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Abstract In this paper we develop an economic order

quantity model to investigate the optimal replenishment

policies for instantaneous deteriorating items under infla-

tion and trade credit. Demand rate is a linear function of

selling price and decreases negative exponentially with

time over a finite planning horizon. Shortages are allowed

and partially backlogged. Under these conditions, we

model the retailer’s inventory system as a profit maxi-

mization problem to determine the optimal selling price,

optimal order quantity and optimal replenishment time. An

easy-to-use algorithm is developed to determine the opti-

mal replenishment policies for the retailer. We also provide

optimal present value of profit when shortages are com-

pletely backlogged as a special case. Numerical examples

are presented to illustrate the algorithm provided to obtain

optimal profit. And we also obtain managerial implications

from numerical examples to substantiate our model. The

results show that there is an improvement in total profit

from complete backlogging rather than the items being

partially backlogged.

Keywords Inventory � Deterioration � Trade credit �
Backlogging � Inflation � Time value of money � Finite
planning

Introduction and literature review

The traditional inventory models consider a case in which

depletion of inventory is caused by a constant demand rate.

But in reality, deterioration of items such as chemicals,

pharmaceutical products and some other commodities

during storage is inevitable as these items become evapo-

rative, expired or lose utility through time. Hence,

managing and keeping of inventories of such commodities

becomes an important criterion for inventory decision

makers.

The inventory problem of deteriorating items was first

studied by Whitin (1957), in which he addressed the

fashion items deteriorating at the end of the storage period.

Then, Ghare and Schrader (1963) concluded in their study

that the consumption of the deteriorating items was closely

relative to a negative exponential function of time. Deb and

Chaudhri (1986) derived inventory model with time-de-

pendent deterioration rate. Dave and Patel (1994) studied

an inventory model for deteriorating items without short-

ages and the time-dependent demand patterns. Ting and

Chung (1994) analyzed the inventory replenishment model

for deteriorating items with a linear trend in demand con-

sidering shortages. Aggarwal and Jaggi (1995) proposed a

model for deteriorating items without shortages. Balkhi and

Benkherouf (1996a, b) investigated the optimal replenish-

ment schedule for production lot size model with deterio-

rating items. Hwang and Shinn (1997) investigated a

inventory replenishment system for deteriorating items

under the condition of permissible delay in payments.

Deteriorating rate is another key factor in the study of

deteriorating items inventory, which describes the deteri-

oration nature of the items. When it comes to the study of

deteriorating rate, there are several situations. In the early

stage of the study, most of the deteriorating rates in the
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models are constant, such as Ghare and Schrader (1963),

Shah and Jaiswal (1977), Aggarwal (1978), Padmanabhana

and Vratb (1995), and Bhunia and Maiti (1999). In recent

research, more and more studies have begun to consider the

relationship between time and deteriorating rate. In this

situation there are several scenarios: deteriorating rate is a

linear increasing function of time (Mukhopadhyay et al.

2004), deteriorating rate is three-parameter Weibull dis-

tributed (Chakrabarty et al. 1998), and deteriorating rate is

other function of time (Abad 2001). Under fuzzy envi-

ronment, the readers are referred to Taleizadeh et al.

(2010); Taleizadeha et al. (2013c) and their references.

In the area of inventory management, it is essential to

consider the inventory problem for non-instantaneous

deteriorating items because some of the items will start to

decay only after a period of time such as vegetables, fruits,

cereals and medicines. Also, commodities like fashion

products, electronic accessories may lose their total value

through time.

Raafat (1991) established a survey on continuously

deteriorating inventory model. Wee (1993) derived inven-

tory deteriorating model for production lot size with

shortages. Chang et al. (2010) investigated optimal order-

ing policies for deteriorating items using a discounted cash-

flow analysis when trade credit is linked to order quantity.

Wu et al. (2006) investigated non-instantaneous deterio-

rating inventory model with stock-dependent demand.

Further, Ouyang et al. (2006) developed model for non-

instantaneous deteriorating items with permissible delay in

payments. Yang and Wee (2002, 2003) have conducted

research on the inventory policy for deteriorating item in

the supply chain including a single vendor and multi-

buyers. Yang and Wee (2002) developed a multi-lot-size

production and inventory model for deteriorating items

with constant production and demand rates. The studies on

stochastic deteriorating items inventory in the supply chain

at present are much less than the ones on the deterministic

deteriorating items inventory. Du et al. (2007) studied the

deteriorating item stock replenishment and shipment policy

for vendor-managed inventory (VMI) system with the

assumption that the demand process follows a typical

Poisson process. Taleizadeha et al. (2015) addressed VMI

model for a two-level supply chain in which demand is

deterministic and price sensitive for deteriorating products.

The concept of permissible delay period in settling the

payment is widespread in business. In the classical EOQ

model, it was assumed that the retailer must settle the

account after receiving the items immediately. But, this

situation is not true in reality. Because, in practice for

encouraging the retailer to buy more, the supplier will

allow a fixed period of time for settling the account and

will not charge any amount from the retailer. Thus, when

the supplier offers the retailer a delay period in settling the

amount is known as trade credit period. This helps the

retailer to reduce the on-hand inventory level and they can

earn interest from the sales revenue.

Goyal (1985) was the first to develop an EOQ model

with a constant demand under permissible delay in pay-

ment. Jamal et al. (1997) generalized the model to allow

shortages. Further, Ho et al. (2008) investigated the model

on optimal pricing under two-part trade credit. Fewings

(1992), Chu et al. (1998) examined the economic ordering

policy of deteriorating items under permissible delay in

payments. Shinn and Hwang (2003) discussed optimal

ordering policies under delay in payments. Ouyang et al.

(2006) investigated inventory model for non-instantaneous

deteriorating items with permissible delay in payments.

Heydari (2015) developed the inventory model with delay

in payments on coordinating replenishment decisions in a

two-stage supply chain. Aljazzara et al. (2016) addressed

inventory model for three-level supply chain with delay in

payments.

Due to high inflation rate, the effects of inflation and

time value of money are important in practical situations.

The value of money falls down as rate of inflation increases

which will eventually affect long-term investment and the

inventory decisions. Also, inflation plays an important role

in optimal ordering policies. Buzacott (1975) and Misra

(1975) both developed EOQ models with constant demand

and a single inflation rate for associated costs. Bose et al.

(1995) provided inventory model under inflation and time

discounting. Yang et al. (2001) discussed various inventory

models with time-varying demand patterns under inflation.

