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Abstract
A new multi-objective intermodal hub-location-allocation problem is modeled in this paper in which both the origin and

the destination hub facilities are modeled as an M/M/m queuing system. The problem is being formulated as a constrained

bi-objective optimization model to minimize the total costs as well as minimizing the total system time. A small-size

problem is solved on the GAMS software to validate the accuracy of the proposed model. As the problem becomes strictly

NP-hard, an MOIWO algorithm with an efficient chromosome structure and a fuzzy dominance method is proposed to

solve large-scale problems. Since there is no benchmark available in the literature, an NSGA-II and an NRGA are

developed to validate the results obtained. The parameters of all algorithms are tuned using the Taguchi method and their

performances are statistically compared in terms of some multi-objective metrics. Finally, the entropy-TOPSIS method is

applied to show that MOIWO is the best in terms of simultaneous use of all the metrics.

Keywords Intermodal P-hub median problem � Queuing systems � Multi-objective invasive weed optimization �
Entropy-TOPSIS method

Introduction and literature review

Aiming to minimize the total network cost (transportation

and fixed cost) while the customer demand is met, the hub-

location-allocation problem (HLAP) is generally stated to

determine the locations of hub nodes from a set of potential

hub nodes in a network and to allocate demand nodes to the

selected hub nodes. HLAPs are classified into four major

groups of problems including (1) capacitated and inca-

pacitated HLAP, (2) P-hub-covering location problems, (3)

P-hub center problems, and (4) P-hub median problems

(Campbell 1994). In an incapacitated HLAP, the capacities

of the hub nodes are not limited, while in a capacitated

HLAP, it is limited and all the non-hub nodes may not be

dedicated to their nearest hub nodes. In the P-hub-covering

location problems, the number of hub nodes is limited. This

constraint limits the areas covered by each hub node. The

P-hub center problems are defined to find the best positions

of the hubs in a network and to allocate non-hub nodes to

them so that the maximum travel time (or distance)

between any origin–destination pair is minimized. Finally,

analogous to the P-median problem, the P-hub median

problem is a hub location problem in which the number of

hubs (P) is predetermined. The aim is to locate the hubs, to

allocate the non-hubs to the hubs, and to determine the path

for each origin–destination pair such that the total trans-

portation cost for satisfying the demand of the customers,

each supplied from its closest facility, is minimized.
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Hub-location-allocation models were firstly developed

by O’Kelly (1986, 1987), where a quadratic integer model

for the hub location problem was presented and shown to

belong to the class of NP-Hard problems. Campbell (1994)

used some flow variables to present a new linear formu-

lation for multiple-allocation P-hub problems. Lin et al.

(2012) developed a mathematical formulation for the

capacitated P-hub median problem. The objective of their

model was to minimize the total costs consisting of the

fixed costs of creating the hub facilities along with the

transportation costs. They added some singular path con-

straints to the model in order to prevent storing com-

modities on hub facilities. Garcı́a et al. (2012) presented a

mixed-integer linear program for the incapacitated multi-

ple-allocation P-hub median problem. Their model aimed

to determine the optimal location of the hub facilities

among some candidate sites so that the total transportation

cost is minimized.

Ghodratnama et al. (2013) proposed a fuzzy possibilistic

bi-objective nonlinear mixed-integer programming formu-

lation for the hub-covering problem. They considered the

major parameters of their mathematical formulation to be

fuzzy in order to model the uncertainties involved. The first

objective function of their formulation intended to mini-

mize six major cost components comprising opening cost,

reopening cost, transportation cost, covering cost, activat-

ing cost, and cost of purchasing transportation vehicles.

The second objective function of their proposed model

designed to minimize the transportation of the commodities

from their origin nodes to their destination nodes using the

hub facilities. They used a linearization method to convert

the problem into a linear optimization problem, based on

which they utilized four fuzzy approaches to solve the

problem. Peiró et al. (2014) introduced a novel mixed-

integer programming model for the P-hub median problem

and extended it to an R-allocation P-hub median problem.

Based on this extension, they assumed that every spoke

node could be allocated to R of P chosen active hub nodes.

Their model meant to minimize the total routing cost. They

proposed a heuristic algorithm to solve the proposed

problem. Habibzadeh Boukani et al. (2016) developed two

mathematical models, one for a capacitated single, and the

other for a capacitated multiple-allocation P-hub median

problems. They used a robust optimization approach to

consider uncertainties involved in the parameters of the

models including the capacity of the hub nodes and the

fixed costs of establishing the hub facilities. They showed

that the consequences of considering the uncertainties were

to reduce the total cost as well as to reduce delays in

delivering the commodities to the customers. Parvaresh

et al. (2014) proposed a mixed-integer programming for-

mulation for the multiple-assignment P-hub median prob-

lem. They developed a bi-objective bi-level model to

consider the occurrence of intentional disruptions on the

hub facilities. The upper-level model aimed to optimize

two different objectives of minimizing the total trans-

portation costs in normal and worst cases. Meanwhile, the

lower level aimed to minimize the maximum damage to the

network. A bi-objective nonlinear binary programming

model was presented by Zade et al. (2014) for the maximal

hub-covering problem. The first objective function of their

formulation intended to maximize the total utility of the

hub network and the second objective was to maximize the

safety of the network’s weakest path. They also considered

uncertainties involved in transporting the commodities

from their origins to their destinations via the hub nodes.

Ghaffari-Nasab et al. (2015) developed two mixed- integer

linear programming models for a single and a multiple-

allocation capacitated hub location problem with stochastic

demands. Their models aimed to minimize the total cost

(fixed, transportation, and capacity acquisition costs). They

employed a robust optimization approach to account for the

uncertainties in the parameters and used a standard opti-

mization package to solve the problems.

Various exact and heuristic methods were developed in

the literature to solve hub location problems. O’kelly

(1986, 1987) proposed an enumeration-based heuristic to

solve the problem. Skorin-Kapov et al. (1996) proposed an

exact method to solve P-hub median problem by using a

tight linear relaxation method presented by Campbell

(1992). A hybrid branch-and-bound and simulated

annealing (SA)-based greedy interchange heuristic was

proposed by Aykin (1995) to solve an HLP. Campbell

(1996) introduced another heuristic based on the greedy

interchange algorithm to solve a P-hub median problem.

Puerto et al. (2011) presented a new branch-and-bound and

cut method for the single-assignment P-hub median prob-

lem. They concluded that their proposed algorithm could

find efficient solutions for small- and medium-sized prob-

lems. Garcı́a et al. (2012) used a branch-and-cut algorithm

to solve an incapacitated multiple-allocation P-hub median

problem modeled by a mixed-integer linear programming

formulation and showed that it performs well especially

when it solves large-scale instances. Peiró et al. (2014)

proposed a heuristic algorithm to solve a P-hub median

problem modeled by a mixed-integer programming model.

Since the time O’Kelly (1987) proved that the hub-lo-

cation-allocation problem is NP-hard, many meta-heuristic

algorithms have been developed to find efficient feasible

solutions. The genetic algorithms (GA) of Topcuoglu et al.

(2005), Kratica et al. (2007), Cunha and Silva (2007),

Takano and Arai (2009) and Lin et al. (2012); the Tabu

search (TS) algorithms of Calık et al. (2009), Ishfaq and

Sox (2010), Shahvari et al. (2012) and Shahvari and

Logendran (2016); the evolutionary algorithm (EA) of

Kratica et al. (2011); the ant colony optimization (ACO)
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algorithm of Ting and Chen (2013); the particle swarm

optimization (PSO) algorithm of Yang et al. (2013); and

the variable neighborhood search (VNS) algorithm of Ilić

et al. (2010) are some examples among others to solve hub

location problems. In multi-objective optimization of the

hub-location-allocation problems, Parvaresh et al. (2014)

utilized two multi-objective meta-heuristic algorithms

called multi-objective simulated annealing (MOSA) and

multi-objective Tabu search (MOTS) algorithms. Zade

et al. (2014) used a non-dominated sorting genetic algo-

rithm (NSGA-II) to solve a maximal hub-covering

problem.

To the best of the authors’ knowledge, only a few

researchers proposed hub location models that consider

congestion. Marianov and Serra (2003) proposed a hub

location model for an airline industry under congestion.

They used an M/D/c queuing system to impose a proba-

bilistic capacity constraint to the hub location problem first.

Then, they turned the probabilistic capacity constraint into

a linear form. Elhedhli and Hu (2005) presented a con-

gestion-based hub-location-allocation model. Their model

aimed to minimize the total cost of the hub network

including congestion cost in the hub nodes along with the

transportation cost. As their proposed cost function was

nonlinear, they linearized the objective function and solved

the linearized model using a Lagrange heuristic method. de

Camargo et al. (2009) presented a model for a multiple-

allocation hub location problem under congestion. Their

objective function aimed to minimize the total cost (fixed,

transportation, and congestion costs). The benders

decomposition algorithm was utilized in their work to solve

the problem. de Camargo et al. (2011) developed a model

for a single-allocation hub-location-allocation problem

with congestion. Their model aimed to minimize the total

costs (congestion and transportation costs). They solved the

problem utilizing a hybrid outer approximation method and

Benders decomposition algorithm. Mohammadi et al.

(2011) introduced an M/M/c queuing model for a hub-

covering location problem under capacity constraint. They

linearized the probabilistic capacity constraint using M/M/

c queuing formulation. de Camargo and Miranda (2012)

developed a single-allocation hub location model with

congestion. They proposed a nonlinear mixed-integer

programming model and considered congestion in the form

of a convex cost function. Their model aimed to minimize

the total cost (transportation and fixed costs) along with

minimizing the maximum congestion effect. A Benders

decomposition algorithm was used in their work to solve

the problem. Seifbarghi and Mansouri (2016) presented a

model to determine the locations of immobile service

facilities congested by stochastic demands originated by

nearby customer locations. Recently, Maghsoudlou et al.

(2016) utilized the concept of congested systems to design

a three-echelon multi-server supply chain network. This

concept will also be used in this paper to propose a multi-

server intermodal hub-location-allocation model.

The above literature review reveals that there is no

research work performed on a multi-objective intermodal

hub-location-allocation problem under a capacity con-

straint that causes congestion. Consequently, in order to fill

the gap, a new stochastic multi-objective P-hub median

multiple-location problem is formulated in this paper. In

other words, the traditional intermodal hub location model

is extended in this paper by considering M/M/c queuing

systems in the hub nodes. The proposed multi-objective

formulation includes two objectives. The first objective

intends to minimize the total idle time of the servers

located in the hub nodes along with the total waiting time

of the customers arriving at the hub nodes. The second

objective function involves minimizing the total network

costs including transportation, fixed cost of locating the

hub nodes, and the fixed cost of locating the servers in the

hub nodes.

