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Abstract Multiple attribute decision making (MADM)

methods are very much essential in all fields of engineer-

ing, management and other areas where limited alternatives

exist and the decision maker has to select the best alter-

native. Different methods are available in the literature to

tackle the MADM problems. The MADM problems are

classified as scoring methods, compromising methods and

concordance methods. The concordance methods are dif-

ficult to understand compared to scoring and compromising

methods. Present work introduces a simple-to-understand

and easy-to-convince method for multiple attribute deci-

sion making problems. This method is based on the phi-

losophy of both scoring and comprising methods and relies

on the loss for not choosing the ideal best alternative.

Different loss functions such as linear, quadratic and cubic

functions have been proposed to calculate the loss.

Example problems have been taken from the literature and

the proposed method is implemented. Besides the sim-

plicity of the proposed method, the results obtained are

found to be in close agreement with rather difficult

methods.

Keywords Multiple attribute decision making � Ideal best
alternative � Loss functions

Introduction

Multiple criteria decision making (MCDM) problems are

studied mainly under two categories, namely multiple

objective decision making (MODM) problems and multiple

attribute decision making (MADM) problems. The MODM

problems emphasize the design of best alternative wherein

the alternatives are not predetermined. In contrast, the

number of alternatives in MADM problems is predeter-

mined and is usually limited. Hence, it can be stated that

MODM problems are concerned with design whereas the

MADM problems are used for selection (Hwang and Yoon

1981). The MADM methods are classified as non-com-

pensatory and compensatory. Some of the non-compen-

satory methods include maxmin, maximax, dominance,

conjunctive constraint method, and lexicographic method.

These methods are simple but their applications are lim-

ited. The compensatory models are very popular. These

methods can be described under three categories: (1)

scoring methods (2) compromising methods and (3) con-

cordance methods (Hwang and Yoon 1981). A taxonomy

of methods for classical MADM problems and fuzzy

ranking methods can be found in the study by Chen and

Hwang (1992).

Scoring methods prefer the alternative which has the

highest score. The methods based on MAUT (Multi-at-

tribute utility theory; Keeney and Raffia 1993) belong to

this category. Simple additive weighting (SAW) summa-

rized by McCrimmon (1968) and analytical hierarchy

process (AHP) developed by Saaty (1980) are very popular

scoring methods. The compromising methods rely on the

ideal best and ideal worst solutions obtained from the

available alternatives. TOPSIS (The Technique for Order

of Preference by Similarity to Ideal Solution) developed by

Hwang and Yoon (1981) and VIKOR (VIsekriterijumsko
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KOmpromisno Rangiranje) developed by Zeleny (1982)

are very popular in this category. Some new approaches

based on the above scoring and compromising methods can

be found in the studies by Yang et al. (2013), Wang et al.

(2015) and Qin et al. (2015). The ELECTRE (Elimination

et Choice Translating Reality) method introduced by

Benayoun et al (1966) and the PROMETHEE (Preference

Ranking Organization Method for Enrichment Evaluation)

method introduced by Brans et al. (1984) are very popular

concordance methods.

Many other techniques like COPRAS (Complex pro-

portional assessment; Zavadskas et al. 2008), DEA (Data

Envelopment Analysis; Charnes et al. 1978), DEMATEL

(Decision making trial and evaluation laboratory; Fontela

and Gabus 1974, 1976), GTMA (Graph theory and matrix

analysis; Rao 2007, 2013) GRA (Gray relational analysis;

Deng 1989), MACBETH (Measuring attractiveness by a

categorical-based evaluation technique; Bana e Costa and

Vansnick 1997), MOORA (Multi-objective optimization

on the basis of ratio analysis; Brauers and Zavadskas

2006), MULTIMOORA—a comprehensive extension of

MOORA (Brauers and Zavadskas 2010; Hafezalkotob and

Hafezalkotob 2016), OWA(Ordered weighted averaging;

Yager 1988), RST (Rough set theory; Pawlak and

Slowinski 1994), and UTA (Utilities additives; Jacquet-

Lagreze and Siskos 1982) are also employed for solving

the MADM problems.

In the present work, a simple method for MADM

problems has been introduced based on loss functions. This

method uses the philosophy of both scoring and compro-

mising methods. The paper is organized as follows: in the

next section, the proposed loss function approach is

described and the total loss for choosing an alternative is

derived. The subsequent section deals with the application

of the proposed loss function approach to decision making

problems taken from the literature and comparison of the

results with other popular methods. Summary and con-

cluding remarks are given in the final section.