Hou and Lin (2006) investigated an EOQ model for dete-

riorating items price and stock-dependent selling rates

under inflation and time value of money. Sarkar and Moon

(2011) developed an EOQ model for an imperfect pro-

duction process for time-varying demand with inflation and

time value of money. Rameswari and Uthayakumar (2012)

investigated economic order quantity for deteriorating

items under time discounting with inflation. Palanivel and

Uthayakumar (2013) addressed EOQ model on finite

planning horizon for price and advertisement-dependent

demand with backlogging under inflation. Taleizadeh and

Nematollahi (2014) investigated an EOQ model for con-

stant demand for deteriorating items with financial

considerations.

When shortages occur, some of the customers are will-

ing to wait and others could turn to buy from other

retailers. The inventory model of deteriorating items with

time-proportional backlogging rate has been developed by

Chang and Dye (1999) and Dye et al. (2007) who studied

shortages and partial backlogging in an inventory system.

Min and Zhou (2009) derived a perishable inventory model

under stock-dependent selling rate and partial backlogging

with capacity constraint. Tripathy and Pradhan (2010)
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developed an inventory model with partial backlogging

with Weibull deterioration. Cheng et al. (2011) developed

inventory model for deteriorating items with trapezoidal

demand and partial backlogging. Ahamed et al. (2013)

developed inventory model with ramp-type demand and

partial backlogging. Readers are referred to Taleizadeh

et al. (2013a, 2013b) and Taleizadeh (2014) for reviews of

various inventory models.

Many researchers developed the inventory models under

the assumption that the demand rate is either constant or

time dependent but independent of price. But pricing is an

important strategy to influence demand, studies on inven-

tory models with price-dependent demand have received

considerable attention nowadays. Mondal et al. (2009)

developed an inventory model for defective items with

variable production cost in which demand depends on

selling price and advertisement cost. Chang (2013) revis-

ited the economic lot size model for price-dependent

demand under quantity and freight discounts. Shi et al.

(2012) studied an EOQ inventory model in which demand

is linearly dependent on the selling price, the holding cost

is constant, and shortages are not allowed. Chakrabarty

et al. (2015) developed production inventory model for

defective items by considering inflation and time value of

money by allowing shortages. Alfares and Ghaithan (2016)

investigated the inventory and pricing model with price-

dependent demand, time-varying holding cost, and quantity

discounts. Heydari and Norouzinasab (2015) proposed a

discount inventory model for pricing and ordering deci-

sions in which demand is stochastic and price sensitive.

Recently, Heydari and Norouzinasab (2016) proposed an

inventory model for incentive policy to coordinate order-

ing, lead time, and pricing strategies in a two-echelon

manufacturing supply chain. As shown in Table 1, previ-

ous studies did not consider all the key parameters simul-

taneously. Therefore, this paper incorporates all the key

parameters apart from considering aspects such as com-

plete and partial backlogging.

In this study, an attempt is made to develop a suitable in-

ventory model for instantaneous deteriorating items with

permissible delay in payment on finite planning horizon.We

consider time- and price-dependent demand function jointly.

Because, this form of demand function reflects a real

situation, i.e., the demand may increase when the price

decreases, or it may vary through time. The model allows

shortages and partial backlogging. The backlogging rate is

variable and dependent on the waiting time for the next

replenishment. As the special case, the model is compared

with classical EOQ model. The main objective is to deter-

mine the optimal selling price, the optimal replenishment

cycle time and the order quantity simultaneously under

various circumstances. For any given selling price, we then

show that the optimal solution exists and is unique by pro-

viding a simple algorithm to find the optimal selling price,

ordering cycle and ordering quantity. Numerical examples

are provided to illustrate the model. To study the effects of

changes in parameters sensitivity analysis is conducted.

Problem description

Now, the problem is to determine N; s; t1 and T so that

TPðN; s; t1; TÞ can be maximized. To develop the mathe-

matical model, the following assumptions are being made:

Assumptions

1. The replenishment rate is infinite.

2. The demand rate is decreasing linear function of

selling price and decreases exponentially with time,

Dðs; tÞ ¼ ða� bsÞe�kt; where a; b[ 0; s\a=b and k a

constant governing the decreasing demand rate.

3. The lead time is negligible.

4. The inventory model deals with single item.

5. There is no replacement or repair of deteriorating items

during the period under consideration.

6. Shortages are allowed. The unsatisfied demand is

backlogged and the fraction of shortages backordered

is BðxÞ ¼ e�dx where d[ 0 where x is the time of

waiting for the next replenishment and 0�BðxÞ� 1;

Bð0Þ ¼ 1: Note that if BðxÞ ¼ 1 (or 0) for all x, then

shortages are completely backlogged (or lost).

7. The retailer could settle the account at t ¼ M and pay

for the interest charges on items in stock with rate Ic
over the interval [M, T] as T �M: Alternatively, the

retailer settles the account at t ¼ M and is not required

Table 1 Major characteristics of inventory models on selected researches

Author/authors Price-dependent demand Trade credit Deterioration Inflation and time value of money Shortages

Mondal et al. (2009)
p � � � �

Cheng et al. (2011) � � � � �
Chakrabarty et al. (1998, 2015) � � � p p

Shi et al. (2012)
p � � � p

Balkhi and Benkherouf (1996a)
p � � � �
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to pay any interest charge for items in stock during the

whole cycle as T �M:

8. The retailer can accumulate revenue and earn interest

from the beginning of the inventory cycle until the end

of the trade credit period offered by the supplier. That

is the retailer can accumulate revenue and earn interest

during the period from t ¼ 0 to t ¼ M with rate Ie
under trade credit conditions.

Notations

In addition, the following notations are used throughout the

paper:

K ordering cost per order

c unit purchasing cost

s unit selling price (with s[ c) (decision

variable)

c2 shortage cost per unit per order

c0 opportunity cost due to lost sales

Ie interest earned per $ per unit of time by

the retailer

Ic interest payable per $ in stocks per unit of

time by the supplier

r discount rate to evaluate the time value of

money

f inflation rate

R the net discount rate of inflation,

R ¼ r � f

H length of planning horizon

N number of replenishment during the

planning horizon, N ¼ H=T

I(t) the level of inventory at time t, 0� t� T

Im the maximum inventory level for each

replenishment cycle

Ib the maximum amount of demand

backlogged per cycle

M the retailer’s trade credit period offered by

supplier in years

t1 the time at which the inventory level falls

to zero (decision variable)

T inventory cycle length (decision variable)

Q the retailer’s order quantity

TPðN; s; t1; TÞ the retailer’s total profit

� optimal value

Inventory model with partial backlogging

Suppose that the planning horizon H is divided into

N equal parts of length T ¼ H=N; where N is an integer

decision variable representing the number of

replenishments to be made during H and T is time

between two consecutive replenishments. When the

inventory is positive, demand rate is dependent on stock

levels, whereas for negative inventory, the demand is

completely backlogged. This model is depicted in Fig. 1.