The rest of the paper is organized as follows. The

problem is stated in ‘‘The problem and its formulation’’

section, where a bi-objective optimization model is pro-

posed. A small-size problem is solved in ‘‘Model valida-

tion’’ section to validate the mathematical formulation and

to show the NP-Hardness of the problem. ‘‘Solving

methodologies’’ section is devoted to the meta-heuristic

solution approaches. ‘‘Applications’’ section presents the

validation and the application of the proposed methodol-

ogy. Computational results and performance comparison of

the solution methods are presented in ‘‘Computational

results’’ section. Finally, conclusions are brought in

‘‘Conclusion and future research’’ section, where some

topics are suggested for future research.

The problem and its formulation

This section is devoted to describing the problem along

with its assumptions and mathematical formulation. To this

aim, the problem and the assumptions are first stated in

‘‘Problem definition and assumptions’’ section. Then, the

notation including the indices, the parameters, and the

decision variables are given in ‘‘Notation’’ section. At the

end, the model is derived in ‘‘The mathematical formula-

tion’’ section.

Problem definition and assumptions

The problem being investigated in this paper is an inter-

modal congested multi-echelon hub-location-allocation

problem. In this structure, servers are fixed at their loca-

tions in their origin and destination hubs, where
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commodities are dedicated to open origin–destination hub

pairs to be shipped to their destinations. The aims are to

determine the number of required hub facilities for each

origin and destination layers, to obtain the number of ser-

vers in the hub nodes, and to allocate flows to the open hub

facilities. Moreover, to bring the problem more applicable

to real-world networks, two objectives are considered

based on some real constraints such as the capacities of the

hub nodes located at both origin and destination layers. The

first objective function minimizes the total costs including

transportation and fixed costs and the second minimizes the

total system time (including waiting, service, and idle

times) in both origin and destination hubs. The total system

time is obtained using some formulations in M/M/c queu-

ing systems. Both the origin and the destination hub layers

can be mapped in many real-world transportation networks

such as airports, rail, and road networks. In these systems,

commodities arrive at their origin hub nodes based on a

Poisson process with a specific rate and the service time to

deliver the commodities to their destination follows an

exponential distribution with a given mean. Moreover, it is

assumed that all the servers located in a given hub node are

similar and share a unique service rate, while the service

rates of the servers located in the other hub nodes are

different. The transportation process is performed in the

context of an intermodal network so that the commodities

can be shipped using either a rail or a road network. Fur-

thermore, every origin–destination node pair can be

assigned to more than one hub pair.

Notation

The notations including the indices, the parameters, and the

decision variables are as follows.

Indices and sets

i: An index for an origin node.

j: An index for a destination node.

k: An index for an origin hub node.

m: An index for a destination hub node.

N: The set of all nodes indexed by either i or j or k orm;

N ¼ 1; 2; . . .; 2 Cj jf g.
C: Set of all cities indexed by c0, C ¼ 1; 2; . . .; Cj jf g.
S: The set of index to calculate p0k; S ¼ 1; 2; . . .; ukf g
and p0m; S ¼ 1; 2; . . .; umf g.

Parameters

kkk: The arrival rate of the commodities to origin hub

node k.

kmm: The arrival rate of the commodities to destination

hub node m.

lkk: The service rate of the servers located at the to

origin hub node k.

lmm: The service rate of the servers located at the

destination hub node m.

ukk: The maximum number of servers that can be used in

each origin hub node k.

umm: The maximum number of servers that can be used

in each destination hub node m.

P1: The number of hub facilities located at the origin

layer.

P2: The number of hub facilities located at the

destination layer.

Akk: The productivity factor of origin hub node k,

Akk ¼ kkk
lkk
.

Amm: The productivity factor of destination hub node m,

Amm ¼ kmm

lmm
.

a: The cost discount factor.

C: The number of all cities.

mkk: A multiplier for calculating fixed establishment

costs of both types of road/train origin hub node k.

mmm: A multiplier for calculating fixed establishment

costs of both types of road/train destination hub node m.

Fkk: The fixed cost of establishing a facility at a potential

origin hub node k.

Fmm: The fixed cost of establishing a facility at a

potential destination hub node m.

ckk: The unit staffing cost at the origin hub node k.

cmm: The unit staffing cost at the destination hub node m.

C1ik: The unit transportation cost from the origin node i

to the origin hub node k.

C2km: The unit transportation cost from the origin hub

node k to the destination hub node m.

C3mj: The unit transportation cost from the destination

hub node m to the destination node j

fij ¼
Flows from the origin node i to the destination node j;

i 6¼ j and i; j � Cf g
0; i ¼ j or i[C; or j [ Cf g

8
><

>:

Decision variables

ykk ¼
1 if node k is an origin hub node

0 otherwise

�

ymm ¼ 1 if nodem is a destination hub node

0 otherwise

�
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xijkm ¼
1 if the shipments for the origin destination

pair i; jð Þ are assigned to the hubs k and m
0 otherwise

8
<

:

lkk: An integer variable indicating the number of

required servers in the origin hub node k.

lmm: An integer variable indicating the number of

required servers in the destination hub node m.

pk0;k: The idle probability of the open origin hub facility

k.

pm0;m: The idle probability of the open destination hub

facility m.

Wkk: The expected waiting time of the commodities at

the open origin hub facility k.

Wmm: The expected waiting time of the commodities at

the open destination hub facility m.

The mathematical formulation

A node identification method is applied in the proposed

model to distinguish between rail and road nodes. In this

method, while the road nodes are numbered from 1 to C,

and the rail nodes are numbered from C ? 1 to 2C, where

C is the number of all cities in the network under inves-

tigation. As the fixed cost of opening a rail hub node is

more than that of a road hub node, a multiplier mkk; vmm is

used to calculate the fixed establishment costs of both types

of hub nodes. This multiplier takes the value of 1 for the

road nodes and 1.5 for the intermodal nodes (Ishfaq and

Sox 2010). Note that a single objective of minimizing the

waiting times in both origin and destination hub layers will

probably leads into an increased number of servers used in

each hub node with higher fixed cost and higher idle time.

Therefore, minimizing the cost is considered as another

objective function. These objective functions are clearly in

conflict with each other.

The mathematical formulation of the intermodal hub-

location-allocation problem is as follows.

Min f1 ¼
XN

k

kkk � Wkk þ (1� Akk)�
lkk

lkk

� �

þ
XN

m

kmm � Wmm þ (1� Amm)�
lmm

lmm

� �

ð1Þ

Min f2 ¼
XN

i

XN

j

XN

k

XN

m

fij � xijkm � C1ik þ a�C2km þC3mj
� �

þ
XN

k

mkk �Fkk � ykk þ lkk � ckk þ
XN

m

mmm �Fmm � ymm þ lmm � cmm

ð2Þ

Subject to:

pk0k ¼
ykk

Plkk�1
s¼0

Aks
k

s!
þ Ak

lkk
k

lkk!
� lkk
(lkk�Akk)

� �� � ; 8 k 2 N

ð3Þ

pm0m ¼ ymm

Plmm�1

s¼0

Ams
m

s!
þ Amlmm

m

lmm!
� lmm

(lmm�Amm)

	 
� � ; 8 m 2 N

ð4Þ

Wkk ¼
Aklkkk � lkk � lkk � pk0k
lkk;� lkk � lkk � kkkð Þ2

þ ykk

lkk
; 8 k 2 N ð5Þ

Wmm ¼ Amlmm
m � lmm � lmm � pm0m

lmm!� lmm � lmm � kmmð Þ2
þ ymm

lmm

; 8 m 2 N

ð6Þ
XN

k

ykk ¼ P1; ð7Þ

XN

m

ymm ¼ P2; ð8Þ

X

k 6¼i

k 6¼i�city

k 6¼iþcity

k 6¼j

k 6¼j�city

N

k 6¼jþcity

X

m 6¼i

m 6¼i�city

m 6¼iþcity

m 6¼j

m 6¼j�city

N

m 6¼jþcityk 6¼m

xijkm ¼ 1;

8 i � j 2 N and i 6¼ j & iþ Cj j 6¼ j & i� Cj j 6¼ jf g
ð9Þ

XN

m

xijkm � ykk; 8 i � j � k 2 N ð10Þ

XN

k

xijkm � ymm; 8 i � j � m 2 N ð11Þ

ykk þ ykkþ Cj j � 1; 8 k 2 N, k� jcj ð12Þ

ymm þ ymmþ Cj j � 1; 8 m 2 N, m � jcj ð13Þ

yki þ ymi � 1; 8 i 2 N ð14Þ

Akk �
XN

i

XN

j

XN

m

xijkm

 !

� lkk; 8 k 2 N ð15Þ

Amm �
XN

i

XN

j

XN

k

xijkm

 !

� lmm; 8 m 2 N ð16Þ

lkk � ukk � ykk; 8 k 2 N ð17Þ
lmm � umm � ymm; 8 m 2 N ð18Þ
xijkm ¼ 0; 8 i � j � k � m 2 N and k ¼ mf g ð19Þ
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xijkm ¼ 0; 8 i � j � k � m 2 N and i ¼ jf g ð20Þ

ykk 2 0:1f g; 8 k 2 N ð21Þ
ymm 2 0:1f g; 8 m 2 N ð22Þ
xijkm 2 0:1f g; 8 i � j � k � m 2 N ð23Þ

lkk � 0 � integer ; 8 k 2 N ð24Þ
lmm � 0 � integer; 8 m 2 N ð25Þ
pk0k � 0 � positive; 8 k 2 N ð26Þ
pm0m � 0 � positive; 8 m 2 N ð27Þ
Wkk � 0 � positive; 8 k 2 N ð28Þ
Wmm � 0 � positive; 8 m 2 N ð29Þ

The first objective function in (1) minimizes the total

waiting times of the commodities alongside the servers’

total idle times in both origin and destination layers. Some

of the terms in this equation are obtained using the steady-

state performance measures of M/M/c queuing systems

discussed later in this paragraph. The second objective

function in (2) minimizes the total transportation costs for

all origin–destination flows along with the fixed costs of

establishing hub nodes. The fixed cost of the hub nodes

includes costs of establishing the hub nodes and the staffing

costs. Constraints (3) and (4) calculate the idle probabilities

of open origin and open destination hub facilities, respec-

tively (Gross and Harris 1998). Constraints (5) and (6)

calculate the waiting times of the commodities at the origin

or destination hub facilities, respectively (Gross and Harris

1998). Constraints (7) and (8) ensure that exactly P1 and P2

hub facilities are used in origin and destination hub layers,

respectively. Constraint (9) ensures that every origin–des-

tination pair is assigned to the hub pairs. Constraints (10)

and (11) guarantee that an origin–destination flow can be

assigned to nodes k and m if the origin and destination hub

facilities are located at nodes k and m, respectively. Con-

straints (12) and (13) forces one node in each city c0 to be

selected as a hub origin or destination node. Constraint (14)

forces each node to be selected as either one origin or one

destination hub node. Constraints (15) and (16) imply that

the servers’ service rates must be greater than the arrival

rates of the commodities at all origin and destination hub

facilities. Constraints (17) and (18) restrict the number of

servers at every origin and destination hub node, respec-

tively. Constraint (19) guarantees that hub pairs cannot be

the same node. Constraint (20) guarantee that one node

cannot be considered as both origin and destination node,

indeed there is no loop. Constraints (21)–(29) define the

types of the variables used in the proposed formulation.

