
ORIGINAL RESEARCH

Cuckoo search via Lévy flights for the capacitated vehicle routing
problem

Jon Henly Santillan1
• Samantha Tapucar1

• Cinmayii Manliguez1
•

Vicente Calag1

Received: 6 April 2017 / Accepted: 18 August 2017 / Published online: 29 August 2017

� The Author(s) 2017. This article is an open access publication

Abstract For this paper, we explored the implementation

of the cuckoo search algorithm applied to the capacitated

vehicle routing problem. The cuckoo search algorithm was

implemented with Lévy flights with the 2-opt and double-

bridge operations, and with 500 iterations for each run. The

algorithm was tested on the problem instances from the

Augerat benchmark dataset. The algorithm did not perform

well on the problem instances, save for a select few on

which the algorithm achieved the close to near-optimal

result and one on which the algorithm achieved the optimal

result. Increasing the number of iterations for each run of

the algorithm on the two large-scale problem instances led

to obtaining solutions closer to the optimal solution com-

pared to the ones obtained with fewer number iterations.

This gives an idea that the larger the problem instance

becomes, the slower the algorithm converges to the optimal

solution. Several other factors may also have contributed to

the overall performance of the algorithm. Regardless of its

performance, the algorithm was able to obtain routes that

satisfied the constraints of the capacitated vehicle routing

problem. The potential of the cuckoo search algorithm in

solving combinatorial problems is demonstrated in this

study in which the performance of the algorithm on routing

problems was explored.

Keywords Capacitated vehicle routing problem �
Combinatorial optimization � Cuckoo search � Lévy flights

Introduction

The capacitated vehicle routing problem (CVRP) is a

vehicle routing problem (VRP) in which the constraints lie

mainly in the vehicle capacities and the maximum distance

that each vehicle can travel (Zhang et al. 2008). The

defined capacity of the vehicles makes CVRP the problem

that it is, which arguably holds the closest similarity to the

constraints that real life applications are under. The VRP

does not take into consideration the capacity of the vehicles

which play a huge role in the decision making when it

comes to distribution.

CVRP is considered as a fundamental problem in the

field of combinatorial optimization specifically in trans-

portation and distribution logistics (Kara et al. 2007). It

embodies a necessary basis of logistics planning (Chandran

and Raghavan 2008) and evidently plays a critical part in

wide-ranging practical applications. A solution to this

particular routing problem will greatly benefit businesses

and industries that are involved in transportation and

distribution.

The cuckoo search (CS) is a metaheuristic algorithm

proposed by Yang and Deb (2009) based on the obligate

brood parasitic behavior of some cuckoo species. This

algorithm is notably enhanced when combined with the

Lévy flights (LF) rather than simple isotropic random walk

method (Yang 2014). The LF is a behavior described by

Reynolds and Frye (2007) as a way most animals and

insects explore their landscape—by using a series of

straight flight paths punctuated by a sudden 90� turn. The

potential of the CS algorithm is recorded in various liter-

atures (Vázquez 2011; Yang et al. 2012; Gandomi et al.

2013; Kaveh and Bakhshpoori 2013; Yildiz 2013).

For this paper, we explored the implementation of the

CS algorithm with LF for solving the CVRP. We tested the

& Jon Henly Santillan

josantillan@up.edu.ph

1 Department of Mathematics, Physics, and Computer Science,

University of the Philippines Mindanao, Mintal, 8022 Davao,

Philippines

123

J Ind Eng Int (2018) 14:293–304

https://doi.org/10.1007/s40092-017-0227-5

http://orcid.org/0000-0002-3487-7084
http://crossmark.crossref.org/dialog/?doi=10.1007/s40092-017-0227-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s40092-017-0227-5&domain=pdf
https://doi.org/10.1007/s40092-017-0227-5

algorithm on the problem instances from Augerat et al.

(1995) and recorded its performance in terms of solution

quality, with observation of the running times. The goal of

this study was to add to the literature on the performance of

the CS algorithm as a whole and on the performance of the

CS algorithm as a solution for the CVRP. Additionally, it

leads to other researches of the same nature in the future, as

discovering an optimal solution to a routing problem such

as CVRP is vital in real-life applications that involve

transportation and distribution—one of the core points in

satisfying demands of a consumer base.

The succeeding texts in this paper are organized as

follows: the CVRP is formally presented and the approa-

ches to solving it are reviewed in Sect. 2, the CS algorithm

is formally presented in Sect. 3, the implementation of the

CS algorithm to solve the CVRP is presented in Sect. 4, the

experimental results are presented in Sect. 5, and the

conclusion is made with recommendations in Sect. 6.

Problem

Capacitated vehicle routing problem

The CVRP is a situation in which a number of customers

with individual demands are satisfied by a number of

homogenous vehicles, each with a given capacity, from a

central depot. The objective of the problem is to determine

the set of optimal routes traveled by a number of identical

vehicles with minimal travel costs (Toth and Vigo 2002). A

route is feasible when it begins and ends at the central

depot, with each customer serviced exactly once, and the

total demand on any route does not exceed the vehicle’s

capacity (Christiansen and Lysgaard 2007).