The first replenishment lot size of Im is replenished at

T0 ¼ 0: During the interval ½0; t1�; the inventory level

decreases due to combined effects of deterioration and

demand and the inventory level drops to zero during the

time interval ½0; t1�: During the interval ½t1; T �; shortages
occur which are partially backlogged. I1ðtÞ denotes the

inventory level at time t (0\t� t1) and I2ðtÞ is the

inventory level at time t (t1\t� T). The inventory level

is depicted in Fig. 1.

Hence, the rate of change of inventory at any time t can

be represented by the following differential equations:

dI1ðtÞ
dt

þ hI1ðtÞ ¼ �Dðs; tÞ 0� t� t1; ð1Þ

dI2ðtÞ
dt

¼ �Dðs; tÞBðtÞ t1 � t� T ; ð2Þ

with boundary condition I1ð0Þ ¼ Im; I2ðt1Þ ¼ 0:

The solutions of the above differential equations after

applying the boundary conditions are given by

I1ðtÞ ¼
ða� bsÞ
k� h

e�kt½1� eðk�hÞðt�t1Þ�; ð3Þ

and I2ðtÞ ¼
ða� bsÞ
k� d

e�dT ½e�ðk�dÞt � e�ðk�dÞt1 �: ð4Þ

The maximum inventory level and the maximum amount

of demand backlogged during the first replenishment cycle

are, respectively, given by

Im ¼ I1ð0Þ ¼
ða� bsÞ
k� h

½1� e�ðk�hÞt1 �; ð5Þ

Ib ¼ �I2ðTÞ ¼
ða� bsÞ
k� d

e�dT ½e�ðk�dÞt1 � e�ðk�dÞT �: ð6Þ

There are N cycles during the planning horizon and

since, the ending inventory is zero, there are N þ 1

Time
0 t1

TN−1 TN = H

Inventory level

Q

t1

T0=0 T1 = H/N
M

Im

Ib

Fig. 1 The inventory representation of the model
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replenishments in the entire planning horizon H: Thus,

the order quantity is given by

Q ¼ Im þ Ib ¼
ða� bsÞ
k� h

½1� e�ðk�hÞt1 �

þ ða� bsÞ
k� d

e�dT ½e�ðk�dÞt1 � e�ðk�dÞT �:
ð7Þ

The total annual profit consists of the following:

The replenishment in each cycle is done at the beginning

of each cycle, then the ordering cost is,

Ordering cost ¼ K:

The purchase cost for the first replenishment cycle is,

Purchase cost ¼ cQ ¼ cða� bsÞ
�

1

k� h
ð1� e�ðk�hÞt1Þ

þ 1

k� d
e�dTðe�ðk�dÞt1 � e�ðk�dÞTÞ

�
:

Inventory depletes when t ¼ t1; the holding cost for the

first replenishment cycle is,

Holding cost¼ h

Zt1
0

I1ðtÞe�Rtdt

¼ hða�bsÞ
k�h

�
1

kþR
ð1� e�ðkþRÞt1Þ

þ 1

Rþh
ðe�ðkþRÞt1 � e�ðk�hÞt1Þ

�
; k�h 6¼ 0:

The sales revenue for the first replenishment cycle is,

Sales revenue ¼ s

Zt1
0

Dðs; tÞe�Rtdt þ se�RT

�
ZT

t1

Dðs; tÞBðtÞdt ¼ sða� bsÞ
�

1

kþ R
ð1� e�ðkþRÞt1Þ

þ 1

k� d
e�ðdþRÞTðe�ðk�dÞt1 � e�ðk�dÞTÞ

�
; k� d 6¼ 0:

Since shortages are partially backlogged, the shortage cost

during the interval [t1; T] for the first replenishment cycle

is,

Shortage cost ¼ c2

ZT

t1

�I2ðtÞe�Rtdt

¼ c2ða� bsÞ
k� d

e�dT

�
1

R
ðe�ðk�dÞt1�Rt1 � e�ðk�dÞt1�RTÞ

þ 1

d� k� R
ðeðd�k�RÞt1 � eðd�k�RÞTÞ

�
:

The opportunity cost due to lost sales during the interval

[t1; T] for the first replenishment cycle is,

Opportunity cost due to lost sales

¼ c0

ZT

t1

Dðs; tÞ½1� e�dðT�tÞ�e�Rtdt

¼ c0ða� bsÞ
�

1

kþ R
ðe�ðkþRÞt1 � e�ðkþRÞTÞ

þ 1

d� k� R
ðe�dTþðd�k�RÞt1 � e�ðkþRÞTÞ

�
:

Interest payable and earned:

When the end point of credit period is shorter than or equal

to the length of period with positive inventory stock of the

item ðM� t1Þ; payment for goods is settled and the retailer

starts paying the capital opportunity cost for the items in

stock with rate Ic: There are many different ways to tackle

the interest earned. Here we assume that during the time

when the account is not settled, the retailer sells the goods

and continues to accumulate sales revenue and earns the

interest with rate Ie: Therefore, interest earned and payable

per cycle for different cases is given below.

Case (i) M� t1

Interest payable IP1 ¼ cIc

Zt1
M

I1ðtÞe�Rtdt

¼ cIcða� bsÞ
k� h

�
1

kþ R
ðe�ðkþRÞM � e�ðkþRÞt1Þ

þ 1

Rþ h
ðe�ðkþRÞt1 � e�ðk�hÞt1�ðRþhÞMÞ

�
:

Interest earned IE1 ¼ sIe

ZM

0

Dðs; tÞte�Rtdt

¼ sIeða� bsÞ
�

1

ðkþ RÞ2
ð1� e�ðkþRÞMÞ

�Me�ðkþRÞM

kþ R

�
:

Case (ii) t1 �M

Interest payable IP2 ¼ 0:

Interest earned IE2 ¼ sIe

Zt1
0

Dðs; tÞte�Rtdt þ sIeðM � t1Þe�Rt1

�
Zt1
0

Dðs; tÞdt

¼ sIeða� bsÞ
�

1

ðkþ RÞ2
ð1� e�ðkþRÞt1Þ

� t1

kþ R
e�ðkþRÞt1 þ ðM � t1Þ

k
e�Rt1ð1� e�kt1Þ

�
:

Conjunct with the relevant costs mentioned above, the net

present value of the total profit of the model over the time

horizon H leads to
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Max : TPðN; s; t1; TÞ ¼
TP1ðN; s; t1; TÞ; 0\M� t1

