selection process can be done parallelly by extending 
the single order routes contributing to a significant improve-
ment in run time performance which is evident from the 
results.

Next, we compare the performance of our proposed 
approach under two hardware, one using 15 threads on a 
6 core workstation and the other using a server (24 core 
server) with 100 threads (see Fig. 6a, b). For single column 
generation iteration and total time, we observe trends similar 
to the comparison made earlier. We also observe an addi-
tional 65% reduction in run time using the server. Finally, we 
examine the performance of our proposed approach under 
four different prior order compatibility relationships (see 
Fig. 7a, b): (1) No prior order compatibility relationships, 
(2) 25% of orders have compatibility relationships, (3) 50% 
prior order compatibility relationships and (4) 75% prior 
order compatibility relationships.

For single column generation iteration, changes in per-
centage of prior order relationships do not have any sig-
nificant impact on the run time performance. However, for 
the total time case, increase in the percentage of prior order 
compatibility relationships results in the reduction of run 
time due to decrease in the number of route evaluations. We 
observe increase in optimal routes with two orders as prior 
order compatibility relationships are relaxed.

Impact of wash capacity

Wash constraints like capacity, location etc. need to be 
examined as they could create complexities while covering 
the orders. We perform sensitivity analysis to evaluate the 
impact of wash capacity on order coverage and normalized 
cost (see Fig. 8). Recall that the wash location better pre-
pares the trailer for the next order. In Fig. 8, we observe that 

the optimal solution has a better chance to cover two orders 
in a route when the wash capacity is not limited. However, 
at low capacity (capacities of 5 and 6), the order coverage is 
limited by the number of trailers as well as wash capacity. 
The total cost is also impacted as the number of feasible 
route choices are non-increasing with the increase in wash 
capacity.

Conclusion

We analyze a rich tanker trailer routing problem with sto-
chastic travel times for chemical orders where the chemical 
interaction properties of the orders create an additional 
complexity while determining the best strategies to dis-
patch trailers. For each chemical order, we maintain a list 
of up to three prior orders. To prevent the risk of chemical 
contamination, the set of orders assigned to a trailer route 
must comply with the prior order compatibility relation-
ships. To address large-scale nature of the problem, we 
propose an integrated approach which incorporates the 
efficacy of stochastic models, column generation tech-
nique and parallel computation to generate the optimal 
candidate routes. Our initial set of experiments focus on 
determining the optimal number of threads needed to 
parallelize candidate route selection. Later, we conduct 
comparative analysis between the performances of the 
traditional approach and our proposed parallel computa-
tion method. Then, we perform a set of experiments to 
validate the performance of the proposed approach using 
two different hardware. Experimental results indicate that 
our approach results in a significant improvement in run 
time performance (around 85% run time improvement on 
workstation and an additional 65% improvement on the 
server). Although most of the performance improvement 
is due to the implementation of parallel computing frame-
work for the route generation and evaluation process, we 
also observe significant improvement with balancing the 

Fig. 8  Impact of wash capacity
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tradeoffs between column generation step run time and the 
number of column generation iterations. We also observe 
that with the increase in problem size, the column genera-
tion process tends to converge in fewer iterations. Then, 
we analyze the impact of the percentage of prior order 
compatibility relationships on our solution approach and 
find out that increase in prior order incompatibilities result 
in the reduction of total run time due to the reduced num-
ber of route evaluations The next experiment analyzes the 
impact of wash constraints like capacity and location as 
they could potentially affect the coverage of subsequent 
orders. The results of the numerical investigation reveal 
that the order coverage is limited by the number of trail-
ers as well as wash capacity. Less wash capacity leads to 
single order trailer routes in the optimal solution to reduce 
the number of trips to the wash locations. Future work will 
focus on developing efficient route-pruning approaches to 
minimize the candidate set and improving the parallel 
computation framework to further decrease the run time. 
We also intend to investigate the impact of uncertainty in 
wash capacity on the optimal decisions.

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat iveco 
mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.
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