Formally, in the CVRP, a nonnegative demand qu i;kð Þ—

where u represents the route, i the customer, and k the

vehicle—of a single commodity is to be delivered to n

customers from a central depot using K independent

delivery vehicles of identical capacity C (Ralphs et al.

2003; Kumar et al. 2014). Further, the goal is to complete

the delivery with minimal distance D and least total cost,

with du i;kð Þ;u iþ1;kð Þ denoting the distance traveled for vehicle

k from customer i to customer iþ 1, dk the total distance

traveled by a vehicle k, and Nk the number of customers

visited by vehicle k. Distances between two customers are

calculated using the Euclidean distance formula. Addi-

tionally, each route must begin and end at the depot, each

customer is part of exactly one route, and the total demand

of each route does not exceed vehicle capacity C.

Kumar et al. (2014) translate the description to a

mathematical representation:

MinD ¼
XK

k¼1

dk; ð1Þ

where dk ¼
PNk

i¼0

du i;kð Þ;u iþ1;kð Þ;where du i;kð Þ;u iþ1;kð Þ is calcu-

lated using the Euclidean distance formula

Min K; ð2Þ
XNk

i¼1

qu i;kð Þ �C 8k ¼ 1; 2; . . .;K: ð3Þ

According to Kumar et al. (2014), Eqs. (1), (2), and (3)

are for the objective function for minimization of total

distance traveled by all vehicles, the objective for mini-

mization of total number of vehicles used, and the vehicle

capacity constraint, respectively.

Approaches to solving CVRP

A solution to the CVRP consists of a collection of K routes

with minimum travel cost for K identical vehicles each

with capacity C, such that each route for each vehicle must

begin and end at the depot, each customer is visited exactly

by one route, and the sum of the demand of the customers

visited by a route does not exceed the vehicle capacity C

(Ralphs et al. 2003; Kumar et al. 2014). Since CVRP is a

variation of the vehicle routing problem (VRP), which is an

extension of the traveling salesman problem (TSP), the

foundation of many exact approaches for CVRP is derived

from the extensive and successful work done for the exact

solution of TSP (Toth and Vigo 2014). CVRP has been

extensively studied since the early 60s, and, in the past

years, many new heuristic and exact approaches have been

presented (Toth and Vigo 2002). However, despite the

huge progress seen with respect to the first algorithms, such

as the tree search method by Christofides and Eilon (1969),

CVRP is still far from being satisfactorily solved (Toth and

Vigo 2014).

Exact techniques for CVRP are applied only to small-

scale problems and the qualities of constructive heuristics

are often not satisfactory (Huang et al. 2008). CVRP

problem instances that can be consistently solved by the

most effective exact algorithms proposed so far can only

accommodate up to 50 customers, while larger instances,

which contain hundreds of customers, can only be solved in

particular cases and can only be tackled with heuristic

methods (Toth and Vigo 2002). Despite the lack of a

conclusive approach, enormous improvements in the

research community’s ability to solve these problems are

improved due to better algorithms and computational

abilities (Chandran and Raghavan 2008).

294 J Ind Eng Int (2018) 14:293–304

123

A study by Fukusawa et al. (2006) applied the Robust

Branch and Cut Price algorithm for solving CVRP. Fuku-

sawa et al. (2006) used four problems instances—P-n16-

k8, P-n23-k8, P-n40-k5, and P-n101-k4—from the study of

Augerat et al. (1995). The algorithm was able to produce a

near-optimal solution for the four problem instances.

Ren (2012) applied genetic algorithm and was able to

achieve desirable results with high efficiency and fast

convergence rate. Shin and Han (2011) implemented a

centroid-based heuristic algorithm which was able to

achieve better results in many of the problem instances

under sets A, B, and P of the Augerat et al. (1995)

benchmark dataset as compared to the Sweep heuristic

algorithm.

Lin et al. (2009) applied a hybrid algorithm of simulated

annealing and tabu search and tested the algorithm on 14

classical problems and 20 large-scale benchmark instances.

The hybrid algorithm achieved best solutions for 8 out of

the 14 classical problems and exhibited competitive per-

formance with other algorithms.

Mazzeo and Loiseau (2004) developed an Ant Colony

algorithm (ACO) based on a metaheuristic technique

introduced by Colorni et al. (1991). The developed algo-

rithm achieved results which show very good performance

in problem instances with up to 50 nodes and promising

performance in bigger problem instances.

Kumar et al. (2014) reviewed other works on CVRP

which showed promising performances. Kumar et al.

(2014) also introduced a genetic algorithm with new fitness

assignment procedure and tested the algorithm on standard

benchmark problems. The algorithm achieved results

which suggest its high competitiveness with other algo-

rithms and its effectiveness for multi-objective optimiza-

tion of vehicle routing problems.

Desired algorithm

Cuckoo search

Yang and Deb’s (2009) take on modeling the behavior

implemented in the CS algorithm is as follows:

1. Each cuckoo lays one egg at a time and dumps its egg

in a randomly chosen nest;

2. the best nests with high-quality eggs will carry over to

the next generation; and

3. the number of available host nests is fixed, and the egg

laid by a cuckoo is discovered by the host bird with a

probability pa 2 ½0; 1�. In this case, the host bird can

either get rid of the egg, or simply abandon the nest

and build a completely new nest.