TP2ðN; s; t1; TÞ; t1\M� T

�
ð8Þ

where

When t1 ¼ M; then TP1ðN; s; t1; TÞ ¼ TP2ðN; s; t1; TÞ:
Hence, TPðN; s; t1; TÞ is well defined and continuous at

t1 ¼ M: Utilizing the value of T ¼ H=N in Eqs. (9) and

(10), we get

TP1ðN; s; t1; TÞ ¼ ða� bsÞ
�
s

�
ð1� e�ðkþRÞt1Þ

kþ R
þ e�ðdþRÞT

k� d
ðe�ðk�dÞt1 � e�ðk�dÞTÞ

�

� K

ða� bsÞ � c

�
ð1� e�ðk�hÞt1Þ

k� h
þ e�dT

k� d
ðe�ðk�dÞt1 � e�ðk�dÞTÞ

�

� h

k� h

�
ð1� e�ðkþRÞt1Þ

kþ R
þ ðe�ðkþRÞt1 � e�ðk�hÞt1Þ

Rþ h

�
� c2e

�dT

k� d

�
�
ðe�ðk�dÞt1�Rt1 � e�ðk�dÞt1�RTÞ

R
þ ðeðd�k�RÞt1 � eðd�k�RÞTÞ

d� k� R

�

� c0

�
ðe�ðkþRÞt1 � e�ðkþRÞTÞ

kþ R
þ ðe�dTþðd�k�RÞt1 � e�ðkþRÞTÞ

d� k� R

�

� cIc

k� h

�
ðe�ðkþRÞM � e�ðkþRÞt1Þ

kþ R
þ ðe�ðkþRÞt1 � e�ðk�hÞt1�ðRþhÞMÞ

Rþ h

�

þ sIe

�
ð1� e�ðkþRÞMÞ

ðkþ RÞ2
�Me�ðkþRÞM

kþ R

��(
1� e�RH

1� e�RT

�
;

ð9Þ

TP2ðN; s; t1; TÞ ¼ ða� bsÞ
�
s

�
ð1� e�ðkþRÞt1Þ

kþ R
þ e�ðdþRÞT

k� d
ðe�ðk�dÞt1 � e�ðk�dÞTÞ

�

� K

ða� bsÞ � c

�
ð1� e�ðk�hÞt1Þ

k� h
þ e�dT

k� d
ðe�ðk�dÞt1 � e�ðk�dÞTÞ

�

� h

k� h

�
ð1� e�ðkþRÞt1Þ

kþ R
þ ðe�ðkþRÞt1 � e�ðk�hÞt1Þ

Rþ h

�
� c2e

�dT

k� d

�
�
ðe�ðk�dÞt1�Rt1 � e�ðk�dÞt1�RTÞ

R
þ ðeðd�k�RÞt1 � eðd�k�RÞTÞ

d� k� R

�

� c0

�
ðe�ðkþRÞt1 � e�ðkþRÞTÞ

kþ R
þ ðe�dTþðd�k�RÞt1 � e�ðkþRÞTÞ

d� k� R

�

þ sIe

�
ð1� e�ðkþRÞt1Þ

ðkþ RÞ2
� t1e

�ðkþRÞt1

kþ R
þ ðM � t1Þ

k
e�Rt1ð1� e�kt1Þ

��

�
�
1� e�RH

1� e�RT

�
:

ð10Þ
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Solution procedure

To determine the optimal replenishment policies that cor-

respond to maximizing the total profit, we first prove that

for any given s; the optimal solution of t1 not only exists

but also is unique for a given N:

Case (i) M� t1
The present value of total profit TP1ðN; s; t1Þ is a func-

tion of the continuous variables s; t1 and a discrete variable

N: So, for any given value of s; the necessary condition for

Eq. (11) to be maximized is oTP1ðs; t1jNÞ=ot1 ¼ 0 for

given N; which gives

TP1ðN; s; t1Þ ¼ ða� bsÞ
�
s

�
ð1� e�ðkþRÞt1Þ

kþ R
þ e�ðdþRÞH=N

k� d
ðe�ðk�dÞt1 � e�ðk�dÞH=NÞ

�

� K

ða� bsÞ � c

�
ð1� e�ðk�hÞt1Þ

k� h
þ e�dH=N

k� d
ðe�ðk�dÞt1 � e�ðk�dÞH=NÞ

�

� h

k� h

�
ð1� e�ðkþRÞt1Þ

kþ R
þ ðe�ðkþRÞt1 � e�ðk�hÞt1Þ

Rþ h

�
� c2e

�dH=N

k� d

�
�
ðe�ðk�dÞt1�Rt1 � e�ðk�dÞt1�RH=NÞ

R
þ ðeðd�k�RÞt1 � eðd�k�RÞH=NÞ

d� k� R

�

� c0

�
ðe�ðkþRÞt1 � e�ðkþRÞH=NÞ

kþ R
þ ðe�dH=Nþðd�k�RÞt1 � e�ðkþRÞH=NÞ

d� k� R

�

� cIc

k� h

�
ðe�ðkþRÞM � e�ðkþRÞt1Þ

kþ R
þ ðe�ðkþRÞt1 � e�ðk�hÞt1�ðRþhÞMÞ

Rþ h

�

þ sIe

�
ð1� e�ðkþRÞMÞ

ðkþ RÞ2
�Me�ðkþRÞM

kþ R

���
1� e�RH

1� e�RH=N

�
;

ð11Þ

TP2ðN; s; t1Þ ¼ ða� bsÞ
�
s

�
ð1� e�ðkþRÞt1Þ

kþ R
þ e�ðdþRÞH=N

k� d
ðe�ðk�dÞt1 � e�ðk�dÞH=NÞ

�

� K

ða� bsÞ � c

�
ð1� e�ðk�hÞt1Þ

k� h
þ e�dH=N

k� d
ðe�ðk�dÞt1 � e�ðk�dÞH=NÞ

�

� h

k� h

�
ð1� e�ðkþRÞt1Þ

kþ R
þ ðe�ðkþRÞt1 � e�ðk�hÞt1Þ

Rþ h

�
� c2e

�dH=N

k� d

�
�
ðe�ðk�dÞt1�Rt1 � e�ðk�dÞt1�RH=NÞ

R
þ ðeðd�k�RÞt1 � eðd�k�RÞH=NÞ

d� k� R

�

� c0

�
ðe�ðkþRÞt1 � e�ðkþRÞH=NÞ

kþ R
þ ðe�dH=Nþðd�k�RÞt1 � e�ðkþRÞH=NÞ

d� k� R

�

þ sIe

�
ð1� e�ðkþRÞt1Þ

ðkþ RÞ2
� t1e

�ðkþRÞt1

kþ R
þ ðM � t1Þ

k
e�Rt1ð1� e�kt1Þ

��

�
�

1� e�RH

1� e�RH=N

�
:

ð12Þ
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Theorem 1 For any given s and N; we have

(i) Equation (13) has a unique solution.