The loss function approach and total loss
derivation

In the present paper, a simple and convincing method to

MADM has been proposed. The present method relies on

the principle of measuring the loss caused by each attribute

for not being the best with respect to the best value

available among all the alternatives.

Multiple attribute decision making problems pose a

challenge to the decision maker to select the best alterna-

tive from among the set of alternatives. Each alternative

consists of a few attributes based on which the decision

maker chooses the best alternative. The attributes are in

general of two types, namely beneficial and non-beneficial.

In the case of beneficial attributes, higher values are

desired and for non-beneficial attributes lower values are

preferred. In general, no alternative will possess all bene-

ficial attributes at higher values and all non-beneficial

attributes at lower values. Some alternatives may possess

best values with respect to some attributes and may possess

undesired values at higher levels with respect to the other.

In addition, the attributes will possess different weights

with respect to each other. Because of this conflicting

nature, the decision maker has to choose the best alterna-

tive based on some criterion. For example, in TOPSIS

methodology, the best alternative is chosen based on the

Euclidean distances of the alternatives from the ideal best

and ideal worst alternatives. Irrespective of the nature of

attribute, in TOPSIS methodology, the Euclidean distances

only will be considered. But, in reality, the effect of the

attribute need not always be proportional to the straight line

distance only. For example, in Taguchi’s loss function

approach (Kackar 1985), the losses are taken proportional

to the square of the deviation of the quality characteristic

from the desired nominal value.

In the proposed method, initially, the ideal best alter-

native has to be obtained from the available alternatives.

The ideal best alternative consists of all higher values for

the beneficial attributes and all lower values for the non-

beneficial values. The loss for choosing each alternative

has to be calculated with respect to the ideal best alterna-

tive. The alternative with lowest possible total loss is

chosen as the best alternative. The losses can be calculated

not only based on quadratic function, but they can be

calculated using linear and cubic loss functions also.

Loss function approach (LFA)

The decision matrix of an MADM problem with n alter-

natives and p attributes is shown in Table 1. Let wj be the

weight of the jth attribute.

Let xij represent the value of jth attribute in the ith

alternative.

The ideal best alternative (IBA) selected from data

matrix of Table 1 can be represented mathematically as:

Table 1 Typical decision matrix

Alternatives Attributes

1 2 3 4 ………………………… p

1 x11 x12 x13 x14 ………………………… x1p

2 x21 x22 x23 x24 ………………………….

… …. ….. ….. ….. ………………………….

n xn1 xn2 xn3 xn4 ………………………….. xnp
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I B A ¼ max
i

xijj jeH
� �

; min
i

xij j je S
� �� �

i ¼ 1; 2; . . .. . .. . .n

ð1Þ

where H and S represent the set of beneficial attributes and

non-beneficial attributes, respectively.

The attributes of any chosen alternative (i = 1, 2,

...n) have to be compared with the attributes of IBA and the

loss for not being the best for each attribute has to be

calculated. The sum of the losses caused by all attributes of

an alternative gives the total loss for choosing a particular

alternative.

Maximum and minimum losses for attributes

To calculate the total loss of any alternative, initially the

loss caused by each attribute of that particular alternative

has to be calculated. To calculate the loss caused by each

attribute, the attributes of the chosen alternative are to be

compared with those of IBA.

For a beneficial attribute, the minimum loss is taken to be

zero when the attribute possesses the maximum value with

respect to all alternatives under consideration. The loss is

taken to be maximum when a beneficial attribute is at min-

imum value. On a zero–one scale, the loss is considered to be

equal to one when the attribute value is at minimum with

respect to all alternatives under consideration.

Using the same logic for a non-beneficial attribute, the

minimum loss is taken as zero when the attribute value is

at minimum and the maximum loss is taken as one when

the attribute possesses the maximum value.