Model validation

A small-size problem with eight cities and two road and

train nodes is solved in this section to validate the accuracy

of the mathematical formulation developed in ‘‘The prob-

lem and its formulation’’ section. This problem is solved

using the GAMS software, where the optimal solution is

shown in Table 1. In addition, the optimal locations of the

hub nodes along with the spoke nodes connected to them

are schematically shown in Fig. 1. It should be noted that

the required computational time of solving this problem on

a PC with core i5 CPU and 4 GB RAM was 19,052.31 s.

This fact somehow shows that the intricacy degree of the

problem at hand is too high so as its large instances cannot

be solved using an exact solution algorithm in a reasonable

computational time. As such, one needs to utilize a meta-

heuristic to find near optimal solutions of the problems.

Solving methodologies

As the multi-objective intermodal hub location-allocation

problem modeled in ‘‘Model validation’’ section is strictly

NP-hard, a population-based meta-heuristic optimization

algorithm called multi-objective invasive weeds optimiza-

tion (MOIWO) algorithm is utilized in this section to solve

the problem. In addition, in order to evaluate the perfor-

mance of the MOIWO, two other population-based multi-

objective optimization algorithms including a non-domi-

nated ranking genetic algorithm (NRGA) and a non-dom-

inated sorting genetic algorithm (NSGA-II) are used.

The multi-objective invasive weeds optimization
(MOIWO) algorithm

The MOIWO algorithm has been presented by Kundu et al.

(2011). As an initial population in an IWO algorithm, a set

of weeds are generated randomly. Each weed is a plant that

grows globally in a specified region so that it cannot be

controlled or removed by a human being. A popular claim

about weed is that they always are a winner and the more

farmers try, the more they grow on the land. The pruning

system of the weeds is the base for the weed’s behavior to

occupy soil and to generate new colony. Using this system,

they initially find appropriate regions to attack, to invade

and generate new colonies. Consequently, new plants are

generated to use appropriate regions.

The invasive weeds optimization (IWO) algorithm

simulates the colonizing behavior of the weeds. This

behavior can be used as a method to search the solution

space. In this method, the seeds that are scattered in a

specified region will turn in weeds, where they grow better
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Table 1 Result of solving a small test problem on the GAMS software

Solver 1 Solver 2

f1 Z1
* = 6.237 6.593

f2 129,070.52 Z2
* = 74,557.768

ykk City 5 = yk5 = 1 City 3 = yk3 = 1

City 4 = yk12 = 1 City 4 = yk12 = 1

City 7 = yk15 = 1 City 6 = yk14 = 1

ymm City 8 = ym8 = 1 City 4 = ym4 = 1

City 1 = ym9 = 1 City 6 = ym6 = 1

City 2 = ym10 = 1 City 3 = ym11 = 1

lkk City 5 = lk5 = 17 City 3 = lk3 = 98

City 4 = lk12 = 100 City 4 = lk12 = 56

City 7 = lk15 = 100 City 6 = lk14 = 58

lmm City 8 = lm8 = 100 City 4 = lm4 = 51

City 1 = lm9 = 100 City 6 = lm6 = 52

City 2 = lm10 = 17 City 3 = lm11 = 100

pk0k City 5 ¼ pk05 ¼ 0.681 City 3 ¼ pk03 ¼ 0.644

City 4 = pk012 ¼ 0.615 City 4 = pk012 ¼ 0.615

City 7 ¼ pk015 ¼ 0.614 City 6 ¼ pk014 ¼ 0.646

pm0m City 8 ¼ pm08 ¼ 0.615 City 4 ¼ pm04 ¼ 0.725

City 1 = pm09 ¼ 0.614 City 6 = pm06 ¼ 0.648

City 2 ¼ pm010 ¼ 0.681 City 3 ¼ pm011 ¼ 0.685

Wkk City 5 = wk5 = 0.032 City 3 = wk3 = 0.031

City 4 = wk12 = 0.034 City 4 = wk12 = 0.034

City 7 = wk15 = 0.033 City 6 = wk14 = 0.032

Wmk City 8 = wm8 = 0.034 City 4 = wm4 = 0.032

City 1 = wm9 = 0.033 City 6 = wm6 = 0.033

City 2 = wm10 = 0.032 City 3 = wm11 = 0.031

City 1, node1; x1jkm=1 node1.node2.node12.node8 = 1,

node1.node3.node15.node8 = 1,

node1.node4.node15.node8 = 1,

node1.node5.node15.node8 = 1,

node1.node6.node12.node8 = 1,

node1.node7.node12.node8 = 1,

node1.node8.node12.node10 = 1,

node1.node10.node15.node8 = 1,

node1.node11.node15.node8 = 1,

node1.node12.node15.node8 = 1,

node1.node13.node15.node10 = 1,

node1.node14.node12.node8 = 1,

node1.node15.node12.node8 = 1,

node1.node16.node15.node10 = 1;

node1.node2.node3.node11 = 1,

node1.node3.node12.node4 = 1,

node1.node4.node3.node11 = 1,

node1.node5.node3.node11 = 1,

node1.node6.node3.node11 = 1,

node1.node7.node12.node4 = 1,

node1.node8.node12.node4 = 1,

node1.node10.node3.node11 = 1,

node1.node11.node12.node4 = 1,

node1node12.node3.node11 = 1,

node1.node13.node3.node11 = 1,

node1.node14.node3.node11 = 1,

node1.node15.node3.node11 = 1,

node1.node16.node3.node11 = 1,
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Table 1 (continued)

Solver 1 Solver 2

City 2, node2; x2jkm=1 node2.node1.node12.node8 = 1,

node2.node3.node15.node9 = 1,

node2.node4.node5.node8 = 1,

node2.node5.node15.node8 = 1,

node2.node6.node12.node8 = 1,

node2.node7.node12.node8 = 1,

node2.node8.node15.node9 = 1,

node2.node9.node15.node8 = 1,

node2.node11.node12.node8 = 1,

node2.node12.node15.node8 = 1,

node2.node13.node15.node9 = 1,

node2.node14.node12.node8 = 1,

node2.node15.node12.node8 = 1,

node2.node16.node15.node9 = 1;

node2.node1.node3.node11 = 1,

node2.node3.node14.node6 = 1,

node2.node4.node3.node11 = 1,

node2.node5.node3.node11 = 1,

node2.node6.node3.node11 = 1,

node2.node7.node3.node4 = 1,

node2.node8.node3.node11 = 1,

node2.node9.node3.node11 = 1,

node2.node11.node14.node6 = 1,

node2.node12.node3.node11 = 1,

node2.node13.node3.node11 = 1,

node2.node14.node3.node11 = 1,

node2.node15.node3.node11 = 1,

node2.node16.node3.node11 = 1,

City 3, node3; x3jkm = 1 node3.node1.node12.node8 = 1,

node3.node2.node15.node8 = 1,

node3.node4.node15.node9 = 1,

node3.node5.node12.node10 = 1,

node3.node6.node12.node9 = 1,

node3.node7.node12.node9 = 1,

node3.node8.node15.node9 = 1,

node3.node9.node12.node8 = 1,

node3.node10.node12.node8 = 1,

node3.node12.node5.node9 = 1,

node3.node13.node15.node9 = 1,

node3.node14.node15.node8 = 1,

node3.node15.node5.node9 = 1,

node3.node16.node15.node9 = 1;

node3.node1.node12.node4 = 1,

node3.node2.node14.node6 = 1,

node3.node4.node14.node6 = 1,

node3.node5.node14.node6 = 1,

node3.node6.node12.node4 = 1,

node3.node7.node14.node6 = 1,

node3.node8.node14.node6 = 1,

node3.node9.node12.node4 = 1,

node3.node10.node14.node6 = 1,

node3.node12.node14node6 = 1,

node3.node13.node14.node6 = 1,

node3.node14.node12.node4 = 1,

node3.node15.node12.node4 = 1,

node3.node16.node14.node6 = 1,

City 4, node4; x4jkm = 1 node4.node1.node15.node8 = 1,

node4.node2.node15.node9 = 1,

node4.node3.node15.node8 = 1,

node4.node5.node15.node9 = 1,

node4.node6.node15.node9 = 1,

node4.node7.node5.node9 = 1,

node4.node8.node15.node9 = 1,

node4.node9.node15.node8 = 1,

node4.node10.node5.node9 = 1,

node4.node11.node15.node8 = 1,

node4.node13.node15.node8 = 1,

node4.node14.node15.node9 = 1,

node4.node15.node5.node8 = 1,

node4.node16.node15.node9 = 1;

node4.node1.node3.node11 = 1,

node4.node2.node3.node11 = 1,

node4.node3.node14.node6 = 1,

node4.node5.node3.node11 = 1,

node4.node6.node3.node11 = 1,

node4.node7.node3.node11 = 1,

node4.node8.node3.node11 = 1,

node4.node9.node3.node11 = 1,

node4.node10.node3.node11 = 1,

node4.node11.node14.node6 = 1,

node4.node13.node3.node11 = 1,

node4.node14.node3.node11 = 1,

node4.node15.node3.node11 = 1,

node4.node16.node3.node11 = 1,
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Table 1 (continued)