(ii) The solution in (i) satisfies the second-order

conditions for the maximum.

Proof Taking second-derivative of Eq. (13) with respect

to t1 and after some algebraic manipulation, we get

Hence, our proposition is that Eq. (13) has a unique

solution and this satisfies the second-order condition for

the maximum. Hence, for any given s and N; the solution

t1 which maximizes (11) not only exists but is also

unique. h

Next, we examine the condition for which the

optimal selling price exists and is also unique. Now,

for any t1;N the first-order necessary condition for

(11) to be maximized is oTP1ðs; t1Þ=os ¼ 0; i.e.,

oTP1ðt1jðs;NÞÞ
ot1

¼ ða� bsÞ
�
s½e�ðkþRÞt1 � e�ðdþRÞH=Ne�ðk�dÞt1 � � c½e�ðk�hÞt1 � e�ðk�dÞt1e�dH=N �

� h

k� h

�
e�ðkþRÞt1 þ ðk� hÞe�ðk�hÞt1 � ðkþ RÞe�ðkþRÞt1

Rþ h

�
� c2e

�dH=N

k� d

�
eðd�k�RÞt1

þ ðd� k� RÞeðd�k�RÞt1 þ ðk� dÞe�ðk�dÞt1�RH=N

R

�
� c0½eðd�k�RÞt1�dH=N � e�ðkþRÞt1 �

� cIc

k� h

�
e�ðkþRÞt1 þ ðk� hÞe�ðk�hÞt1�ðRþhÞM � ðkþ RÞe�ðkþRÞt1

Rþ h

��
¼ 0:

ð13Þ

o2TP1ðt1jðs;NÞÞ
ot21

¼ �ða� bsÞ
�
ðRþ hÞ

�
cþ hþ cIc

Rþ h

�
e�ðk�hÞt1 þ ðRþ dÞðse�ðRþdÞH=N

� ce�dH=N þ ðc2=RÞe�RH=NÞe�ðk�dÞt1 þ ðhþ cIcÞe�ðk�hÞt1�ðRþhÞM

þ de�dH=Nðc0 � ðc2=RÞÞeðd�k�RÞt1
�
� 0:

ð14Þ

oTP1ðs; t1jNÞ
os

¼ ða� 2bsÞ
�
ð1� e�ðkþRÞt1Þ

kþ R
þ e�ðdþRÞH=N

k� d
ðe�ðk�dÞt1 � e�ðk�dÞH=NÞ þ Ie

�
ð1� e�ðkþRÞMÞ

ðkþ RÞ2
�Me�ðkþRÞM

kþ R

��

þ bc

�
ð1� e�ðk�hÞt1Þ

k� h
þ e�dH=N

k� d
� ðe�ðk�dÞt1 � e�ðk�dÞH=NÞ

�
þ bh

k� h

�
ð1� e�ðkþRÞt1Þ

kþ R
þ ðe�ðkþRÞt1 � e�ðk�hÞt1Þ

Rþ h

�

þ bc2e
�dH=N

k� d

�
ðe�ðk�dÞt1�Rt1 � e�ðk�dÞt1�RH=NÞ

R
þ ðeðd�k�RÞt1 � eðd�k�RÞH=NÞ

d� k� R

�

þ bc0

�
ðe�ðkþRÞt1 � e�ðkþRÞH=NÞ

kþ R
þ ðe�dH=Nþðd�k�RÞt1 � e�ðkþRÞH=NÞ

d� k� R

�

þ bcIc

k� h

�
ðe�ðkþRÞM � e�ðkþRÞt1Þ

kþ R
þ ðe�ðkþRÞt1 � e�ðk�hÞt1�ðRþhÞMÞ

Rþ h

�
¼ 0:

ð15Þ
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It is clear from Eq. (15) has a solution if ða� 2bsÞ\0:

Theorem 2 For any given t1 and N; we have

(i) Equation (15) has a unique solution.

(ii) The solution in (i) satisfies the second-order

condition for the maximum.

Proof Further, the second-order derivative of Eq. (15)

with respect to s is

o2TP1ðs; t1jNÞ
os2

¼ � 2b

�
eðkþRÞt1 � 1

ðkþ RÞeðkþRÞt1
þ e�ðdþRÞH=N

k� d�
eðk�dÞH=N � eðk�dÞt1

eðk�dÞt1þH=N

�

þ Ie

�
eðkþRÞM � 1�Mðkþ RÞ

ðkþ RÞ2eðkþRÞM

��
� 0:

ð16Þ

Thus, we have established that there exists a unique

value s which maximizes Eq. (11). This completes the

proof. h

From the above discussions, TP1ðN; s; t�1Þ is a concave

function of s for a given ðt�1; T�Þ: Thus, there exists a

unique s� which satisfies Eq. (15) and s� can be obtained by
solving Eq. (15).

Case (ii) t1 �M

The present value of total profit TP2ðN; s; t1Þ is a func-

tion of the continuous variables s; t1 and a discrete variable

N: So, for any given value of s; the necessary condition for

Eq. (12) to be maximized is oTP2ðs; t1jNÞ=ot1 ¼ 0 for

given N; which gives

Theorem 3 For any given s and N; we have

(i) Equation (17) has a unique solution.

(ii) The solution in (i) satisfies the second-order

conditions for the maximum.

Proof The argumentation is similar to Theorem 1. h

Next, we examine the condition for which the optimal

selling price exists and is also unique. Now, for any t1;N

the first-order necessary condition for (12) to be maximized

is oTP2ðs; t1Þ=os ¼ 0; i.e.,

oTP2ðt1jðs;NÞÞ
ot1

¼ ða� bsÞ
�
s½e�ðkþRÞt1 � eðdþRÞH=Neðk�dÞt1 �

� c½eðk�hÞt1 � e�ðk�dÞt1e�dH=N �

� h

k� h

�
e�ðkþRÞt1 þ ðk� hÞe�ðk�hÞt1 � ðkþ RÞe�ðkþRÞt1

Rþ h

�

� c2e
�dH=N

k� d

�
eðd�k�RÞt1 þ ðd� k� RÞeðd�k�RÞt1 þ ðk� dÞe�ðk�dÞt1�RH=N

R

�

� c0½eðd�k�RÞt1�dH=N � e�ðkþRÞt1 �

þ sIe

�
t1e

�ðkþRÞt1 þ e�Rt1

R

�
ðM � t1Þe�kt1

k
� ð1� e�kt1Þð1þ RðM � t1Þ

���
¼ 0:

ð17Þ

oTP2ðs; t1jNÞ
os

¼ ða� 2bsÞ
�
ð1� e�ðkþRÞt1Þ

kþ R
þ e�ðdþRÞH=N

k� d
ðe�ðk�dÞt1 � e�ðk�dÞH=NÞ

þ Ie

�
ð1� e�ðkþRÞt1Þ

ðkþ RÞ2
� t1e

�ðkþRÞt1

kþ R

��
þ bc

�
ð1� e�ðk�hÞt1Þ

k� h
þ e�dH=N

k� d

� ðe�ðk�dÞt1 � e�ðk�dÞH=NÞ
�
þ bh

k� h

�
ð1� e�ðkþRÞt1Þ

kþ R
þ ðe�ðkþRÞt1 � e�ðk�hÞt1Þ

Rþ h

�

þ bc2e
�dH=N

k� d

�
ðe�ðk�dÞt1�Rt1 � e�ðk�dÞt1�RH=NÞ

R
þ ðeðd�k�RÞt1 � eðd�k�RÞH=NÞ

d� k� R

�

þ bc0

�
ðe�ðkþRÞt1 � e�ðkþRÞH=NÞ

kþ R
þ ðe�dH=Nþðd�k�RÞt1 � e�ðkþRÞH=NÞ

d� k� R

�
¼ 0:

ð18Þ
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It is clear from Eq. (18) has a solution if ða� 2bsÞ\0:

Theorem 4 For any given t1 and N; we have

(i) Equation (18) has a unique solution.

(ii) The solution in (i) satisfies the second-order

condition for the maximum.

Proof Further, the second-order derivative of Eq. (18)

with respect to s is

o2TP1ðs; t1jNÞ
os2

¼ � 2b

�
eðkþRÞt1 � 1

ðkþ RÞeðkþRÞt1
þ e�ðdþRÞH=N

k� d

�
eðk�dÞH=N � eðk�dÞt1

eðk�dÞt1þH=N

�

þ Ie

�
eðkþRÞt1 � 1� t1ðkþ RÞ

ðkþ RÞ2eðkþRÞt1

��
� 0: ð19Þ

Thus, we have established that there exists a unique value s

which maximizes Eq. (12). This completes the proof. h

From the above discussions, TP2ðN; s; t�1Þ is a concave

function of s for a given ðt�1; T�Þ: Thus, there exists a

unique s� which satisfies Eq. (18) and s� can be obtained by
solving Eq. (18).

From the above discussions, the underlying algorithm

can be used to derive the optimal replenishment policies.

Algorithm

Theorem 5 The algorithm is convergent.

Proof In step 2, we calculate the objective function

TP1ðs0; t01; T0Þ using the initial values of t01; T
0; s0 and

TP1ðs0; t01; T0Þ ¼ c0: In step 4, we fix s0 and obtain t1:

Hence, we have the new objective function is

TP1ðs0; t11; T1Þ ¼ c1: In Theorem 1, we established that

TP1ðs0; t11; T1Þ is concave and attains its optimum solution.

Hence, TP1ðs0; t11; T1Þ�TP1ðs0; t01;T0Þ: If TP1ðs0; t11; T1Þ ¼
TP1ðs0; t01; T0Þ; then the algorithm is convergent. Otherwise

TP1ðs0; t11; T1Þ[TP1ðs0; t01; T0Þ ! c1 [ c0: If we fix t11 and

find s1 using Eq. (15), then the new objective function is

TP1ðs1; t11; T1Þ ¼ c2: In Theorem 2, we established that

TP1ðs1; t11; T1Þ is concave and attains its optimum solution

at s1: Hence, TP1ðs1; t11; T1Þ�TP1ðs0; t11; T1Þ: If

TP1ðs1; t11; T1Þ ¼ TP1ðs0; t11; T1Þ; then the algorithm is

convergent. Otherwise, we have TP1ðs1; t11; T1Þ
[TP1ðs0; t11; T1Þ ! c2 [ c1: Therefore, using this itera-

tive procedure, we get cn [ cn�1 [ cn�2 [ � � � [ c1 [ c0

which is a convergent sequence which has an upper bound

and hence the algorithm is convergent. This completes the

proof. h

Numerical examples

To illustrate the solution procedure and the results, let us

apply the proposed algorithm to solve the following

numerical examples by applying the software SCILAB5.5.0.

These examples are based on the following parameters.

Example 1 K ¼ 10;R ¼ 0:12;H ¼ 5; h ¼ 0:4; h ¼ 0:2;

c ¼ 0:3;M ¼ 30=360; d ¼ 0:08; c2 ¼ 0:5; c0 ¼ 0:6; Ic ¼
0:18; Ie ¼ 0:16; k ¼ 0:75; a ¼ 300 and b ¼ 120 in appro-

priate units.

Using the algorithm, the Computational results are

shown in Table 2 and the optimal total profit is shown

graphically in Fig. 2a. From this Table 2, the number of

replenishments N� ¼ 12; the present worth of the total

profit is maximized. Hence, s� ¼ 1:43; t�1 ¼ 0:2522; T� ¼
0:4167;TP� ¼ 348:48 and Q� ¼ 46:50:
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Example 2 K ¼ 50;R ¼ 0:12;H ¼ 7; h ¼ 0:4; h ¼ 0:2;

c ¼ 0:3;M ¼ 30=360; d ¼ 0:08; c2 ¼ 0:5; c0 ¼ 0:6; Ic ¼
0:18; Ie ¼ 0:16; k ¼ 0:75; a ¼ 500 and b ¼ 150 in appro-

priate units.

Using the algorithm, the computational results are

shown in Table 3 and the optimal total profit is shown

graphically in Fig. 2b. From this Table 3, the number of

replenishments N� ¼ 11; the present worth of the total

profit is maximized. Hence, s� ¼ 1:87; t�1 ¼ 0:3937; T� ¼
0:6364;TP� ¼ 824:99 and Q� ¼ 113:89:

Example 3 K ¼ 50;R ¼ 0:16;H ¼ 7; h ¼ 0:8; h ¼ 0:6;

c ¼ 0:7;M ¼ 60=360; d ¼ 0:28; c2 ¼ 0:9; c0 ¼ 0:8; Ic ¼
0:18; Ie ¼ 0:16; k ¼ 0:75; a ¼ 500 and b ¼ 150 in appro-

priate units.

Using the algorithm, the Computational results are

shown in Table 4 and the optimal total profit is shown

graphically in Fig. 2c. From this Table 4, the number of

replenishments N� ¼ 11; the present worth of the total

profit is maximized. Hence, s� ¼ 2:14; t�1 ¼ 0:3415; T� ¼
0:6364;TP� ¼ 359:06 and Q� ¼ 95:

Comparative study with special cases

Table 5 portraits a comparative study of the model with a

special case of Examples 1 and 2. In case of complete

backlogging, the profit is higher as compared to the pro-

posed model.