Let x j
max represent the maximum value of the jth attri-

bute among all alternatives,

i.e.,

x j
max ¼ maxfxijg 8i ¼ 1; 2; . . .. . .. . .n ð2Þ

Let x
j
min represent the minimum value of the jth attribute

among all alternatives,

i.e.,

x
j
min ¼ minfxijg 8i ¼ 1; 2. . .. . .. . .. . .n ð3Þ

The maximum and minimum losses Lj for a beneficial

attribute can be expressed mathematically as:

L j ¼
0 if xij ¼ x j

max

1 if xij ¼ x
j
min

(

j 2 H ð4Þ

Similarly, the maximum and minimum losses Lj for a

non-beneficial attribute can be expressed mathematically

as:

L j ¼
0 if xij ¼ x

j
min

1 if xij ¼ x j
max

(

j 2 S ð5Þ

From Eqs. (4) and (5), it can be observed that the

maximum loss is considered equal to 1 when the beneficial

attribute is at minimum and the non-beneficial attributes at

maximum values. But, all the attributes are not equally

weighted in MADM problems. Hence, the maximum losses

cannot be considered to be equal to 1 for all attributes.

Incorporating the weights of different attributes, the max-

imum loss for each attribute is obtained by multiplying the

maximum loss (equal to one) by the respective weight of

the attribute.

Considering the individual weights of all attributes, the

maximum and minimum losses of beneficial attributes can

now be expressed as:

L j ¼
0 if xij ¼ x j

max

w
j
H if xij ¼ x

j
min

(

j 2 H ð6Þ

Similarly, the maximum and minimum losses for a non-

beneficial attributes can be expressed as:

L j ¼
0 if xij ¼ x

j
min

w
j
S if xij ¼ x j

max

(

j 2 S ð7Þ

where wS
j and wH

j represent the weights of non-beneficial

and beneficial attributes, respectively.

Loss calculation for a non-beneficial/beneficial attribute

In this section, the loss equations for non-beneficial/bene-

ficial attributes are derived for linear, quadratic and cubic

functions. In case of linear function, the loss is assumed to

be proportional to the deviation of the attribute from the

best value of the attribute. Similarly, in quadratic loss

function the loss is assumed to be proportional to the

square of the deviation of the attribute from the best value

of the attribute. Loss is assumed to be proportional to the

cube of the deviations in case of cubic loss functions.

Assuming a linear loss function, i.e., the loss is pro-

portional to the deviation, the loss function for the jth

attribute of any alternative can be written as:

L xij
� �

¼ K
j
S xij � x

j
min

� �
ð8Þ

where KS
j is the constant of proportionality for a non-ben-

eficial attribute.

At

xij ¼ x
j
min

L xij
� �

¼ 0:
ð9Þ

At

xij ¼ x j
max

L xij
� �

¼ w
j
S:

ð10Þ

Combining Eqs. (8) and (10),
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w
j
S ¼ K

j
S x j

max � x
j
min

� �
: ð11Þ

The constant of proportionality can be obtained from

Eq. (11) as:

K
j
S ¼ wj

s

x
j
max � x

j
min

� � : ð12Þ

Using the value of constant of proportionality from

Eq. (12), the linear loss function for a non-beneficial

attribute can be written as:

L xij
� �

¼ w
j
S xij � x

j
min

� �
= x j

max � x
j
min

� �
: ð13Þ

Using quadratic loss function, the loss for a non-bene-

ficial attribute can be calculated as:

L xij
� �

¼ K
j
S xij � x

j
min

� �2
: ð14Þ

Substituting the conditions as in Eqs. (9) and (10), the

constant of proportionality can be obtained as:

K
j
S ¼ wj

s

x
j
max � x

j
min

� �2 : ð15Þ

Using Eqs. (14) and (15), the quadratic loss function

for a non-beneficial attribute can be obtained as:

LðxijÞ ¼ w
j
S

xij � x
j
min

� �

x
j
max � x

j
min

� �

" #2

: ð16Þ

In the similar lines, the cubic loss function for a non-

beneficial attribute can be obtained as:

LðxijÞ ¼ w
j
S

xij � x
j
min

� �

x
j
max � x

j
min

� �

" #3

: ð17Þ

Now, the linear loss function for a beneficial attribute

can be obtained as:

L xij
� �

¼ w
j
H x j

max � xij
� �

= x j
max � x

j
min

� �
: ð18Þ

The quadratic loss function for a beneficial attribute

can be obtained as:

L xij
� �

¼ w
j
H

x j
max � xij

� �

x
j
max � x

j
min

� �

" #2

: ð19Þ

The cubic loss function for beneficial attribute can be

obtained as:

LðxijÞ ¼ w
j
H

x j
max � xij

� �

x
j
max � x

j
min

� �

" #3

: ð20Þ

Total loss calculation for an alternative

Assuming that any alternative in the decision matrix has

a combination of beneficial and non-beneficial attributes,

the total loss for choosing any alternative i can be

written as

Li ¼ LS þ LH ð21Þ

where LH is the loss caused by the beneficial attributes and

LS is the loss caused by the non-beneficial attributes.