Solver 1 Solver 2

City 5, node5; x5jkm = 1 node5.node1.node15.node8 = 1,

node5.node2.node15.node8 = 1,

node5.node3.node15.node9 = 1,

node5.node4.node15.node8 = 1,

node5.node6.node12.node10 = 1,

node5.node7.node12.node8 = 1,

node5.node8.node12.node9 = 1,

node5.node9.node15.node8 = 1,

node5.node10.node12.node8 = 1,

node5.node11.node15.node9 = 1,

node5.node12.node15.node8 = 1,

node5.node14.node15.node9 = 1,

node5.node15.node12.node9 = 1,

node5.node16.node12.node9 = 1;

node5.node1.node3.node11 = 1,

node5.node2.node3.node11 = 1,

node5.node3.node14.node6 = 1,

node5.node4.node3.node11 = 1,

node5.node6.node3.node11 = 1,

node5.node7.node14.node6 = 1,

node5.node8.node3.node11 = 1,

node5.node9.node3.node11 = 1,

node5.node10.node3.node11 = 1,

node5.node11.node14.node6 = 1,

node5.node12.node3.node11 = 1,

node5.node14.node3.node11 = 1,

node5.node15.node3.node11 = 1,

node5.node16.node3.node11 = 1,

City 6, node6; x6jkm =1 node6.node1.node12.node8 = 1,

node6.node2.node12.node9 = 1,

node6.node3.node12.node8 = 1,

node6.node4.node15.node8 = 1,

node6.node5.node15.node8 = 1,

node6.node7.node12.node9 = 1,

node6.node8.node15.node9 = 1,

node6.node9.node15.node8 = 1,

node6.node10.node12.node9 = 1,

node6.node11.node12.node8 = 1,

node6.node12.node15.node9 = 1,

node6.node13.node12.node10 = 1,

node6.node15.node12.node8 = 1,

node6.node16.node12.node10 = 1;

node6.node1.node3.node11 = 1,

node6.node2.node3.node11 = 1,

node6.node3.node12.node4 = 1,

node6.node4.node3.node11 = 1,

node6.node5.node3.node11 = 1,

node6.node7.node3.node4 = 1,

node6.node8.node3.node11 = 1,

node6.node9.node3.node11 = 1,

node6.node10.node3.node11 = 1,

node6.node11.node12.node4 = 1,

node6.node12.node3.node11 = 1,

node6.node13.node3.node11 = 1,

node6.node15.node3.node11 = 1,

node6.node16.node3.node11 = 1,

City 7, node7; x7jkm = 1 node7.node1.node12.node8 = 1,

node7.node2.node12.node8 = 1,

node7.node3.node12.node8 = 1,

node7.node4.node5.node9 = 1,

node7.node5.node12.node9 = 1,

node7.node6.node12.node8 = 1,

node7.node8.node12.node9 = 1,

node7.node9.node12.node8 = 1,

node7.node10.node12.node8 = 1,

node7.node11.node12.node8 = 1,

node7.node12.node5.node9 = 1,

node7.node13.node12.node8 = 1,

node7.node14.node5.node10 = 1,

node7.node16.node12.node9 = 1;

node7.node1.node12.node4 = 1,

node7.node2.node3.node11 = 1,

node7.node3.node12.node4 = 1,

node7.node4.node3.node11 = 1,

node7.node5.node14.node6 = 1,

node7.node6.node3.node11 = 1,

node7.node8.node12.node4 = 1,

node7.node9.node12.node4 = 1,

node7.node10.node3.node11 = 1,

node7.node11.node12.node4 = 1,

node7.node12.node3.node11 = 1,

node7.node13.node3.node11 = 1,

node7.node14.node3.node11 = 1,

node7.node16.node3.node11 = 1,
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Table 1 (continued)

Solver 1 Solver 2

City 8, node8; x8jkm = 1 node8.node1.node5.node10 = 1,

node8.node2. node15.node9 = 1,

node8.node3.node12.node9 = 1,

node8.node4.node15.node9 = 1,

node8.node5. node15.node9 = 1,

node8.node6.node15.node9 = 1,

node8.node7.node12.node9 = 1,

node8.node9.node15.node10 = 1,

node8.node10.node15.node9 = 1,

node8.node11.node12.node9 = 1,

node8.node12.node15.node9 = 1,

node8.node13.node15.node9 = 1,

node8.node14.node12.node9 = 1,

node8.node15.node12.node9 = 1;

node8.node1.node12.node4 = 1,

node8.node2.node3.node11 = 1,

node8.node3.node14.node6 = 1,

node8.node4.node3.node11 = 1,

node8.node5.node14.node6 = 1,

node8.node6.node3.node11 = 1,

node8.node7.node12.node4 = 1,

node8.node9.node12.node4 = 1,

node8.node10.node3.node11 = 1,

node8.node11.node14.node6 = 1,

node8.node12.node3.node11 = 1,

node8.node13.node3.node11 = 1,

node8.node14.node3.node11 = 1,

node8.node15.node12.node4 = 1,

City 1, node9; x9jkm = 1 node9.node2.node12.node8 = 1,

node9.node3.node15.node8 = 1,

node9.node4.node15.node8 = 1,

node9.node5.node12.node8 = 1,

node9.node6.node12.node10 = 1,

node9.node7.node12.node8 = 1,

node9.node8.node5.node10 = 1,

node9.node10.node12.node8 = 1,

node9.node11.node12.node8 = 1,

node9.node12.node15.node8 = 1,

node9.node13.node15.node8 = 1,

node9.node14.node15.node8 = 1,

node9.node15.node12.node8 = 1,

node9.node16.node12.node10 = 1;

node9.node2.node3.node11 = 1,

node9.node3.node14.node6 = 1,

node9.node4.node14.node6 = 1,

node9.node5.node14.node6 = 1,

node9.node6.node3.node11 = 1,

node9.node7.node12.node4 = 1,

node9.node8.node14.node6 = 1,

node9.node10.node3.node11 = 1,

node9.node11.node14.node6 = 1,

node9.node12.node3.node11 = 1,

node9.node13.node3.node11 = 1,

node9.node14.node3.node11 = 1,

node9.node15.node12.node4 = 1,

node9.node16.node3.node11 = 1,

City 2, node10; x10jkm = 1 node10.node1.node15.node8 = 1,

node10.node3.node15.node9 = 1,

node10.node4.node15.node8 = 1,

node10.node5.node12.node9 = 1,

node10.node6.node12.node9 = 1,

node10.node7.node12.node9 = 1,

node10.node8.node12.node9 = 1,

node10.node9.node15.node8 = 1,

node10.node11.node12.node9 = 1,

node10.node12.node15.node9 = 1,

node10.node13.node12.node8 = 1,

node10.node14.node12.node9 = 1,

node10.node15.node12.node9 = 1,

node10.node16.node15.node9 = 1;

ode10.node1.node12.node4 = 1,

node10.node3.node12.node4 = 1,

node10.node4.node3.node11 = 1,

node10.node5.node12.node11 = 1,

node10.node6.node12.node4 = 1,

node10.node7.node12.node4 = 1,

node10.node8.node12.node4 = 1,

node10.node9.node12.node4 = 1,

node10node11.node12.node4 = 1,

node10.node12.node3.node11 = 1,

node10.node13.node12.node11 = 1,

node10.node14.node12.node4 = 1,

node10.node15.node12.node4 = 1,

node10.node16.node12.node4 = 1,
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Table 1 (continued)

Solver 1 Solver 2

City 3, node11; x11jkm = 1 node11.node1.node12.node10 = 1,

node11.node2.node12.node8 = 1,

node11.node4.node15.node9 = 1,

node11.node5.node15.node9 = 1,

node11.node6.node5.node10 = 1,

node11.node7.node12.node9 = 1,

node11.node8.node15.node9 = 1,

node11.node9.node12.node8 = 1,

node11.node10.node12.node9 = 1,

node11.node12.node15.node8 = 1,

node11.node13.node15.node8 = 1,

node11.node14.node15.node8 = 1,

node11.node15.node5.node8 = 1,

node11.node16.node15.node9 = 1;

node11.node1.node12.node4 = 1,

node11.node2.node14.node6 = 1,

node11.node4.node14.node6 = 1,

node11.node5.node14.node6 = 1,

node11.node6.node12.node4 = 1,

node11.node7.node12.node4 = 1,

node11.node8.node12.node4 = 1,

node11.node9.node12.node4 = 1,

node11.node10.node14.node6 = 1,

node11.node12.node14.node6 = 1,

node11.node13.node14.node6 = 1,

node11.node14.node12.node4 = 1,

node11.node15.node12.node4 = 1,

node11.node16.node12.node4 = 1,

City 4, node12; x12jkm = 1 node12.node1.node15.node8 = 1,

node12.node2.node15.node8 = 1,

node12.node3.node15.node9 = 1,

node12.node5.node15.node8 = 1,

node12.node6.node15.node8 = 1,

node12.node7.node5.node8 = 1,

node12.node8.node15.node9 = 1,

node12.node9.node15.node8 = 1,

node12.node10.node15.node9 = 1,

node12.node11.node15.node9 = 1,

node12.node13.node15.node9 = 1,

node12.node14.node15.node8 = 1,

node12.node15.node5.node8 = 1,

node12.node16.node15.node9 = 1;

node12.node1.node14.node11 = 1,

node12.node2.node14.node6 = 1,

node12.node3.node14.node6 = 1,

node12.node5.node14.node6 = 1,

node12.node6.node3.node11 = 1,

node12.node7.node14.node6 = 1,

node12.node8.node14.node6 = 1,

node12.node9.node14.node6 = 1,

node12.node10.node14.node6 = 1,

node12.node11.node14.node6 = 1,

node12.node13.node14.node11 = 1,

node12.node14.node3.node11 = 1,

node12.node15.node14.node6 = 1,

node12.node16.node14.node11 = 1,

City 5, node13; x13jkm = 1 node13.node1.node12.node8 = 1,

node13.node2.node12.node8 = 1,

node13.node3.node15.node8 = 1,

node13.node4.node15.node8 = 1,

node13.node6.node12.node9 = 1,

node13.node7.node12.node9 = 1,

node13.node8.node15.node9 = 1,

node13.node9.node12.node8 = 1,

node13.node10.node15.node9 = 1,

node13.node11.node12.node9 = 1,

node13.node12.node15.node8 = 1,

node13.node14.node15.node9 = 1,

node13.node15.node12.node9 = 1,

node13.node16.node12.node9 = 1;

node13.node1.node12.node4 = 1,

node13.node2.node3.node11 = 1,

node13.node3.node12.node4 = 1,

node13.node4.node3.node11 = 1,

node13.node6.node12.node4 = 1,

node13.node7.node12.node4 = 1,

node13.node8.node12.node4 = 1,

node13.node9.node12.node4 = 1,

node13.node10.node3.node11 = 1,

node13.node11.node12.node4 = 1,

node13.node12.node3.node11 = 1,

node13node14.node12.node4 = 1,

node13.node15.node12.node4 = 1,

node13.node16.node12.node4 = 1,
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Table 1 (continued)