In other words, there is always a probability that the

cuckoo egg is discovered by the host. The effect of having

an egg discovered and consequently being thrown away or

abandoned is approximated by a fraction pa of the n host

nests and are replaced by new nests (with new random

solutions).

These three items that model the behavior of cuckoos

provide a selection process for the CS algorithm, mim-

icking a ‘‘survival of the fittest’’ characteristic because it

ensures that the best eggs survive from generation to

generation (Yang 2010).

Furthermore, the algorithm’s strength comes from the

utilization of the LF pattern—especially when the global

random walk is carried out (Yang 2014). Based on the

aforementioned modeled behavior, a method of generating

the eggs is required and will be applied with the LF.

Essentially, there are three components in this algo-

rithm: selection of the best, exploitation by local random

walk, and exploration by randomization via LF globally

(Yang and Deb 2010). To control the step size (the random

pattern) of the LF in generating solutions, a user-specified

coefficient a is defined. Yang and Deb (2009) stated that in

most cases, we can define a ¼ 1. When a Lévy step is

generated using a random number generator, it is first

multiplied by a before it is used to generate a new egg. The

cuckoo laying eggs corresponds to a new solution set and

this is analogous to generating new solutions for a cuckoo i.

Furthermore, the CS algorithm has only two parameters

to be adjusted (Yang and Deb 2009):

1. The LF step size coefficient a, which controls the scale

of the flight by multiplication and should be related to

the size of the solution space of the objective function;

and

2. The fraction pa of eggs to be discarded. This value

dictates how much exploration the algorithm will

execute. If increasing, chances of getting trapped in a

local minima is decreased. If decreasing, chances of

getting trapped in a local minima is increased. This can

also be interpreted by understanding that once n, which

is the number of host nests, is fixed, pa essentially

controls the elitism and the balance of the randomiza-

tion and local search.

Yang and Deb (2009) discovered in their own validation

and testing of the CS algorithm that the convergence rate,

to some extent, is not affected by the parameter pa, which

means that there is no need to fine-tune this parameter for a

specific problem. In their testing of their algorithm, where

n ¼ 15; 16; . . .; 50 and a ¼ 1, they found that n ¼ 15 and

pa ¼ 0:25 are sufficient for most optimization problems.

These two parameters represent only a small number of

user-specified parameters compared to the other optimiza-

tion algorithms of this type (Yang et al. 2013). It is found

J Ind Eng Int (2018) 14:293–304 295

123

that the less parameters to be manipulated in an algorithm,

the more generic it will be. Complexities, such as param-

eters overtly affecting results, will be avoided. The algo-

rithm will be able to perform its task without being

constrained and affected by too many parameters.

Yang (2010) simplifies the general implementation of the

CS algorithm by using the following simple representation:

each cuckoo egg in a host nest represents a solution and each

cuckoo can only lay one egg which represents one solution.

Each egg then carries two pieces of information: its coordi-

nates in the solution space and its fitness value. With this

information, the new egg/solution is to be evaluated. If the

new egg/solution is significantly better or has more potential,

it is to replace the previous solution in the nest which is now

inferior in comparison to the new one. A situation where the

nests can contain more than one egg which would represent a

set of solutions can be achieved by the algorithm.

Like other metaheuristic algorithms, the CS execution is

dependent on a stopping criterion. In Bacanin’s (2011)

object oriented software implementation of a novel version

of the CS algorithm, the CS algorithm has the stopping

criterion maxGeneration ¼ 500, thus having 500 cycles per

run. Bacanin (2011) states that the results of his imple-

mentation based on the four utilized benchmarks for per-

formance evaluation are of optimal value and for a

reasonable threshold 10�15, the results are perfect. This

coincides with Yang and Deb’s (2009) review of their

algorithm, where they run the algorithm at least 100 times

and where each run stops when the variations of the

function values are less than the given tolerance e� 10�5.

Additionally, Yang and Deb’s (2009) review of the CS

algorithm includes comparison of the performance of the

genetic algorithm (GA) and particle swarm optimization

(PSO). While both have performances ranging from 77 to

100%, CS aces all ten standard optimization benchmarks,

where each algorithm has been run at least 100 times so as

to carry out meaningful statistical analysis. Yang and Deb

(2009) added that the primary reasons for such perfor-

mance of the CS algorithm are the fine balance of ran-

domization and intensification and the fact that fewer

parameters are to be fine-controlled, which makes it evi-

dently better and efficient for multimodal objective func-

tions. These results emphasize the potential of CS, with

Yang (2010) himself stating that CS is potentially far more

efficient than other algorithms of similar goal.

With the various research findings, CS has been found to

be more generic and robust for many optimization prob-

lems in comparison with other metaheuristic algorithms.

This is not to say that CS cannot be hybridized with other

mentioned algorithms, which has been done by other

researchers, namely Kundra and Sadawarti (2015), and can

produce even better outcomes.

Lévy flights

The foraging path of any animal is effectively a random

walk, as the next move is based on the current location and

the transition probability to the next location (Melin et al.

2015). Such randomization can be carried out in three

ways: uniform randomization, random walks, and heavy-

tailed walks (Yang 2010). The LF is a foraging pattern

under the heavy-tailed walks and is a flight strategy

exhibited by many organisms like fruit flies or Drosophila

melanogaster.