For a linear loss function, the loss caused by the non-

beneficial attributes of an alternative i is given by:

LS ¼
X

j2S

w
j
S xij � x

j
min

� �

x
j
max � x

j
min

� � : ð22Þ

The loss caused by the beneficial attributes is given by:

LH ¼
X

j2H

w
j
H x j

max � xij
� �

x
j
max � x

j
min

� � ð23Þ

The total loss caused by the alternative i using linear loss

function is given by:

Li ¼
X

j2S

w
j
S xij � x

j
min

� �

x
j
max � x

j
min

� � þ
X

jeH

w
j
H x j

max � xij
� �

x
j
max � x

j
min

� � : ð24Þ

The total loss caused by the alternative i using quadratic

loss function is given by:

Li ¼
X

j2S

w
j
S xij � x

j
min

� �2

x
j
max � x

j
min

� �2 þ
X

jeH

w
j
H x j

max � xij
� �2

x
j
max � x

j
min

� �2 : ð25Þ

The total loss caused by the alternative i using cubic

loss function is given by:

Li ¼
X

j2S

w
j
S xij � x

j
min

� �3

x
j
max � x

j
min

� �3 þ
X

jeH

w
j
H x j

max � xij
� �3

x
j
max � x

j
min

� �3 : ð26Þ

In a general form, the total loss caused by the alternative

i can be written as:

Li ¼
X

j2S

w
j
S xij � x

j
min

� �n

x
j
max � x

j
min

� �n þ
X

jeH

w
j
H x j

max � xij
� �n

x
j
max � x

j
min

� �n ð27Þ

where n is the index of loss function. For n = 1, 2 and 3,

the loss function is linear, quadratic and cubic, respec-

tively. The loss function approach with loss function index

n is designated as LFA-n.

Background and discussion on the loss function

approach

Use of the city block distance as a separation measure can

be found in the technique SMART (Similarity Measure

Anchored Ranking Technique) introduced by Dasarathy

(1976). The TOPSIS technique introduced by Hwang and

Yoon (1981) is simple in its logic and relies on the

Euclidean distances of the alternative under consideration
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from the ideal best and ideal worst alternatives. This

straight forward geometric system computation led to the

increased popularity of the TOPSIS technique (Ding and

Kamaruddin 2015). The popularity of the TOPSIS tech-

nique is quite evident by the number of its applications in

different areas (Behzadian et al. 2012). It is obvious that

while considering attributes such as material strengths,

corrosion resistance, and toxic harm rate, the losses cannot

be justified using the Euclidian distances alone. The losses

caused may be in quadratic or in cubic or may be in some

other form. In addition, instead of the Euclidean distances

and the relative closeness measures, the loss for not

choosing the best alternative can be understood easily.

Hence, in the present work, instead of relative closeness

measure, the total loss for not choosing the best alternative

is suggested. As the actual losses are very difficult to

measure, relative losses are fixed at one for the worst value

of the attribute and zero for the best value of the alterna-

tive. After incorporating the weights, Eq. (27) can be used

in the calculation of the losses. As the calculation of the

losses is so simple and the results obtained are very close to

the best solutions obtained by the other methods, the pro-

posed method can be used as a simple and effective method

for MADM problems.

Regarding the use of loss function approach, it is worth

mentioning that the concept of loss function is being used

by the statisticians well before the introduction of Tagu-

chi’s loss function (Ferguson 1967). Taguchi et al. (1989)

applied the concept of quadratic loss function to quantify

the quality loss. With the assumption that quality loss is

zero when the quality characteristic is at target value and

the maximum losses occurring at upper and lower speci-

fications, the quality loss is approximated to follow a

quadratic function. The total quality loss for a number of

products with different individual measurements is given

by:

Total loss ¼ K aðl� sÞ2 þ ða� 1Þr2
h i

ð28Þ

where K is the constant of proportionality, l is the mean of

the measurements and r2 is the sample variance.