Sensitivity analysis and managerial insights

In this section, we extend some managerial implications

based on the sensitivity analysis of various key parameters

of the numerical Example 2. We investigate the effects of

changes in the value of the parameters on optimal values of

t�1; T
�;TP� and Q�: The sensitivity analysis is performed by

changing each parameter value, taking one parameter at a

time and the remaining values of the parameters are

unchanged with the following data with suitable units. The

results are summarized in Table 6 and the optimality is

shown graphically in Fig. 3a–o if shortages are partially

backlogged.

The following inferences can be made from the results

of Table 6.

1. When the value of the parameter a and c increases,

the optimal selling price s� will increase if shortages
are partially and completely backlogged.

Table 2 Optimal solution of Example 1

N� s� t1
� T� TP� Q�

11 1.43 0.2743 0.4545 347.52 49.97

12 1.43 0.2522 0.4167 348.48 46.50

13 1.43 0.2335 0.3846 348.29 43.48
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(c) Concave of TP of
Example 3

Fig. 2 Total profit vs. N

Table 3 Optimal solution of Example 2

N� s� t�1 T� TP� Q�

10 1.87 0.4313 0.7 824.26 122.42

11 1.87 0.3937 0.6364 824.99 113.89

12 1.87 0.3621 0.5833 821.01 106.45

Table 4 Optimal solution of Example 3

N� s� t�1 T� TP� Q�

10 2.14 0.3716 0.7 357.78 101.52

11 2.14 0.3415 0.6364 359.06 95

12 2.14 0.3159 0.5833 356.26 89.19
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2. When the value of the parameter b increases, the

optimal selling price s� will decrease if shortages are
partially and completely backlogged.

3. Except the value of the parameters a; b and c; the

optimal selling price s� will remain unchanged if

shortages are partially and completely backlogged.

4. When the value of the parameters a; h; h; Ic and k
increases, the optimal length of time in which there

is no inventory shortage t�1 will decrease, it increases

as the value of the parameters b;K;R;H; c;

M; c2; c0; Ie and d increases if shortages are partially

backlogged.

5. When the value of the parameters a; h; h; Ic and k
increase, the optimal length of time in which there is

no inventory shortage t�1 will decrease, it increases as

the value of the parameters b;K;R;H; c;M; c2; c0; Ie
and d increases if shortages are completely back-

logged except the value of the parameters c0 and d:
6. When the value of the parameters a and k increases,

the optimal ordering cycle time T� will decrease and
it increases as the value of the parameters b;K;H

and c increases and rest of the value of the

parameters, the value of T� remains unchanged if

shortages are partially backlogged.

7. When the value of the parameters b;K;H and c

increases, the optimal ordering cycle time T� will

increase and the rest of the value of the parameters

will remain unchanged if shortages are completely

backlogged.

8. When the value of the parameters a;H;M and Ic
increases, the optimal total profit TP� will increase,

and the rest of the value of the parameters, the

optimal total profit TP� will decrease if shortages are
partially backlogged.

9. When the value of the parameters a;H; c;M and Ic
increases, the optimal total profit TP� will increase

and the rest of the value of the parameters, the

optimal ordering cycle time T� will decrease if

shortages are completely backlogged except the

values of c0 and d:
10. When the value of the parameters

a; b;K;H; h; c2; c0; Ie and Ic increases, the optimal

order quantity Q� will increase and for the rest of the

parameters it causes a reduction in Q� if shortages

are partially backlogged.

11. When the value of the parameters a; b;K;H;

h;M; c2; Ic and k increase, the optimal order quantity

Q� will increase and for the rest of the parameters Q�

will decrease when shortages are completely back-

logged except c0 and d:

Concluding remarks

Due to the advent of modern technology and heavy market

competition, the life cycle of products has been greatly

shortened. The general assumption is that the deterioration

starts from the instant of arrival in stock may cause

retailers to make inappropriate replenishment policies due

to overvalue the total annual relevant inventory cost.

Therefore, it is inevitable in the field of inventory man-

agement to consider the inventory problems for instanta-

neous deteriorating items. The coordination of price

decisions and inventory control is thus not only useful but

also significant because of the fact that the replenishment

policy without considering the selling price cannot opti-

mize the revenue and the simultaneous determination of

price and ordering production quantity can yield substan-

tial revenue increase.

In this paper, the inventory system for determining the

optimal selling price and replenishment policy for instan-

taneous items over a finite planning horizon is developed.

Demand is selling price and time dependent. Shortages are

allowed and partially backlogged. The backlogging rate is

variable and dependent on the waiting time for the next

replenishment. As a special case with d ¼ 0 and M ¼ 0 is

also discussed. An easy-to-use algorithm is proposed to

obtain the optimal selling price and the ordering cycle that

maximizes the total profit. Numerical examples are pro-

vided to illustrate the algorithm and the solution procedure.

By extending the numerical example, some managerial

implications are also discussed. Hence, this study reveals

that, when shortages are completely backlogged, the total

profit becomes higher. We have chosen to include some of

the main highlights of the work presented here. We

Table 5 Optimal solution for a

special case
Example Special case N� s� t�1 T� TP� Q�

1 Present model 12 1.43 0.2522 0.4167 348.48 46.50

d ¼ 0 12 1.43 0.2348 0.4167 350.26 46.58

2 Present model 11 1.87 0.3937 0.6363 824.99 113.89

d ¼ 0 11 1.87 0.3639 0.6363 831.04 114.04

3 Present model 11 2.14 0.3415 0.6364 359.06 95

d ¼ 0 10 2.14 0.3171 0.7 381.92 102.72
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Table 6 Sensitivity analysis of various parameters of the model