LF essentially provides a random walk whose random

step length is drawn from a Lévy distribution:

Levy� u ¼ t � k; ð1\k� 3Þ; ð4Þ

which has an infinite variance with an infinite mean (Yang

2010). This randomization plays an important role in both

exploration and exploitation in metaheuristic algorithms

such as the CS (Kaveh and Bakhshpoori 2013).

The LF pattern can also be described by many relatively

short steps (corresponding to the detection range of the

searcher) that are separated by occasional longer jumps

(Noah et al. 2013). Another description of the LF pattern is

an intensified search around a solution, followed by big

steps in the long run (Ouaarab et al. 2014). Consequently,

this is what is called a Lévy-flight-style intermittent scale-

free search pattern (Roy and Chaudhuri 2013). A scale-free

search pattern means that regardless of the scale the

searching pattern will not differ and will present the same

fractal patterns regardless of the range over which they are

viewed (Noah et al. 2013). In terms of searching in the

solution space, small-scale searches occur locally while

large-scale searches occur globally—leading to an auto-

matic balance between exploration and refinement (Yang

et al. 2013). This means that when LF is generating new

solutions, the search will mostly stay around the best

solution obtained so far, which speeds up the local search.

However, to avoid from being trapped in a local optimum,

or in other words be stuck with a solution which is only

best in a small area of the solution space, some of the new

solutions will also be generated by a far field randomiza-

tion whose locations are decidedly far enough from the

current best solution (Yang and Deb 2009). Thus, LF holds

a crucial role in controlling the balance between intensifi-

cation and diversification (Ouaarab et al. 2014). It is the

exponential property of LF that gives it a scale invariant

property (Roy and Chaudhuri 2013). Yang and Deb (2009)

also state that in most optimization problems, the search for

a new best solution is made more efficient by LF. An

example of an LF pattern is shown in Fig. 1.

In the CS algorithm, the selection of the best by keeping

the best nests or solutions is equivalent to some form of

elitism commonly used in genetic algorithms (Yang and

296 J Ind Eng Int (2018) 14:293–304

123

Deb 2010). This elitism secures the best solution’s position

in the population by constantly passing it to the next gen-

eration with no risk of it being eliminated. The exploitation

around the best solutions is performed by using a local

random walk (Yang and Deb 2010):

xtþ1 ¼ xt þ aet; ð5Þ

xtþ1 is a new solution generated using LF, xt is the current

best solution where the new solution is derived, a is the

mentioned step size parameter, and if et follows a Gaussian

distribution, then this becomes a standard random walk. If

et is drawn from a Lévy distribution, the step of move is

larger, and could potentially be more efficient (Yang and

Deb 2010). There is possibility of the step being too large,

and, therefore, there is risk that the move is too far away.

Fortunately, the elitism mentioned keeps the exploitation

moves within the neighborhood of the best solutions

locally by keeping the best solutions of each iteration.

In Kaveh and Bakhshpoori’s (2013) study, a more

defined version of Eq. (5) is presented where instead of the

et representation for a random walk, S is a parameter that

represents the length of random walk with LF according to

Mantegna’s algorithm:

xtþ1 ¼ xt þ a � S: ð6Þ

A random walk is a process which consists of taking a

series of consecutive random steps. It can be expressed as

Sn ¼
Xn

i¼1

Xi ¼ X1 þ X2 þ � � � þ Xn ¼
Xn�1

i¼1

Xi þ Xn

¼ Sn�1 þ Xn; ð7Þ

where Sn represents the random walk with n random steps

and Xi represents the ith random step with predefined length.

The step size or length can vary according to distribution, and

in this study’s case it will follow the Lévy distribution.

In terms of implementation (Kaveh and Bakhshpoori

2013), the generation of numbers with LF consists of two

steps: the choice of a random direction and the generation

of steps, which obey the chosen Lévy distribution. The

generation of steps can be quite tricky, but there are a few

ways to achieve it. One of the most efficient and straight-

forward ways is to apply the Mantegna algorithm. In

Mantegna’s algorithm (Mantegna 1994), the step length

S can be calculated by

S ¼ u

jvj1=b
; ð8Þ

where b is a parameter between [1, 2] interval and con-

sidered to be 1.5; variables u and v are drawn from normal

distribution as

u�Nð0; r2
uÞ; v�Nð0;r2

uÞ; ð9Þ

where

ru ¼
C 1 þ bð Þsin pb

2

� �

C ð1 þ bÞ=2½ �b2ðb�1Þ=2

8
<

:

9
=

;

1=b

; rv ¼ 1: ð10Þ

Despite its optimal searching pattern, however, LF does

not come without its drawbacks; because LF also has a

random nature, it cannot always be guaranteed (Yang

2010). However, LF is one of the most powerful features of

CS (Yang et al. 2013). Accordingly, LF is core in making

the CS algorithm reach its current potential.

LF is not an exclusive search pattern for CS. Another

application of LF can be seen in Pavlyukevich’s (2007)

study on non-local search and simulated annealing. LF can

also be seen on studies on human behavior foraging pat-

terns, and even light can be related to LF (Yang 2010).

Fitness function

A fitness function measures the potential of each solution.