In the present study, the concept of loss function is

introduced in MADM problems to make decision making

simple so that the industrial personnel without much

mathematical background can easily understand. Different

loss functions with indices n = 1, 2 and 3 have been

introduced in the analysis. The total loss of an alternative

for not being the ideal best is derived as Eq. (27). It is quite

obvious that the equations for Taguchi’s total loss (28) and

the total loss proposed in the present study (27) are entirely

different. Maximum loss in the case of Taguchi’s loss

function is assumed to occur at the specification limits

(upper specification and lower specification) and are

estimated based on repair/failure costs. In the proposed

method, the maximum loss is assumed to be one for any

attribute belonging to the ideal worst alternative. With the

introduction of attributes weights, the maximum loss is

made equal to the weight of the attribute under

consideration.

In addition, it can be observed from the literature that

different MADM methods provide different solutions

(order of preferences) for the same problem. Sometimes it

may so happen that the last preference of one method

becomes the first choice of some other method. For

example, the robot selection problem involving three dif-

ferent robots (Rao 2007) using three popular MADM

methods provided the following solutions:

GTMA: Robot 2 - Robot 1 - Robot 3

AHP: Robot 3 - Robot 1 - Robot 2

Modified TOPSIS: Robot 1 - Robot 3 - Robot 2.

Naturally, the decision maker would be in a confusion in

choosing the right decision. The concern for any decision

maker in such a situation is to know the consequence of a

wrong decision. The proposed loss function approach gives

a convincing solution in terms of the total loss for each

alternative.

Proposed loss function approach with examples

It is argued that considering the straight line-based distance

measures as in TOPSIS may not be always appropriate

because the losses incurred for not choosing the best would

not be always linearly related to distances. To highlight this

observation, loss function approach with different loss

indices has been proposed. Different attributes may possess

different indices, but for simplicity of explanation the

proposed loss function approach has been employed to

solve MADM problems with the following assumptions:

1. The index of loss function for each attribute can be

assumed safely with prior knowledge about the

attributes.

2. The loss function index is the same for all attributes of

different alternatives.

The following are the steps involved in implementing

the proposed loss function approach (LFA) of decision

making.

Step 1 Obtain the data pertaining to all available alter-

natives. If any of the attributes in the data contain quali-

tative information, convert the qualitative data to

quantitative data using an appropriate technique.

Step 2 The attributes are to be classified as non-benefi-

cial or beneficial attributes based on the nature of the

attributes. If a maximum value is desired for the attribute

under consideration, it is taken as a beneficial attribute. If a

J Ind Eng Int (2017) 13:107–116 111
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minimum value is desired for an attribute, it is taken as

non-beneficial attribute.

Step 3 Obtain the weight of each attribute using one of

the existing methods. Because of the effectiveness and

popularity, Analytical Hierarchy Process (AHP) method is

preferred in obtaining the weights for each attribute.

Step 4 Assign a maximum loss for each attribute equal

to the weight of the corresponding attribute.

Step 5 Decide upon the appropriate loss function to be

used for each attribute. The loss functions proposed are

linear or quadratic or cubic functions.

Step 6 Calculate the loss of choosing an alternative

using Eq. (24) or (25) or (26). Arrange the alternatives in

the ascending order of their loss values. This gives the

order of preference for each alternative.

The following section illustrates some of the MADM

problems using the proposed loss function approach. Ini-

tially, the problems are solved using the proposed loss

function approach. The solutions obtained are then com-

pared with those obtained from the literature using some of

the MADM methods, namely AHP, TOPSIS, modified

TOPSIS and GTMA.

Machinability evaluation

Rao (2007) solved the machinability evaluation problem

using the data (Table 2) obtained from turning of various

work materials by employing MADM techniques AHP,

TOPSIS, modified TOPSIS and GTMA. Data of Table 2

are the results of experimentation conducted on ferrous

and nonferrous alloys with high-speed machining tools

(Bech 1963; Konig and Erinski 1983). The three attributes

in the present problem are: 1-hour cutting speed (VC),

specific cutting force (CF), and cutting power input (PI).

A work material allowing very high cutting speeds is

considered to possess high machinability characteristic.

Hence, 1-hour cutting speed (VC) is a beneficial attribute.