Solver 1 Solver 2

City 6, node14; x14jkm=1 node14.node1.node15.node8 = 1,

node14.node2.node12.node8 = 1,

node14.node3.node15.node8 = 1,

node14.node4.node15.node8 = 1,

node14.node5.node15.node9 = 1,

node14.node7.node12.node9 = 1,

node14.node8.node12.node9 = 1,

node14.node9.node15.node8 = 1,

node14.node10.node12.node9 = 1,

node14.node11.node12.node9 = 1,

node14.node12.node15.node8 = 1,

node14.node13.node15.node9 = 1,

node14.node15.node12.node9 = 1,

node14.node16.node12.node9 = 1;

node14.node1.node3.node11 = 1,

node14.node2.node3.node11 = 1,

node14.node3.node12.node4 = 1,

node14.node4.node3.node11 = 1,

node14.node5.node3.node11 = 1,

node14.node7.node12.node4 = 1,

node14.node8.node3.node11 = 1,

node14.node9.node12.node4 = 1,

node14.node10.node3.node11 = 1,

node14.node11.node12.node4 = 1,

node14.node12.node3.node11 = 1,

node14.node13.node3.node11 = 1,

node14.node15.node3.node11 = 1,

node14.node16.node3.node11 = 1,

City 7, node15; x15jkm=1 node15.node1.node12.node8 = 1,

node15.node2.node12.node8 = 1,

node15.node3.node12.node8 = 1,

node15.node4.node5.node8 = 1,

node15.node5.node12.node8 = 1,

node15.node6.node12.node8 = 1,

node15.node8.node12.node9 = 1,

node15.node9.node12.node10 = 1,

node15.node10.node12.node9 = 1,

node15.node11.node12.node9 = 1,

node15.node12.node5.node9 = 1,

node15.node13.node12.node8 = 1,

node15.node14.node12.node8 = 1,

node15.node16.node12.node9 = 1;

node15.node1.node14.node11 = 1,

node15.node2.node14.node6 = 1,

node15.node3.node14.node6 = 1,

node15.node4.node14.node6 = 1,

node15.node5.node14.node6 = 1,

node15.node6.node3.node11 = 1,

node15.node8.node14.node6 = 1,

node15.node9.node14.node6 = 1,

node15.node10.node14.node6 = 1,

node15.node11.node14.node6 = 1,

node15.node12.node14.node11 = 1,

node15.node13.node14.node11 = 1,

node15.node14.node3.node11 = 1,

node15.node16.node14.node11 = 1;

City 8, node16; x16jkm=1 node16.node1.node15.node10 = 1,

node16.node2.node12.node9 = 1,

node16.node3.node5.node9 = 1,

node16.node4.node15.node9 = 1,

node16.node5.node12.node9 = 1,

node16.node6.node12.node9 = 1,

node16.node7.node12.node9 = 1,

node16.node9.node15.node10 = 1,

node16.node10.node15.node9 = 1,

node16.node11.node15.node9 = 1,

node16.node12.node15.node9 = 1,

node16.node13.node15.node9 = 1,

node16.node14.node12.node9 = 1,

node16.node15.node12.node9 = 1;

node16.node1.node12.node4 = 1,

node16.node2.node14.node6 = 1,

node16.node3.node14.node6 = 1,

node16.node4.node14.node6 = 1,

node16.node5.node14.node61,

node16.node6.node3.node11 = 1,

node16.node7.node14.node6 = 1,

node16.node9.node12.node4 = 1,

node16.node10.node3.node11 = 1,

node16.node11.node14.node6 = 1,

node16.node12.node3.node11 = 1,

node16.node13.node3.node11 = 1,

node16.node14.node3.node11 = 1,

node16.node15.node14.node6 = 1;
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in a more fertile region and hence will have higher com-

petency and will have more chance to survive. Thus, higher

breeding is reached in the vicinity of these weeds. An

important point is that as the number of iterations increa-

ses, the distance of the generated weeds from their parent

weed will decrease remarkably. This process that is called

competitive elimination will continue until better weeds are

obtained.

The following steps are taken in the IWOA of this paper:

• Generate an initial random population and evaluate its

fitness using the objective functions.

• Use a fuzzy sorting method (explained in the next

section) to prioritize the population.

• Permit all members of the population to generate

several seeds with better properties. The seeds will be

produced based on Eq. (30).

seedsi ¼ floor Smin þ Smax � Sminð Þ � np� ranki

np

� �� �

;

ð30Þ

where the grade of ith population member, the number

of seeds generated by ith population member, the

maximum number of seeds generated by a weed, the

minimum number of seeds generated by every weed,

and the population number are shown, respectively, by

ranki, seedsi, Smax, Smin, and np.

• Breed based on the competency and the updated

standard deviation. The corresponding value of the

standard deviation is calculated by Eq. (31).

riter ¼ itermax � iterð Þn� rinitial � rfinal
itermaxð Þn þ rfinal; ð31Þ

where nonlinear modulation index, the standard devi-

ation of the seeds in each iteration, the maximum

number of iterations, initial, and final standard devia-

tion are denoted, respectively, by n, riter, itermax, rinitial
and rfinal.

• Competitive elimination.

• Control the stopping criterion.

The pseudocode of the proposed MOIWO algorithm is

presented below:

1. Assess proportion of members of np population.

2. Use the fuzzy sorting method to prioritize the

population.

3. Let all members of the population make several seeds.

More proportionate members of the population make a

greater number of seeds in accordance with Eq. (30).

4. Seeds that have been produced are scattered on the

search space using a normal random variable with

mean zero and varying standard deviations. The

corresponding value of the standard deviation is

obtained using Eq. (31).

5. When the population size of the weeds becomes

greater than the upper limit ðpmaxÞ, apply the fuzzy

sorting method and keep pmax seeds with better

competencies.

6. Resume until the stopping criterion is met.

Fuzzy dominance-based sorting

In order to utilize the multi-objective version of the IWOA

discussed in ‘‘The multi-objective invasive weeds opti-

mization (MOIWO) algorithm’’ section, we start with an

elementary phase of routine using the fuzzy dominance of

the solutions in the population, based on which the solu-

tions are first sorted in ascending order. Then, regarding the

city1

city3

city4

city2

city6
city7

city5

city8

Green color city is orgin hub
yellow color city is destination hub Solver 1

city1

city3

city4

city2

city6
city7

city5

city8

Solver 2
Green color city (node) is orgin hub
yellow color city(node) is destination hub

Fig. 1 Schematic representation of the solution of a small-size problem on the GAMS software (solver 1 and 2)
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crowding distance, the diversity is obtained through sorted

solutions. Obtaining the greatest n-dimensional hyper cube

over objective space per solution enables the hypercube to

find similar solutions. This is achieved using Eq. (32)

(Kundu et al. 2011).

I v~ð Þ ¼
Xn

i¼1

yi u~ð Þ � yi w~ð Þð Þ= max yið Þ �min yið Þð Þ: ð32Þ

In this equation, the neighboring solutions of v~ are

demonstrated by u~ and w!, where the combined population

is sorted in ascending order based on the ith objective

function yi. In Eq. (32), the dominator is used for nor-

malization and the boundary solutions in the denominator

include the extremes of the assigned values. Clearly, a

higher value of I v~ð Þ indicates more dispersal over the

solution space. The non-dominated solutions are placed in

the archive alongside those solutions which were placed in

sparser region.

The pseudocode of utilized MOIWA using the fuzzy

dominance method for each solution is presented in

Algorithm 1. In this algorithm, the membership degree of

iih population member’s domination to other weeds and

membership degree of weed i to weed k are, respectively,

denoted by l ið Þ and ldomi xk
!� F

i xi
!� �

.

The coding method

To avoid generating infeasible solutions, a new structure is

designed for a chromosome to assure satisfaction of all

constraints all the times. This structure consists of six

vectors. The lengths of these vectors represent the number

of origin nodes, the number of destination nodes, the

number of servers located in origin hub nodes, the number

of servers located in destination hub nodes, the number of

origin nodes allocated to origin hub nodes, and the number

of destination nodes allocated to the destination hub nodes.

An instance of this structure is shown in Fig. 2, where

Vector 1 is a 1� 5 vector of origin hub nodes demon-

strating origin hub node’s assignment. Vector 2 is a 1� 5

vector of destination hub nodes indicating destination hub

node’s assignment. Vector 3 is a 1� 5 vector of the servers

located in the origin hub nodes. Vector 4 is a 1� 5 vector

of the servers located in destination hub nodes. Vector 5 is

a 1� 5 vector of origin nodes allocated to origin hub

nodes, and Vector 6 is a 1� 5 vector of destination nodes

allocated to destination hub nodes. The elements of all the

above vectors are random samples taken from a uniform

distribution in 0; 1½ �.

The decoding method

An example of the decoding method is demonstrated in this

section to show the way the constraints are satisfied.

Assuming the numbers of origin and destination nodes both

are 5 and that the maximum number of origin and desti-

nation hub nodes is 2, the following procedure is used to

generate feasible solutions with respect to Constraint (7).

First, the elements of Vector 1 in Fig. 3 are sorted in

ascending order. Then, the lowest two elements are con-

sidered as open (active) origin hub nodes. This method is

shown in Fig. 4, in which the origin hubs 2 and 5 are

chosen as the active origin hub nodes.

Similarly, the elements of Vector 2 are first sorted in

ascending order. Then, the lowest two elements are chosen
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as open destination hub nodes in order to generate the

solutions that satisfy Constraint (8). According to the

procedure shown in Fig. 4, destination hub nodes 3 and 2

are selected as active destination hub facilities.

Vector 5 is used to satisfy Constraints (9) and (10) to

determine the origin nodes that are allocated to origin hub

nodes. As shown in Fig. 5, the elements of Vector 5 are

first multiplied by P1 and are added by 1, where the

resulted values are rounded down. If the resulted number

becomes 1, then the origin node will be assigned to the

origin hub node 2, which is shown as an active origin hub

node in Fig. 3. However, if the resulted number becomes 2,

then the origin node will be assigned to the origin hub node

5, which is also shown as an active origin hub node in

Fig. 3.