The fitness function specific for CVRP gathered from

Kumar et al. (2014) is presented as follows:

Fig. 1 a An example of a 100-step LF and b a zoomed-in section of

the same LF (lifted from Yang et al. 2013)

J Ind Eng Int (2018) 14:293–304 297

123

FðDÞi ¼
ðDÞmax � ðDÞi
ðDÞmax � ðDÞmin

8i ¼ 1; 2; . . .; S; ð11Þ

where FðDÞi is the fitness function value of distance trav-

eled for ith solution in a population, ðDÞmax is the maxi-

mum distance traveled in a population, ðDÞmin is the

minimum distance traveled in a population, ðDÞi is the

distance traveled for the ith solution in a population, and S

is the size of the population.

FðDÞ is calculated for all solutions in a population.

Since it is a minimization problem, a solution with high

fitness function value is an optimal solution. Other forms of

fitness can be defined in a similar way to the fitness

function in genetic algorithms (Yang and Deb 2009).

Cuckoo search applications and other modifications

The CS algorithm has seen itself being applied to a variety of

problems other than combinatorial optimization problems.

These include structural optimization problems which are

highly nonlinear and involve large numbers of design vari-

ables with complex constraints (Gandomi et al. 2013),

business optimization applications (Yang et al. 2012), opti-

mal machining parameters in milling operations (Yildiz

2013), and even optimum design of steel frames (Kaveh and

Bakhshpoori 2013). The CS algorithm is also seen in the field

of machine learning, where it is used in the study on the

training of spiking neural networks (Vázquez 2011).

All mentioned studies have pointed out the significantly

better performance of the CS algorithm due to fewer

parameters compared to other algorithms. For that reason,

the mentioned studies also acknowledge the overall

potential of the CS algorithm. Furthermore, despite being

relatively new in terms of years in the research world in

comparison to other commonly used optimization algo-

rithms (CS was introduced in 2009, PSO in 1995, GA

introduced in the 1970’s), the CS algorithm is no stranger

to being modified or improved upon: a modified CS, with a

new gradient-free optimization algorithm, has been devel-

oped and involves the addition of information exchange

between the top eggs, or the best solutions (Walton et al.

2011). There is also the multi-objective CS algorithm for

design optimization by Yang and Deb (2013) and even an

improved CS algorithm for feed-forward neural network

training by Valian et al. (2011).

Methodology

Problem instances

All the problem sets (A, B, and P) from the benchmark

dataset of Augerat et al. (1995) were utilized for this study.

Further, only those problem instances with at least four

vehicles were considered due to the restriction (see

Sect. 4.3.4) in the use of an operation for the algorithm.

Problem representation

Toth and Vigo (2002) defined CVRP by the following

graph theoretic problem. Let G ¼ V;Að Þ be a complete

undirected graph where V ¼ f0; . . .; ng is the vertex set

with a corresponding Q demand set, and A is the arc set of

undirected edges. Vertices j ¼ f1; . . .; ng correspond to the

customers where each vertex has a known nonnegative

demand qn to be delivered, whereas vertex f0g corresponds

to the depot with a demand q0 ¼ 0. Given a customer set

S � V , let d Sð Þ ¼
P

qjj 2 S denote the total demand of a

customer set. To illustrate V , a 2xm matrix is shown in

Eq. (12) where each column represents the coordinates of

each vertex or customer. Eq. (13) denotes Q, the demand

set, where each element corresponds to one vertex or

customer:

V ¼
x0

y0

x0

y1

. . .

. . .

xm

ym

 !
; ð12Þ

Q ¼ q0; q1; . . .; qnð Þ: ð13Þ

Furthermore, a nonnegative distance, dij, is associated

with each arc i; jð Þ 2 A and represents the travel cost spent to

go from vertex i to vertex j. Since dij ¼ dji for all i, j 2 V , this

makes for a symmetric CVRP (SCVRP). Therefore, there are

no loop arcs ði; iÞ. The arc set A is shown in Eq. (14) and is

composed of the set of edges of the graph expressed as aij.

The associated cost dij for all the arcs i; jð Þ 2 A is defined as

the Euclidean distance between the two points corresponding

to vertices i and j, where the distance is calculated using the

Euclidean distance formula.

A ¼

a10 a21 . . . a1j

a20 a31 . . . a2j

..

. ..
. ..

.

ai0 ai1 . . . aij

0
BBB@

1
CCCA ð14Þ

The graph G includes the arcs connecting all vertex pairs,

with the exception of loops. The problem is interpreted under

the assumption that all the nodes presented, including the

depot, are fully interconnected in a complete graph.

CS algorithm on CVRP

The flowchart (Fig. 2) and the parameters (Table 1) are

presented below. For the parameters, the values assigned to

n and pa were based from Yang and Deb (2009) while the

value for the maxGeneration was based from Bacanin

(2011).

298 J Ind Eng Int (2018) 14:293–304

123

Flow of the algorithm

The initial 15 solutions are generated using the information

from the problem instance. A solution is then randomly

chosen from the set of initial solutions for a comparison.

The second solution for comparison is also chosen from the

set of initial solutions, but undergoes improvement deter-

mined by the LF value and the 2-opt and double-bridge

operations. The LF value is determined using Eqs. (8), (9),

and (10).