The remaining two attributes, namely specific cutting

force (CF) and cutting power input (PI) are non-beneficial

attributes.

The weight for each attribute has been considered from

the study by Rao (2007) for comparison purpose. The

weights are in fact obtained using the AHP method. The

normalized weight for each attribute is given as:

WVC = 0.7142, WCI = 0.1429, and WPI = 0.1429.

Solution using linear, quadratic and cubic loss functions

The procedure to obtain the solution is explained stepwise:

Step 1 The information regarding all the alternatives is

given in Table 2. The first column of Table 2 shows the

different alternatives available (W1 to W6). There are

three attributes, namely VC, CF and PI. The information

on all attributes is quantitative. Hence, the process of

converting the qualitative data to quantitative data is not

required.

Step 2 The attribute VC is recognized as a beneficial

attribute and the attributes CF and PI are non-beneficial

attributes.

Step 3 There are three attributes in the present problem.

The weight for each attribute is obtained using AHP

process.

Weight of the first attribute (VC), wH
1 = 0.7142.

Weight of the second attribute (CF), wS
2 = 0.1429.

Weight of the third attribute (PI), wS
3 = 0.1429.

Step 4 Since the attribute VC is a beneficial attribute, the

maximum loss occurs when the attribute takes on a mini-

mum value. Similarly, the maximum losses occur when CF

and PI are at their minimum values.

Step 5 The present problem is solved based on linear,

quadratic and cubic loss functions.

Initially, consider linear loss function:

From Table 2, the pertinent information is obtained as

follows:

x1max ¼ 1720; x2max ¼ 1750; x3max ¼ 59

x1min ¼ 120; x2min ¼ 235; x3min ¼ 8

The losses for choosing different alternatives are now

calculated using Eq. (24) and the respective losses are

given below:

L1 = 0.5224, L2 = 0.4671, L3 = 0.2024, L4 = 0.0981,

L5 = 0.8005 and L6 = 0.8701.

The solution obtained using the linear loss function can

be given as:

W4[W3[W2[W1[W5[W6

Using quadratic loss function, the losses obtained for the

different alternatives are given below:

L1 = 0.3038, L2 = 0.2391, L3 = 0.1473, L4 = 0.0673,

L5 = 0.7 and L6 = 0.8285.

Table 2 Objective data of the alternative alloys

Work material VC (m/min) CF (N/m2) PI (kW)

W1 710 400 28

W2 900 415 38

W3 1630 440 59

W4 1720 235 43

W5 120 1150 8

W6 160 1750 19

W1 GK-AlSi10 Mg (aluminum–silicon die-cast alloy), W2 GK-

AlSi6Cu4 (aluminum–silicon die-cast alloy), W3 GK-AlMg5 (alu-

minum–magnesium die-cast alloy), W4 GK-MgAl9Zn (magnesium–

aluminum die-cast alloy), W5 GG26 (gray cast iron with lamellar

graphite), W6 C35 (low-carbon steel)
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Hence, the solution obtained using the quadratic loss is

given below:

W4[W3[W2[W1[W5[W6

Finally, using the cubic loss function, the losses for

choosing for different alternatives are given below:

L1 = 0.1885, L2 = 0.2391, L3 = 0.1473, L4 = 0.0673,

L5 = 0.7663 and L6 = 0.8285.

The solution obtained using cubic loss function is given

below:

W4[W3[W1[W2[W5[W6

A comparison of the solutions obtained using the pro-

posed method with those reported in the literature (Rao

2007) for the same problem using AHP, TOPSIS, modified

TOPSIS and GTMA methods is provided in Table 3.

From Table 3, it can be observed that all the methods

proposed the alternative 4 (W4) as the best alternative. In

addition, in the order of preference, all methods are in close

agreement with each other except the LFA-3. The cubic

loss function resulted in slightly different ranking.

Machine group selection

As a second problem for illustrating the proposed loss

function approach, machine group selection problem from

Wang et al. (2000) is considered. The objective data

obtained for ten alternatives are given in Table 4. The

problem consists of four attributes, namely total purchasing

cost (PC), total floor space (FS), total machine number

(MN) and productivity (P). Out of four attributes under

consideration, productivity is the only beneficial attribute,

which needs to be maximized. All the remaining attributes

(PC, FS and MN) are non-beneficial. The weights of the

attributes are taken as WPC = 0.467, WFS = 0.16,

WMN = 0.095 and WP = 0.278. These weights are taken

from the study by Rao (2007) for comparison purpose.