Similarly, in order to generate solutions that satisfy

Constraints (9) and (11) to determine the origin hub nodes

allocated to destination hub nodes, the elements of Vector

6 are first multiplied by P2 and then are added by 1, where

resulted values are rounded down. If the resulted number

becomes 1, then the origin hub node is assigned to desti-

nation hub node 3, which is shown as an active destination

hub node in Fig. 4. However, if the resulted number

becomes 2, then the origin hub node is assigned to desti-

nation hub node 3. This procedure is shown in Fig. 6.

Vector 3 is used to determine the number of allocated

servers to active hubs. As an obvious fact, servers can only

be located in active origin hub nodes. Moreover, the lower

and the upper bounds on the number of servers located in

each active origin hub node can be obtained using Con-

straints (15) and (17). Hence, Eq. (33) is used to determine

the exact number of the servers that should be located in

each origin hub node

lk ¼ round LBk þ xk � UBk � LBkð Þð Þ; ð33Þ

Fig. 2 Representation of the

chromosome structure

Fig. 3 Decoding active origin

hub nodes

Fig. 4 Decoding active destination hub nodes

Fig. 5 Allocating origin nodes

to origin hub nodes
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where, LBk and UBk are the lower and upper bounds of the

active number of servers located in origin hub k, lk is the

number of servers located in origin hub k and xk is the kth

element of the Vector 3. The procedure used to determine

the number of servers that are located in every open origin

hub is presented schematically in Fig. 7.

Similarly, Vector 4 is used to identify the number of the

servers assigned to each active destination hub node. To do

this, Constraints (16) and (18) are used to determine the

lower and the upper bounds on the number of servers that

should be located in each active destination hub node. The

exact number of these servers is obtained using Eq. (34),

lm ¼ round LBm þ xm � UBm � LBmð Þð Þ; ð34Þ

where LBm and UBm represent the lower and the upper

bounds on the number of active servers located in desti-

nation hub m, lm is the number of servers located in des-

tination hub m, and xm is the mth element of Vector 4. The

procedure of satisfying Constraints (16) and (18) and

determining the number of servers assigned to each active

destination hub node is depicted in Fig. 8.

NRGA and NSGA-II

The chromosome structure of both NSGA-II (Deb et al.

2002) and NRGA (Al Jadaan et al. 2008) algorithms is the

one proposed for the MOIWO algorithm. Moreover, both

NSGA-II and NRGA algorithms use the same mutation and

crossover operator. Their mutation operator is a combina-

tion of three operators; reversion, insertion, and swap

mutations. Besides, in order to enhance the performances, a

combination of three different crossover operators (single-

point, double-point, and uniform crossover) is used in these

two algorithms. However, as the main difference, NSGA-II

employs the binary tournament selection, while NRGA

uses the Rolette wheel selection strategy. The flowchart of

NSGA-II and NRGA algorithms is shown in Fig. 9.

Applications

The implementation of the three utilized meta-heuristic

algorithms called MOIWO, NSGA-II, and NRGA on 20

different test problems are discussed in this section. To do

so, four different metrics called mean ideal distance (MID),

the rate of achievement to two objectives simultaneously

(RAS), the diversification matrix (DM), and the number of

Pareto solutions (NPS) are used to evaluate the perfor-

mances of the above algorithms. These metrics are:

• MID used to assess the closeness of the Pareto solutions

obtained to an ideal point using Eq. (35) (Karimi et al.

2010).

Fig. 6 Allocating origin hub nodes to destination hub nodes

Fig. 7 Encoding the number of

servers located in active origin

hub facilities

Fig. 8 Encoding the number of

servers located in active

destination hub facilities
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MID ¼

Pn
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f1i�f1best

f1max
total

�f1min
total

	 
2
þ f2i�f2best

f2max
total

�f2min
total

	 
2
r

n
; ð35Þ

where, f1max
total, f2min

total and n denote, respectively, the

smallest and the biggest values of the two fitness

functions among all non-dominated solutions and the

number of non-dominated solutions.

• RAS Eq. (36) is used to calculate the value of this

metric (Asefi et al. 2014):

RAS ¼

Pn
i¼1

f1i xð Þ�f best
1i

xð Þ
f best
1i

xð Þ

�
�
�

�
�
�þ f2i xð Þ�f best

2i
xð Þ

f best
2i

xð Þ

�
�
�

�
�
�

h i

n
ð36Þ

where the value of the first and the second objective

functions of the ith non-dominated solution and the

number of non-dominated solutions are, respectively,

denoted by f1i xð Þ, f2i xð Þ and n.

• DM this metric is employed to obtain the diversity of

the solutions in Pareto front using Eq. (37) (Moham-

madi et al. 2013).

Fig. 9 Flowchart of the NSGA-

II and NRGA
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DM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XI

i¼1
Min fi �Max fið Þ2

r

ð37Þ

where Min fi and Max fi are the minimum and the

maximum values of the two fitness functions among all

non-dominated solutions attained by the algorithm,

respectively.

• NPS this metric is used to count the number of non-

dominated solutions attained by each algorithm (Sar-

rafha et al. 2015).

Parameter setting

Since the performance of a meta-heuristic algorithm is

significantly affected by the choice of its parameters, this

section is dedicated for parameter calibration. To do this,

some test problems are first generated in ‘‘Randomly

generated test problems’’ section based on their parameters

randomly. Then, the calibration process is explained in

‘‘Calibrating the parameters of the algorithms’’ section.

Randomly generated test problems

In this section, 20 test problems are generated randomly.

These problems are categorized based on number of origin

nodes (I), number of origin hub nodes (K), number of

destination hub nodes (M), number of destination nodes

(J), number of hub facilities located at origin layer (P1) and

number of hub facilities located at destination layer (P2).

The characteristics of these problems are presented in

Table 2. Moreover, the following distributions are used to

set the parameters of the test problems:

• The demand for commodities from the origin node i to

the destination node j follows a uniform distribution in

100; 1000½ �.
• Unit transportation costs from the origin node i to the

origin hub node k, from the origin hub node k to the

destination hub node m, and from the destination hub

node m to the destination node j follow a uniform

distribution in 100; 1000½ �.
• Unit staffing costs at the origin hub node k and the

destination hub node m follow a uniform distribution in

10; 15½ �.
• Fixed establishment costs of a facility at the potential

origin hub node k and the potential destination hub

node m follow a uniform distribution in 1000; 10; 000½ �.
• The discount factor is set to 0.3 for the costs.

• Maximum numbers of servers to be located in open

origin hub node k and open destination hub node m are

set to 4 and 5, respectively.

• Arrival rate of commodities to the origin hub node k

follows a uniform distribution in 10; 30½ �.

• Arrival rate of commodities to the destination hub node

m follows a uniform distribution in 10; 20½ �.
• Servers’ service rate at the origin hub node k and the

destination hub node m follows a uniform distribution

in 20; 25½ �.

Calibrating the parameters of the algorithms

In this section, the Taguchi method is utilized to tune the

parameters of the three solution algorithms. This method

has been proposed by Taguchi (1986) as an efficient

alternative for the full-factorial experimental design.

Taguchi method is aimed to investigate a group of decision

variables using orthogonal arrays. As the main advantage,

this method decreases the number of experiments required

Table 2 General data of the test problems

N C i j k m P1 P2

1 1 7 14 14 14 14 2 2

2 2 9 18 18 18 18 2 3

3 3 10 20 20 20 20 2 3

4 4 12 24 24 24 24 2 3

5 5 14 28 28 28 28 3 3

6 6 15 30 30 30 30 3 4

7 7 17 34 34 34 34 3 4

8 8 19 38 38 38 38 3 4

9 9 20 40 40 40 40 4 4

10 10 22 44 44 44 44 4 4

11 11 25 50 50 50 50 5 5

12 12 26 52 52 52 52 6 6

13 13 28 56 56 56 56 6 6

14 14 30 60 60 60 60 6 6

15 15 32 64 64 64 64 7 8

16 16 34 68 68 68 68 7 8

17 17 35 70 70 70 70 7 8

18 18 37 74 74 74 74 8 9

19 19 39 78 78 78 78 8 9

20 20 40 80 80 80 80 8 9

21 21 45 90 90 90 90 10 10

22 22 50 100 100 100 100 10 10

23 23 55 110 110 110 110 12 13

24 24 60 120 120 120 120 12 13

25 25 65 130 130 130 130 12 13

26 26 70 140 140 140 140 15 15

27 27 75 150 150 150 150 15 15

28 28 80 160 160 160 160 17 18

29 29 90 180 180 180 180 20 20

30 30 100 200 200 200 200 22 23
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to calibrate the parameters. The main feature of these

arrays is to set a family of experiences. These arrays should

be designed and selected so that they can be considered as

representative of all the possible arrays. Using this method,

the performances of the algorithms are evaluated by a

statistical measure called signal-to-noise ratio S=Nð Þ. As
multi-objective algorithms are evaluated based on multi-

objective measures, the metric proposed by Rahmati et al.

(2013) is employed in this paper as the response for the

Taguchi method. This response that is shown in Eq. (38)

considers two important features of meta-heuristic algo-

rithms called diversity and convergence, simultaneously.

R ¼ MID

DM
ð38Þ

In Eq. (38), MID is used as the convergence metric and

DM is used as the diversity metric. In addition, as both the

objective functions of the mathematical formulation of the

problem are of a minimization type, ‘‘the smaller is better’’

is employed to select the proper levels of the parameters.

As the first step of using the Taguchi method, the

parameter levels of the algorithms are defined in Table 3.

In this table, the low, the medium, and the high levels of

the parameters are coded as ‘‘1’’, ‘‘2’’, and ‘‘3’’,

respectively.

The experiments are designed in Minitab software. For

the NRGA and NSGA-II, the L9 design is selected (Rah-

mati, et al. 2013), meanwhile, the L27 design is chosen for

the MOIWO algorithm (Maghsoudlou, et al. 2016). The

resulted response values obtained by NSGA-II and NRGA

when they are employed to solve the second problem (as an

example) are shown in Table 4. Moreover, Table 5 con-

tains the response values obtained by MOIWO. Using the

Taguchi method, the levels with smaller values of S=Nð Þ
are selected as the best levels of the parameters. The cor-

responding value of S=Nð Þ for each algorithm is illustrated

in Fig. 10, based on which the best parameter levels are

presented in bold in Table 3.