Parameters Change in parameters Backlogging N� s� t�1 T� TP� Q�

a 500 Partial 11 1.87 0.3937 0.6364 824.99 113.89

Complete 11 1.86 0.3639 0.6364 831.04 114.04

550 Partial 12 2.03 0.3671 0.5833 1118.16 118.57

Complete 12 2.03 0.3385 0.5833 1124.74 118.67

600 Partial 13 2.19 0.3442 0.5385 1450.81 122.60

Complete 13 2.19 0.3168 0.5385 1457.88 122.66

b 150 Partial 11 1.87 0.3937 0.6364 824.99 113.89

Complete 11 1.86 0.3639 0.6364 831.04 114.04

200 Partial 9 1.46 0.4589 0.7778 453.47 125.66

Complete 9 1.46 0.4278 0.7778 459.24 126.06

250 Partial 8 1.21 0.4998 0.8750 243.94 128.89

Complete 7 1.22 0.5323 1 249.49 140.92

K 50 Partial 11 1.87 0.3937 0.6364 824.99 113.89

Complete 11 1.86 0.3639 0.6364 831.04 114.04

60 Partial 9 1.87 0.4769 0.7778 753.81 132.25

Complete 9 1.87 0.4412 0.7778 760.67 132.48

Partial 9 1.87 0.4769 0.7778 690.03 132.25

70 Complete 9 1.87 0.4412 0.7778 696.89 132.48

R 0.12 Partial 11 1.87 0.3937 0.6364 824.99 113.89

Complete 11 1.86 0.3639 0.6364 831.04 114.04

0.14 Partial 11 1.87 0.3987 0.6363 773.05 113.87

Complete 11 1.87 0.3706 0.6364 778.44 114.03

0.16 Partial 11 1.87 0.4035 0.6364 725.52 113.84

Complete 11 1.87 0.3768 0.6364 730.34 113.99

H 7 Partial 11 1.87 0.3937 0.6364 824.99 113.89

Complete 11 1.86 0.3639 0.6364 831.04 114.04

9 Partial 14 1.87 0.3976 0.6429 958.92 114.78

Complete 14 1.86 0.3675 0.6429 965.99 114.94

11 Complete 17 1.87 0.3999 0.6471 1064.23 115.35

Complete 17 1.87 0.3698 0.6471 1072.12 115.51

h 0.4 Partial 11 1.87 0.3937 0.6364 824.99 113.89

Complete 11 1.86 0.3639 0.6364 831.04 114.04

0.6 Partial 11 1.87 0.3430 0.6364 805.72 112.38

Complete 11 1.87 0.3125 0.6364 814.55 112.82

0.8 Partial 11 1.88 0.3039 0.6364 790.60 111.26

Complete 11 1.87 0.2740 0.6364 801.92 111.96

c 0.3 Partial 11 1.87 0.3937 0.6364 824.99 113.89

Complete 11 1.86 0.3639 0.6364 831.04 114.04

0.5 Partial 10 1.98 0. 4108 0.7 655.75 113.06

Complete 10 1.98 0.3803 0.7 662.24 113.37

0.7 Partial 9 2.09 0.4336 0.7778 501.33 111.84

Complete 2.09 9 0.4024 0.7778 508.07 112.32

h 0.2 Partial 11 1.87 0.3937 0.6364 824.99 113.89

Complete 11 1.86 0.3639 0.6364 831.04 114.04

0.4 Partial 11 1.87 0.3709 0.6364 817.22 115.95

Complete 11 1.87 0.3412 0.6364 824.44 115.83

0.6 Partial 11 1.87 0.3500 0.6364 810.01 117.61

Complete 11 1.87 0.3207 0.6364 818.39 117.25
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Table 6 continued

Parameters Change in parameters Backlogging N� s� t�1 T� TP� Q�

M 0 Partial 11 1.86 0.3902 0.6364 820.96 113.72

Complete 11 1.86 0.3601 0.6364 827.19 113.89

30/360 Partial 11 1.87 0.3937 0.6364 824.99 113.89

Complete 11 1.86 0.3639 0.6364 831.04 114.04

60/360 Partial 11 1.86 0.3971 0.6364 831.45 114.06

Complete 11 1.86 0.3678 0.6364 837.33 114.20

90/360 Partial 11 1.86 0.4004 0.6364 839.95 114.23

Complete 11 1.86 0.3714 0.6364 845.66 114.36

c2 0.5 Partial 11 1.87 0.3937 0.6364 824.99 113.89

Complete 11 1.86 0.3639 0.6364 831.04 114.04

0.7 Partial 11 1.87 0.4227 0.6364 819.34 114

Complete 11 1.87 0.4003 0.6364 823.83 114.09

0.9 Partial 11 1.87 0.4455 0.6364 814.95 114.10

Complete 11 1.87 0.4281 0.6364 818.42 114.16

c0 0.6 Partial 11 1.87 0.3937 0.6364 824.99 113.89

Complete 11 1.86 0.3639 0.6364 831.04 114.04

0.8 Partial 11 1.87 0.3964 0.6364 824.48 113.90

Complete 11 1.87 0.3639 0.6364 831.04 114.04

1.0 Partial 11 1.87 0.3989 0.6364 823.97 113.91

Complete 11 1.87 0.3639 0.6364 831.04 114.04

Ic 0.18 Partial 11 1.87 0.3937 0.6364 824.99 113.89

Complete 11 1.86 0.3639 0.6364 831.04 114.04

0.38 Partial 11 1.87 0.3806 0.6364 821.20 113.55

Complete 11 1.87 0.3509 0.6364 827.91 113.77

0.58 Partial 11 1.87 0.3636 0.6364 817.69 113.24

Complete 11 1.87 0.3389 0.6364 825.03 113.53

Ie 0.16 Partial 11 1.87 0.3937 0.6364 824.99 113.89

Complete 11 1.86 0.3639 0.6364 831.04 114.04

0.36 Partial 11 1.87 0.3936 0.6364 827.09 113.91

Complete 11 1.86 0.364 0.6364 833.15 114.07

0.56 Partial 11 1.87 0.3936 0.6364 829.19 113.93

Complete 11 1.86 0.364 0.6364 835.25 114.09

k 0.75 Partial 11 1.87 0.3937 0.6364 824.99 113.89

Complete 11 1.86 0.3639 0.6364 831.04 114.04

0.95 Partial 11 1.87 0.3937 0.6364 758.71 107.54

Complete 11 1.86 0.3639 0.6364 764.22 107.68

1.15 Partial 12 1.86 0.3621 0.5833 699.35 95.83

Complete 12 1.86 0.3347 0.5833 704.16 95.93

d 0.08 Partial 11 1.87 0.3937 0.6364 824.99 113.89

Complete 11 1.86 0.3639 0.6364 831.04 114.04

0.28 Partial 11 1.87 0.4455 0.6364 814.75 113.83

Complete 11 1.87 0.3639 0.6364 831.04 114.04

0.48 Partial 11 1.88 0.4790 0.6364 808.34 113.92

Complete 11 1.87 0.3639 0.6364 831.04 114.04
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systematically model and investigate deteriorating inven-

tory problems. We apply mathematical tools and tech-

niques in dealing rigorously with the model. Our main

assertions and results are stated and proved as theorems. By

our rigorous arguments, we have overcome all shortcom-

ings in the literature. The potential way of extending this

paper further is to consider stochastic demand and non-

instantaneous deterioration. The multi-item inventory

models and reliability of items should also be considered.
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