Using the loss function approach with linear, quadratic

and cubic loss functions, the machine group selection

problem is solved. The resulting losses for all the alterna-

tives under the above three loss functions are given in

Table 5.

Using the results of Table 5, the order of preference for

the ten alternatives can be found. A comparison of the

results obtained using loss function approach with the

results of MADM methods available in the literature (Rao

2007) are shown in Table 6.

From the results of Table 6, it can be observed that all

the methods under consideration suggest the alternative 4

as the best choice. The first four alternatives suggested by

AHP, TOPSIS, LFA-1, and LFA-2 are the same and also

the last preference is given to alternative 2 by all these

methods. Even all loss function approach-based methods

suggest the alternative 2 as the last preference. GTMA

prefers alternative 2 in comparison with the alternatives 8,

9 and 10 which cannot be justified. From Table 4, it can

be observed that the total purchasing cost (PC) is low for

the alternatives 8, 9 and 10 compared to the alternative 2.

The total purchase cost (PC) is maximum for alternative 2

and minimum for alternative 8. In addition, the produc-

tivity (P) of alternatives 8, 9 and 10 are much superior

compared to that of alternative 2. Moreover, the weights

of PC and P are very high compared to the remaining

attributes FS and MN. These facts show the superiority of

the order of preference suggested by AHP, TOPSIS, LFA-

1, LFA-2 and LFA-3.

Table 3 A comparison of the solutions for Machinability Evaluation

problem

Method Solution

AHP W4[W3[W2[W1[W5[W6

TOPSIS W4[W3[W2[W1[W5[W6

Modified TOPSIS W4[W3[W2[W1[W5[W6

GTMA W4[W3[W2[W1[W5[W6

LFA-1 W4[W3[W2[W1[W5[W6

LFA-2 W4[W3[W2[W1[W5[W6

LFA-3 W4[W3[W1[W2[W5[W6

Table 4 Objective data for

machine group selection

problem

Alternative Total purchasing

cost (PC) ($)

Total floor space

(FS) (m2)

Total machine

number (MN)

Productivity

(P) (mm/min)

1 581,818 54.49 3 5500

2 595,454 49.73 3 4500

3 586,060 51.24 3 5000

4 522,727 45.71 3 5800

5 561,818 52.66 3 5200

6 543,030 74.46 4 5600

7 522,727 75.42 4 5800

8 486,970 62.62 4 5600

9 509,394 65.87 4 6400

10 513,333 70.67 4 6000
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Material selection problem

As a last example to illustrate the proposed loss function

approach method, material selection problem of Manshadi

et al. (2007) has been selected. Rao (2007) provides solu-

tions to the same materials selection problem using GTMA,

AHP, TOPSIS and modified TOPSIS methods. The number

of materials under consideration is seven. Each material is

characterized by seven important properties. They are

toughness index (TI), yield strength (YS), Young’s mod-

ulus (YM), density (D), thermal expansion (TE), thermal

conductivity (TE) and specific heat (SH). The objective

data of the seven materials are provided in Table 7.

Out of the seven attributes, the first three attributes TI,

YS and YM are beneficial. Remaining four attributes, D,

TE, TC and SH, are non-beneficial. To have comparison

with the previous solutions, the weights are chosen to be

same as that by Rao (2007). The weight for each attribute is

as follows:

WTI ¼ 0:24; WYS ¼ 0:14; WYM ¼ 0:05; WD ¼ 0:24;

WTE ¼ 0:19; WTC ¼ 0:05 and WSH ¼ 0:05:

With the above weights and using the linear, quadratic

and cubic loss functions, the total losses for each alterna-

tive have been calculated and provided in Table 8.

Using the results of Table 8, the order of preference for the

seven materials under consideration is obtained. A compar-

ison of the solutions using otherMADMmethods and present

loss function approach methods is provided in Table 9.

From Table 9, it can be observed that results obtained

using AHP, TOPSIS and LFA-1 method are the same.