Computational results

The implementation results of the three parameter-tuned

meta-heuristics on test problems with the general data in

Table 2 are shown in Table 6. These algorithms were

coded in MATLAB software and were executed on a PC

with 2 GB RAM and Dual 2 GHz CPU. The problems are

classified into three groups of small, medium, and large,

based on which the test problems 1 to 6 are considered

small, the test problems 7–14 are considered medium, and

the rest are considered large-size problems. The average of

each of the four metrics defined in ‘‘Applications’’ section

for small-, medium-, and large-size problems are shown in

the bottom three rows of this table. In addition, Fig. 11

shows the Pareto fronts obtained by each algorithm for

small, medium and large problems. In order to compare the

Table 3 Parameters of the algorithm and their chosen levels

Multi-objective algorithm Parameter Parameter level

Level 1 Level 2 Level 3

NRGA Percentage of crossover (Pc) 0.7 0.8 0.9

Percentage of mutation (Pm) 0.05 0.1 0.15

Number of solutions in the population (N-pop) 50 100 150

Maximum number of iterations (max iteration) 5*N 10*N 15*N

NSGA-II Percentage of crossover (Pc) 0.7 0.8 0.9

Percentage of mutation (Pm) 0.05 0.1 0.15

Number of solutions in the population (N-pop) 50 100 150

Maximum number of Iterations (max iteration) 5*N 10*N 15*N

MOIWO Maximum number of Iterations (max iteration) 15*N 10*N 5*N

Number of weeds (N-weeds) 200 150 100

P max 400 300 200

Percentage of mutation (Pm) 0.6 0.5 0.4

Initial value of standard deviation (initial sigma) 0.3 0.4 0.5

Final value of standard deviation (final sigma) 0.05 0.03 0.01

Minimum number of seeds (S min) 3 2 1

Maximum number of seeds (S max) 10 8 5

Nonlinear modulation index (n) 4 3 2
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performances of the meta-heuristics in terms of the four

metrics, the Fisher test is used. The p values of the Fisher

statistics shown in Table 7 indicate that at a 95%

confidence level, there are no significant differences among

the algorithms in terms of all metrics, except MID. How-

ever, the box plots of the metrics in Fig. 12 show that

MOIWO performs the best in term of MID, diversification

(DM), and RAS metrics, while NRGA is the best in terms

of the NPS metric.

Ranking the algorithms

As none of the three utilized parameter-calibrated algo-

rithms is superior in terms of all of the four metrics, a

hybrid multi-attribute decision-making (MADM) method

called Entropy-TOPSIS is used to identify the best in terms

of all metrics, simultaneously. In this method, the algo-

rithms are considered as the alternatives and the metrics act

as criteria. Moreover, the entropy method proposed by

Hwang and Yoon (1981) is utilized to identify the weights

of the criteria, meanwhile, the TOPSIS method presented

by Hwang and Yoon (1981) is employed to identify the

Table 4 Results to calibrate the parameters of NSGA-II and NRGA

Run order Algorithm parameters Response

Pcr Pmut N-pop Max-iteration NRGA NSGA-II

1 1 1 1 1 30.25 21.98

2 1 2 2 2 27.30 33.79

3 1 3 3 3 30.15 28.91

4 2 1 2 3 29.00 27.83

5 2 2 3 1 17.04 26.47

6 2 3 1 2 19.16 15.55

7 3 1 3 2 31.75 48.05

8 3 2 1 3 19.66 19.34

9 3 3 2 1 30.20 20.02

Table 5 Results to tune the parameters of MOIWO

Run

order

Max-

iteration

Number of

weeds

P max Pmut Initial

sigma

Final

sigma

S min S max Nonlinear modulation

index

MOIWO

response

1 1 1 1 1 1 1 1 1 1 1.68335

2 1 1 1 1 2 2 2 2 2 1.66503

3 1 1 1 1 3 3 3 3 3 1.12930

4 1 2 2 2 1 1 1 2 2 1.61157

5 1 2 2 2 2 2 2 3 3 1.31550

6 1 2 2 2 3 3 3 1 1 1.45001

7 1 3 3 3 1 1 1 3 3 1.19566

8 1 3 3 3 2 2 2 1 1 1.49482

9 1 3 3 3 3 3 3 2 2 1.45047

10 2 1 2 3 1 2 3 1 2 1.22645

11 2 1 2 3 2 3 1 2 3 1.42086

12 2 1 2 3 3 1 2 3 1 1.78438

13 2 2 3 1 1 2 3 2 3 1.30581

14 2 2 3 1 2 3 1 3 1 1.50994

15 2 2 3 1 3 1 2 1 2 1.50176

16 2 3 1 2 1 2 3 3 1 1.51293

17 2 3 1 2 2 3 1 1 2 1.58298

18 2 3 1 2 3 1 2 2 3 1.54248

19 3 1 3 2 1 3 2 1 3 1.25910

20 3 1 3 2 2 1 3 2 1 1.38598

21 3 1 3 2 3 2 1 3 2 1.86841

22 3 2 1 3 1 3 2 2 1 1.69817

23 3 2 1 3 2 1 3 3 2 1.25912

24 3 2 1 3 3 2 1 1 3 1.45219

25 3 3 2 1 1 3 2 3 2 1.19657

26 3 3 2 1 2 1 3 1 3 1.38338

27 3 3 2 1 3 2 1 2 1 1.78587
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priority of the alternatives in solving the problems. The

steps of the hybrid Entropy-TOPSIS method are:

• Create the decision matrices of the criteria for small-,

medium-, and large-size problems

• Normalize the elements of the decision matrices using

Eq. (39).

pij ¼
aij

Pn
i¼1 aij

; 8j; ð39Þ

where, pij is the normalized element and aij is an ele-

ment of a decision matrix.

• Calculate the entropy of the jth criterion using Eq. (40).

Ej ¼ � 1

lnm
�
Xn

i¼1

pij ln pij

 �

8j ð40Þ

• Compute the deviation or the uncertainty degree of a

criterion using Eq. (41).

dj ¼ 1� Ej 8j ð41Þ

• Obtain the weights of the criteria using Eq. (42).

wj ¼
dj

Pn
j¼1 dj

8j ð42Þ

• Calculate the normalized decision matrices, r, in the

TOSIS method using (43).
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Fig. 10 Signal-to-noise ratios obtained by the algorithms
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rij ¼
fij
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

j¼1 f
2
ij

q 8i; ð43Þ

where rij, fij and n denote an element of the normalized

decision matrix, an element of the decision matrix, and

the number of alternatives, respectively.

• Obtain the weighted normalized decision matrices

using Eq. (44):

V ¼ r 	Wn�n; ð44Þ

where V and Wn�n are the weighted normalized deci-

sion matrix and the diagonal weight matrix, respec-

tively. Please note that the elements in the main

diagonal of the weight matrix are the weights of the

criteria calculated by the entropy approach.

• Compute the positive and the negative ideal solutions

using Eqs. (45)–(46):

Table 6 Implementation results

MOIWO NRGA NSGA-II

MID DM RAS NPS MID DM RAS NPS MID DM RAS NPS

1 14,5797.02 131,427.45 0.40 3 3,895,310.77 131,509.95 0.83 4 5,230,511.39 135,782.58 0.56 3

2 326,125.35 239,682.02 0.50 7 3,389,101.46 251,542.56 0.87 8 5,478,031.01 234,469.44 0.66 6

3 540,670.57 438,975.46 0.40 7 7,081,969.75 366,151.22 0.55 8 7,903,251.82 416,820.27 0.35 5

4 980,227.99 809,143.42 0.31 12 6,304,484.77 689,376.22 0.33 10 5,833,880.76 690,098.63 0.50 8

5 1,291,284.43 934,606.18 0.45 11 9,360,322.28 744,203.08 0.43 11 8,130,932.35 800,704.09 0.38 11

6 1,572,342.57 1,242,426.08 0.33 8 10,749,581.10 916,773.48 0.33 9 4,631,936.54 944,722.84 0.43 15

7 1,909,708.29 1,408,958.40 0.43 14 10,515,097.14 1,054,079.00 0.34 10 6,839,332.19 1,113,971.21 0.37 14

8 2,085,405.97 1,771,358.26 0.28 13 12,183,370.50 1,301,056.44 0.37 14 13,107,682.87 1,217,529.87 0.24 10

9 2,513,822.42 2,037,443.45 0.32 13 6,742,237.48 1,490,442.39 0.48 13 8,906,309.44 1,502,146.42 0.36 15

10 2,862,735.17 2,413,238.45 0.27 18 9,449,736.66 1,719,067.77 0.33 17 17,536,250.64 1,605,893.54 0.27 11

11 3,218,662.75 2,726,211.36 0.24 9 11,497,718.52 2,025,707.32 0.38 16 18,463,268.12 1,924,784.53 0.28 13

12 3,481,289.81 2,981,884.61 0.24 15 12,540,765.98 2,122,459.19 0.33 16 9,624,932.39 2,109,699.14 0.30 13

13 3,956,685.75 3,245,213.79 0.32 18 16,110,135.90 2,330,416.86 0.31 17 10,099,438.44 2,397,786.27 0.35 17

14 3,960,026.02 3,380,123.38 0.29 18 18,678,455.63 2,416,800.07 0.32 13 13,846,808.20 2,563,862.33 0.26 16

15 4,559,387.63 3,820,348.8 0.26 14 13,508,653.33 2,732,337.49 0.32 20 14,728,055.37 2,836,050.29 0.34 20

16 4,720,835.08 4,003,112.66 0.29 17 13,099,015.85 3,137,558.88 0.25 18 14,927,802.21 3,110,634.63 0.32 15

17 5,127,697.51 4,533,786.93 0.21 16 13,060,574.95 3,170,186.57 0.35 27 15,580,593.56 3,340,536.62 0.26 21

18 5,655,287.39 4,886,069.22 0.24 16 18,451,369.81 3,502,510.30 0.34 20 22,497,484.10 3,564,745.44 0.21 16

19 5,773,480.38 5,059,399.67 0.24 17 14,219,795.87 3,535,900.79 0.39 24 17,039,715.11 3,565,041.10 0.31 19

20 5,918,516.27 5,376,930.00 0.19 14 16,528,754.20 3,849,816.05 0.29 26 14,140,586.54 3,749,769.99 0.28 22

21 145,797.02 131,427.45 0.40 3 3,895,310.77 131,509.95 0.83 4 5,230,511.39 135,782.58 0.56 3

22 326,125.35 239,682.02 0.50 7 3,389,101.46 251,542.56 0.87 8 5,478,034.01 234,469.44 0.66 6

23 540,670.57 438,975.46 0.40 7 7,081,969.71 366,153.22 0.55 8 7,903,251.82 416,820.27 0.35 5

24 448,125.33 298,782.06 0.60 4 3,265,954.75 458,751.02 0.77 8 5,478,032.01 398,541.33 0.46 7