The LF value dictates the number of times that either

2-opt or double-bridge operation is applied. The algorithm

then proceeds to either apply the operation for the

remainder of the iteration or proceed to the comparison of

the first randomly chosen solution and the second LF

improved solution. During the comparison, the better

solution is kept. If the better solution happens to be the LF

solution, it will take the place of the randomly chosen

Fig. 2 CS algorithm flow based

from the pseudocode presented

by Yang and Deb (2009)

Table 1 CS algorithm parameters

Parameter name Variable Value

Initial population of host nests n 15

Fraction of eggs to be discarded pa 0.25

Number of cycles/iterations maxGeneration 500

J Ind Eng Int (2018) 14:293–304 299

123

solution. The fitness of all the solutions is recalculated, the

solutions are ranked, and the three (based from the algo-

rithm parameters) worst nests or solutions are removed and

are replaced by newly generated solutions. After main-

taining the number of solutions by generating new solu-

tions, the fitness values of the solutions are again calculated

and ranked.

The whole process constitutes a single iteration. After

completing 500 iterations, the best solution is recorded to

mark the end of a single run.

Generation of the initial solutions

A randomization pattern is applied to generate an initial

solution for the population. A vehicle is randomly chosen,

with the constraint that it should be able to cater to the

currently unassigned customer with the least demand. If

not, the program loops until a vehicle with adequate

capacity is selected.

Next, an unassigned customer is randomly chosen and is

added on the vehicle’s route. If the customer–vehicle

pairing does not meet the problem constraints, the program

moves on to the next possible pairing. Otherwise, the

function removes the customer from the pool of unassigned

customers and adds it to the vehicle route, updates the

vehicle capacity, and moves on to the rest of the unas-

signed customers and vehicles.

A sample solution S representation for the CVRP by the

algorithm implementation is shown in Fig. 3. This entire

procedure is repeated n (number of host nests) times.

When the initial solutions are obtained, the solutions’

fitness values are calculated and are consequently ranked.

2-opt operation

2-opt is a popular simple local search operation (Chang

2015) which was first introduced by Croes (1958) for a

single objective TSP. Its characteristics include the fol-

lowing: it is applicable to both symmetric and asymmetric

problems with random elements; it does not use subjective

decisions, so it can be completely mechanized; it is

appreciably faster than any other method proposed; and it

can be terminated at any point where the solution obtained

so far is deemed sufficiently accurate.

In the TSP, 2-opt improves a random initial tour by

exchanging two of the edges in the tour with two other

possible edges. For example, the operation will select two

edges u1; u2ð Þ and v1; v2ð Þ from the tour—where u1, u2, v1,

and v2 are distinct and appear in this order in the tour—and

will replace these edges with the edges u1; v1ð Þ and u2; v2ð Þ,
provided that this change will decrease the length of the

tour (Englert et al. 2014). The operation is repeated until no

more improvements can be made.

In the capacitated vehicle routing problem, an attempt to

improve the current solution is done by swapping two

customer positions—two individual routes are chosen

where two customers are singled out and swapped. This

consequently affects the solution quality.

Double-bridge operation

The double-bridge is a mutation operator for the Genetic

Algorithm. It involves the exchange of four edges in a

specific pattern (Handl et al. 2016). It allows large-scale

changes in a tour to take place and it is a move that cannot

be built from the composition of a local sequence of 2- and

3-changes (Martin et al. 1991).

An example of the specific pattern of the exchange of

four edges in the traveling salesman problem is as follows:

the edges a; bð Þ, c; dð Þ, e; fð Þ, and g; hð Þ in the tour are

replaced by the edges a; fð Þ, c; hð Þ, e; bð Þ, and g; dð Þ
(Ouaarab et al. 2014).

The double-bridge operation only differs to the 2-opt

operation in that instead of swapping two customers, it

swaps four customers. Due to the nature of this operation,

each problem instance used must have at least four

vehicles.

Experimental results

This section presents the results of the computational

experiments carried out to determine the performance of the

CS algorithm applied to the CVRP. The algorithm was

coded using the Java programming language and was run

mainly on a 1.9-GHz system with 4 Gb of RAM.

Comparison between the known best solutions from

Augerat et al. (1995) and the best solutions obtained by the

CS algorithm applied in this study for each of the selected

problem instances from the Augerat et al. (1995) bench-

mark dataset is shown in Table 2 (set A problem instan-

ces), Table 3 (set B problem instances), and Table 4 (set P

problem instances).

Fig. 3 Sample solution representation of a problem instance with 16

customers and 8 vehicles

300 J Ind Eng Int (2018) 14:293–304

123

The bold values in Tables 3 and 4 indicate the solutions

obtained by the applied algorithm that match or are close to

the known best solution from the literature. Out of these

closest solutions, one (P-n16-k8) achieved the same set of

routes as the one in the literature and would have achieved

the same length as the one in the literature if not for the

difference in how the values are computed.

Most of the solutions are far off as compared to the ones

from the literature. Hence, it is reported that this study’s

implementation of the CS algorithm is not effective. The

results obtained for these problem instances are signifi-

cantly larger than the best known solutions. The large

difference could be attributed to several factors, such as the

parameter settings (e.g. number of iterations), the

interpretation and application of the Lévy Flights, the

operations used (2-opt and double-bridge), or merely the

nature of random walks and metaheuristics (Yang and Deb

2010).