Similarly, the solutions obtained using modified TOPSIS,

GTMA and LFA-2 are the same. Except LFA-3, all the

methods preferred materials 3 and 5 as the first and second

choices. In addition, with slight differences, all methods

choose the materials 3, 4, 5 and 6 in the first four places. The

least preferred materials are 1, 2 and 7. It is appropriate to

judge the superiority of any method based on the first pref-

erences given by the method, since the decision maker is

always interested to choose the best. Judging amethod based

on the last preference may not be much useful and would be

illogical. In the present comparison, all methods are found to

suggest 3, 4, 5 and 6 as the materials which deserve much

attention. Even though the real loss function behavior is not

exactly known for many attributes, it can be appropriate to

choose loss function with linear or quadratic nature based on

the encouraging results obtained so far.

Summary and conclusions

In the present work, a simple-to-understand and easy-to-

convince method based on loss function approach has been

proposed. The method is based on assigning a maximum

loss of one to an undesirable value of the attributes and

zero loss to the most desirable value of the attributes in the

available range of values of the attributes. The total loss for

choosing an alternative has been calculated using an

appropriate loss function. Based on the losses, the

Table 5 Loss obtained using linear, quadratic and cubic functions

Alternative Linear function Quadratic function Cubic function

1 0.5873 0.4333 0.3458

2 0.7666 0.7479 0.7454

3 0.6612 0.5461 0.4681

4 0.2417 0.0785 0.0255

5 0.5352 0.3420 0.2255

6 0.6082 0.4188 0.3252

7 0.4967 0.3335 0.2805

8 0.3031 0.1961 0.1453

9 0.3001 0.1886 0.1491

10 0.4014 0.2478 0.1992

Table 6 A comparison of the results of machine group selection

problem

Method Solution

AHP 4[ 9[ 8[ 10[ 5[ 1[ 7[ 3[ 6[ 2

TOPSIS 4[ 9[ 8[ 10[ 7[ 5[ 1[ 6[ 3[ 2

Modified TOPSIS 4[ 9[ 5[ 1[ 8[ 3[ 10[ 2[ 7[ 6

GTMA 4[ 5[ 1[ 3[ 2[ 9[ 8[ 10[ 7[ 6

LFA-1 4[ 9[ 8[ 10[ 7[ 5[ 1[ 6[ 3[ 2

LFA-2 4[ 9[ 8[ 10[ 7[ 5[ 6[ 1[ 3[ 2

LFA-3 4[ 8[ 9[ 10[ 5[ 7[ 6[ 1[ 3[ 2

Table 7 Objective data of material selection problem

Material Material selection attributes

TI YS YM D TE TC SH

1 75.5 420 74.2 2.8 21.4 0.37 0.16

2 95 91 70 2.68 22.1 0.33 0.16

3 770 1365 189 7.9 16.9 0.04 0.08

4 187 1120 210 7.9 14.4 0.03 0.08

5 179 875 112 4.43 9.4 0.016 0.09

6 239 1190 217 8.51 11.5 0.31 0.07

7 273 200 112 8.53 19.9 0.29 0.06

TI toughness index, YS yield strength (MPa), YM Young’s modulus

(GPa), D density (g/m3), TE thermal expansion (106/�C), TC thermal

conductivity (cal/cm2/cm/�C/s), SH specific heat (cal/g/�C)
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alternatives are ranked in the ascending order of their

losses. Linear, quadratic and cubic loss functions have been

used to explain the methodology. In all these cases, the loss

functions chosen are convex. The reason for choosing

convex functions is that the losses are assumed to be small

when the attribute is near the desired values and the losses

are assumed to increase at higher rates when the deviations

increase. The solutions obtained are in agreement with the

solutions obtained using other MADM methods such as

TOPSIS, AHP and modified TOPSIS. A comparison of the

solutions obtained for three industrial problems using the

present approach and other methods is made for illustration

purpose. The solutions would be very convincing if an

appropriate loss function was chosen. In general, linear and

quadratic loss functions are observed to be sufficient.

Apart from its simplicity in understanding the concept of

total loss, the present method avoids the process of nor-

malization, a major step in many MADM methods. Since

the method involves simple arithmetic, calculation of los-

ses is also very easy and interpretation of the results based

on losses makes the decision maker more comfortable.

Finally, it can be pointed out that the solutions obtained

are highly dependent on the weights assigned to each

attribute. In the present work, the weights obtained using

AHP method have been employed in finding the solution.

To find the best solutions, decision maker has to choose

always the most appropriate and reliable method for find-

ing the weights of the attributes.
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