25 552,470.17 524,674.47 0.55 6 7,520,966.15 387,542.30 0.66 7 7,145,876.45 325,874.54 0.55 6

26 358,925.85 421,682.02 0.55 5 5,842,979.75 398,542.92 0.60 7 5,247,885.02 458,412.09 0.48 6

27 413,625.39 356,975.76 0.48 4 8,541,960.05 498,135.45 0.77 6 4,569,822.08 556,820.25 0.60 7

28 511,170.22 366,682.08 0.62 7 6,981,969.75 257,591.46 0.61 5 7,425,413.01 385,425.82 0.58 7

29 469,825.01 425,978.55 0.48 5 6,054,965.21 502,122.55 0.58 6 5,247,895.36 389,521.35 0.74 6

30 528,770.03 514,475.49 0.50 5 5,456,994.75 426,411.02 0.62 7 4,879,852.25 554,162.75 0.65 7

AV1 809,407.988 632,710.1 0.4 8 6,796,795 516,592.75 0.56 8 6,201,424 537,099.64 0.48 8

AV2 2,998,542.02 2,495,554 0.3 15 12,214,690 1,807,503.6 0.36 14 12,303,003 1,804,459.2 0.31 14

AV3 2,099,421.44 1,838,575.6 0.42 9 8,892,778.9 1,391,618.3 0.57 12 9,519,517 1,412,437.2 0.47 10
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i
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ðvijÞ for cost criteria

(

ð46Þ

• Use Eqs. (47) and (48) to obtain the distances of the

alternatives from the positive and the negative ideal

solutions.
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Fig. 11 Pareto fronts obtained by the solution algorithms

Table 7 Statistical comparisons of the algorithms

Metric P value Test result

MID 0.000 The algorithms perform different

DM 0.347 No significant difference found

NPS 0.472 No significant difference found

RAS 0.013 No significant difference found

Journal of Industrial Engineering International (2019) 15:221–248 243

123



d�i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

j¼1

vij � v�j

	 
2
v
u
u
t i ¼ 1; . . .;m ð48Þ

• Obtain the closeness of the alternatives using Eq. (49).
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Fig. 12 Box plot of the four metrics obtained for the solution algorithms

Table 8 Decision and the

normalized decision matrices

(small-size problems)

Problem number Decision matrix Normalized decision matrix

MID DM NPS RAS MID DM NPS RAS

1 3,090,539.72 132,906.66 3.33 0.597 0.23 0.04 0.07 0.21

2 3,064,419.27 241,898.00 7.00 0.676 0.23 0.07 0.14 0.10

3 5,175,297.38 407,315.65 6.67 0.431 0.14 0.12 0.14 0.16

4 4,372,864.50 729,539.42 10.00 0.377 0.16 0.22 0.21 0.18

5 6,260,846.35 826,504.45 11.00 0.420 0.11 0.25 0.23 0.16

6 5,651,286.74 1,034,640.80 10.67 0.360 0.13 0.31 0.22 0.19

Table 9 Weights of the criteria (small-size problems)

MID DM NPS RAS

E 0.978 0.899 0.965 0.988

1 - E 0.022 0.101 0.035 0.012

Weight 0.130 0.594 0.206 0.070
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CLi ¼
d�i

d�i þ dþi
i ¼ 1; . . .;m ð49Þ

• Rank the alternatives based on their closeness. The best

alternative (algorithm) is the one with the highest

closeness.

A brief implementation of the above steps to rank the

three meta-heuristics in terms of four metrics is shown in

Tables 8, 9, 10, 11, 12, 13, 14, 15, and 16. According to the

closeness of the alternatives obtained at the end, the

MOIWO algorithm is the best to solve the problems.

Conclusion and future research

In this paper, a new bi-objective intermodal hub-location-

allocation problem within queuing framework was inves-

tigated. The developed model of this problem intended to

simultaneously minimize the total network costs and the

total time spent in the network. The solution of a small-size

problem using the GAMS software was presented to show

the accuracy of the developed formulation. As the problem

belongs to the class of NP-Hard problems with conflicting

objectives, an MOIWO algorithm with a new chromosome

structure was utilized to solve the problem. Moreover, a

fuzzy ranking method was used in MOIWO to prioritize

the solutions obtained in each iteration. Since there was no

Table 10 Decision and the

normalized decision matrices

(medium-size problems)

Problem number Decision matrix Normalized decision matrix

MID DM NPS RAS MID DM NPS RAS

7 6,421,379.20 1,192,336.20 12.67 0.378 0.17 0.07 0.11 0.10

8 9,125,486.44 1,429,981.52 12.33 0.295 0.12 0.09 0.11 0.13

9 6,054,123.11 1,676,677.42 13.67 0.384 0.18 0.10 0.12 0.10

10 9,949,574.16 1,912,733.25 15.33 0.288 0.11 0.12 0.13 0.14

11 11,059,883.13 2,225,567.73 12.67 0.298 0.10 0.14 0.11 0.13

12 8,548,996.06 2,404,680.98 14.67 0.290 0.13 0.15 0.13 0.14

13 10,055,420.03 2,657,805.64 17.33 0.324 0.11 0.16 0.15 0.12

14 12,161,763.28 2,786,928.59 15.67 0.289 0.09 0.17 0.14 0.14

Table 11 Weights of the criteria (medium-size problems)

MID DM NPS RAS

E 0.986 0.982 0.997 0.997

1 - E 0.014 0.018 0.003 0.003

Weight 0.368 0.469 0.085 0.077

Table 12 Decision and the

normalized decision matrices

(large-size problems)

Problem number Average decision matrix Normalized decision matrix

MID DM NPS RAS MID DM NPS RAS

15 10,932,032 3,129,579 18 0.31 0.096 0.118 0.103 0.040

16 10,915,884 3,417,102 16 0.29 0.096 0.129 0.095 0.037

17 11,256,289 3,681,503 21 0.27 0.099 0.139 0.122 0.036

18 15,534,714 3,984,442 17 0.26 0.137 0.151 0.099 0.034

19 12,344,330 4,053,447 20 0.31 0.108 0.153 0.115 0.041

20 12,195,952 4,325,505 20 0.25 0.107 0.164 0.119 0.033

21 3,090,540 132,906.7 3 0.60 0.027 0.005 0.019 0.078

22 3,064,420 241,898 7 0.68 0.027 0.009 0.040 0.089

23 5,175,297 407,316.3 6 0.43 0.045 0.015 0.038 0.057

24 3,064,037 385,358.1 6 0.61 0.026 0.014 0.036 0.080

25 5,073,104 412,697.1 6 0.59 0.045 0.015 0.036 0.077

26 3,816,597 426,212.3 6 0.54 0.034 0.016 0.0345 0.071

27 4,508,469 470,643.8 5 0.62 0.039 0.017 0.032 0.081

28 4,972,851 336,566.5 6 0.60 0.043 0.012 0.036 0.079

29 3,924,229 439,207.5 5 0.6 0.034 0.016 0.032 0.079

30 3,621,872 498,349.8 6 0.59 0.031 0.018 0.03 0.078
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available benchmark in literature, two other meta-heuris-

tics called NSGA-II and NRGA with a unique chromosome

structure were designed to qualify the solutions obtained by

MOIWO. The parameters of the algorithms were tuned

using the Taguchi method. The results obtained using these

calibrated solution algorithms were compared statistically.

The comparison results showed that the MOIWO algorithm

acts better than the other two solution algorithms in terms

of RAS, MID, and diversification metrics, while the NRGA

algorithm is the best in term of the NPS metric. Finally, an

Entropy-TOPSIS method was used to find the best algo-

rithm in terms of all metrics. The results showed that the

MOIWO algorithm was the best to solve all problems.

The following works can be recommended in future

research:

• Formulating the uncertainties involved in the main

parameters of the model using some other methods

such as the robust optimization approach.

• Taking into consideration the failure probabilities of the

origin and the destination hub facilities.

• Utilizing some other meta-heuristic solution algorithms

to solve the problem.

• Employing a different approach to compare the

performances of the solution algorithms.

Table 13 Weights of the criteria (large-size problems)

MID DM NPS RAS

E 0.941 0.815 0.938 0.979

1 - E 0.058 0.184 0.061 0.020

Weight 0.179 0.568 0.189 0.063

Table 14 Entropy-TOPSIS results (small-size problems)

Decision matrix Normalized decision matrix Weighted normalized decision

matrix

di
? di

- CL

MID DM NPS RAS MID DM NPS RAS MID DM NPS RAS

NRGA 6,796,795.02 516,592.75 15 0.56 0.74 0.53 0.58 0.67 0.10 0.31 0.12 0.05 0.13 0 0

NSGA-II 6,201,423.98 537,099.64 14 0.48 0.67 0.55 0.58 0.57 0.09 0.33 0.12 0.04 0.10 0.02 0.17

MOIWO 809,407.99 632,710.1 15 0.40 0.09 0.65 0.58 0.19 0.01 0.39 0.12 0.01 0.00 13.0 1.00

Table 15 Entropy-TOPSIS results (medium-size problems)

Decision matrix Normalized decision matrix Weighted normalized decision

matrix

di
? di

- CL

MID DM NPS RAS MID DM NPS RAS MID DM NPS RAS

NRGA 12,214,689.73 1,807,503.6 15 0.36 0.69 0.51 0.59 0.65 0.25 0.24 0.05 0.05 0.21 0.01 0.05

NSGA-II 12,303,002.79 1,804,459.1 14 0.30 0.7 0.51 0.55 0.54 0.26 0.24 0.05 0.04 0.41 0.01 0.02

MOIWO 2,998,542.02 2,495,553.9 15 0.30 0.17 0.70 0.59 0.54 0.06 0.33 0.05 0.04 0.00 0.21 1.00

Table 16 Entropy-TOPSIS results (large-size problems)

Decision matrix Normalized decision matrix Weighted normalized decision

matrix

di
? di

- CL

MID DM NPS RAS MID DM NPS RAS MID DM NPS RAS

NRGA 9,181,271.02 1,475,413.3 13 0.5 0.67 0.51 0.68 0.66 0.12 0.29 0.04 0.1 0.14 0.01 0.08

NSGA-II 9,845,050.64 1,501,413 11 0.45 0.72 0.52 0.56 0.56 0.13 0.30 0.03 0.1 0.13 0.02 0.14

MOIWO 2,253,169.32 1,962,436.4 10 0.40 0.16 0.68 0.47 0.5 0.03 0.38 0.03 0.09 0.009 0.14 0.93
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