For consideration of the thought, we tested increasing

the number of iterations for every run to check if it has any

effect on the solution quality generated. Increasing the

number of iterations to 10,000–30,000 makes it possible for

the CS algorithm to obtain better solution lengths as

compared to only 500 iterations for both the large problem

instances P-n40-k5 and P-n101-k4. At 30,000 iterations,

the best solution length obtained for P-n40-k5 was

581.15897, with a relative error of 0.2689 when compared

to the best known solution. As for P-n101-k5 at the same

Table 2 The known best

solution and the obtained best

solution for problem instances

under set A of the Augerat et al.

(1995) benchmark dataset

Problem instance Known best solutiona Algorithm best solutionb Algorithm running time (ms)

A-n32-k5 784 1065.403823 892

A-n33-k5 661 914.807849 922

A-n33-k6 742 1005.327921 1250

A-n34-k5 778 1083.907859 1031

A-n36-k5 799 1092.474023 953

A-n37-k5 669 998.7175832 953

A-n37-k6 949 1279.847282 2706

A-n38-k5 730 1239.188658 1797

A-n39-k5 822 1308.271003 1484

A-n39-k6 831 1292.886224 1563

A-n44-k6 937 1417.152478 1547

A-n45-k6 944 1863.87832 39,850

A-n45-k7 1146 1576.905214 1141

A-n46-k7 914 1339.615828 1125

A-n48-k7 1073 1686.614912 1176

A-n53-k7 1010 1940.128845 2321

A-n54-k7 1167 1925.787397 2440

A-n55-k9 1073 1772.741712 2456

A-n60-k9 1354 2246.618778 1846

A-n61-k9 1034 2200.839104 154,085

A-n62-k8 1288 2372.534683 1302

A-n63-k9 1616 2897.303846 13,290

A-n63-k10 1314 2325.596352 2281

A-n64-k9 1401 2468.14981 2546

A-n65-k9 1174 2608.494599 16,661

A-n69-k9 1159 2433.930649 1993

A-n80-k10 1763 3336.213656 2235

a Solution computed using integer values as based from investigation
b Solution computed using floating-point values

J Ind Eng Int (2018) 14:293–304 301

123

30,000 iterations, the best solution length obtained was

1044.22480, with a relative error of 0.5088 when compared

to the best known solution. This gives us an idea that the

convergence to the optimal solution of CS algorithm may

be significantly slower for the larger problem instances.

The other factors are left for future studies.

Conclusion

The CS algorithm’s application in this study for the CVRP

was not effective in achieving desirable results for the

problem instances, most notably for the large ones, from

the Augerat et al. (1995) benchmark dataset, except for a

select few which are composed of small problem instances

and whose values either match or are close to the ones from

the literature. Such results may be attributed to a number of

factors. With this thought, we explored on changing the

execution setup—the number of iterations in each run in

particular—of the program. The results show that high

numbers of iterations produce significantly better results

than the set number of iterations. This gives an idea that the

convergence of CS algorithm to the optimal solution may

be significantly slower (or proportional to the size of the

problem instance).

Future works include an in-depth look into possible

modifications that can be done to the algorithm. Addi-

tionally, instead of applying 2-opt and double-bridge for a

fixed number of applications, another option is to let the

operators attempt to improve the solution using a tolerance

number as control. Considering other operations for solu-

tion improvement is also an option. Minimal parameters, a

strong search pattern, a form of elitism by removing worst

nests, all of these contribute to the excellent performance

of the CS algorithm in various studies. Even so, aside from

Ouaarab et al.’s (2014) application of an improved and

Table 3 The known best

solution and the obtained best

solution for problem instances

under set B of the Augerat et al.

(1995) benchmark dataset

Problem Instance Known best solutiona Algorithm best solutionb Algorithm running time (ms)

B-n31-k5 672 746.0532697 953

B-n34-k5 788 1007.244397 1922

B-n35-k5 955 1250.800843 1127

B-n38-k6 805 1057.749618 1016

B-n39-k5 549 927.6861256 1047

B-n41-k6 829 1308.713827 1375

B-n43-k6 742 1056.191069 1172

B-n44-k7 909 1317.475555 1724

B-n45-k5 751 1392.000384 2724

B-n45-k6 678 1219.118974 27,334

B-n50-k7 741 1376.797584 1577

B-n50-k8 1312 1694.608511 2419

B-n51-k7 1032 2090.954927 9277

B-n52-k7 747 1286.1832 1352

B-n56-k7 707 1357.439289 1678

B-n57-k7 1153 2373.36311 1,143,075

B-n57-k9 1598 2163.481756 1944

B-n63-k10 1496 2485.938697 2626

B-n64-k9 861 1977.610765 40,562

B-n66-k9 1316 2439.593684 4413

B-n67-k10 1032 1910.631285 2180

B-n68-k9 1272 2340.216782 2642

B-n78-k10 1221 2621.041132 2786

a Solution computed using integer values as based from investigation
b Solution computed using floating-point values

302 J Ind Eng Int (2018) 14:293–304

123

discrete version of the CS algorithm on the Traveling

Salesman Problem, there is a lack of literature of the per-

formance of the CS algorithm on routing problems; hence

the existence of this study.

Acknowledgements The authors would like to thank X. S. Yang and

A. Ouaarab for providing us with very useful information that helped

us implement the cuckoo search algorithm with for the capacitated

vehicle routing problem.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of

interest.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://crea

tivecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

References

Augerat P, Belenguer J, Benavent E, Corberán A, Naddef D, Rinaldi

G (1995) Computational results with a branch and cut node for

the capacitated vehicle routing problem. Istituto di Analisi dei

Sistemi ed Informatica. Consiglio Nazionale Delle Ricerche

Bacanin N (2011) An object-oriented software implementation of a

novel cuckoo search algorithm. In: ECC’11 Proceedings of the

5th European Conference on European Computing Conference,

Paris, France, pp 245–250

Chandran B, Raghavan S (2008) Modeling and solving the capaci-

tated vehicle routing problem on trees. Veh Rout Probl Latest

Adv New Chall, 1st edn. Springer, US, pp 239–261

Chang C (2015) A 2-opt with mutation operator to the traveling

salesman problem. Int J Adv Eng Technol Comput Sci (IROSSS)

2(1):16–21

Christiansen C, Lysgaard J (2007) A branch-and-price algorithm for

the capacitated vehicle routing problem with stochastic demands.

Oper Res Lett 35(6):773–781

Christofides N, Eilon S (1969) An algorithm for the vehicle-

dispatching problem. Oper Res Soc 20(3):309–318

Colorni A, Dorigo M, Maniezzo V (1991) Distributed optimization by

ant colonies. In: First European Conference on Artificial Life,

pp 134–142

Croes G (1958) A method for solving traveling-salesman problems.

Oper Res 6(6):791–812

Englert M, Röglin H, Vöcking B (2014) Worst case and probabilistic

analysis of the 2-opt algorithm for the TSP. Algorithmica

68(1):190–264

Fukusawa R, Longo H, Lysgaard J, de Aragão MP, Reis M, Uchoa E,

Werneck R (2006) Robust branch-and-cut-price for the capac-

itated vehicle routing problem. Math Progr 106(3):491–511

Gandomi AH, Yang XS, Alavi AH (2013) Cuckoo search algorithm: a

metaheuristic approach to solve structural optimization prob-

lems. Eng Comput 29(1):17–35

Handl J, Hart E, Lewis P, López-Ibáñez M, Ochoa G, Paechter B

(2016) Parallel problem solving from nature, 14th edn. Springer,

US

Huang DS, Wunsch DC, Levine DS, Jo KH (2008) Advanced

intelligent computing theories and applications with aspects of

theoretical and methodological issues, 1st edn. Springer, US

Table 4 The known best

solution and the obtained best

solution for problem instances

under set P of the Augerat et al.

(1995) benchmark dataset

Problem instance Known best solutiona Algorithm best solutionb Algorithm running time (ms)

P-n16-k8 450 451.9470921 3005

P-n22-k8 603 632.716074 41,343

P-n23-k8 529 542.4735471 458,471

P-n40-k5 458 691.0703193 2171

P-n45-k5 510 855.5071137 2110

P-n50-k7 554 909.229535 2906

P-n50-k8 631 1102.864308 2,422,874

P-n50-k10 696 1098.094843 8347

P-n51-k10 741 1304.993184 68,081

P-n55-k7 568 999.6864238 2610

P-n55-k8 588 1014.466054 1616

P-n55-k10 694 1088.883214 2515

P-n60-k10 744 1323.776593 3315

P-n60-k15 968 1473.970611 38,993

P-n65-k10 792 1419.109111 2416

P-n70-k10 827 1673.300549 20,364

P-n76-k4 593 1537.691449 2466

P-n76-k5 627 1601.158634 2551

P-n101-k4 681 1933.550639 2310

a Solution computed using integer values as based from investigation
b Solution computed using floating-point values

J Ind Eng Int (2018) 14:293–304 303

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Kara I, Kara B, Yetis MK (2007) Energy minimizing vehicle routing

problem. Combinatorial optimization and applications, 1st edn.

Springer, US, pp 62–71

Kaveh A, Bakhshpoori T (2013) Optimum design of steel frames

using cuckoo search algorithm with Lévy flights. Struct Des Tall

Spec Build 22(13):1023–1036

Kumar VS, Thansekhar MR, Saravanan R (2014) A new multi

objective genetic algorithm: fitness aggregated genetic algorithm

(FAGA) for vehicle routing problem. Adv Mater Res

984–985:1261–1268

Kundra H, Sadawarti H (2015) Hybrid algorithm of cuckoo search

and particle swarm optimization for natural terrain feature

extraction. Res J Inf Technol 7:58–69

Lin S, Lee Z, Ying K, Lee C (2009) Applying hybrid meta-heuristics

for capacitated vehicle routing problem. Expert Syst Appl

36(2):1505–1512

Mantegna R (1994) Fast, accurate algorithm for numerical simulation

of Lévy stable stochastic processes. Phys Rev E 49:4677–4683

Martin O, Otto S, Felten E (1991) Large-step markov chains for the

traveling salesman problem. Complex Syst 5(3):299

Mazzeo S, Loiseau I (2004) An ant colony algorithm for the

capacitated vehicle routing problem. Electron Notes Discret

Math 18:181–186

Melin P, Castillo O, Kacprzyk J (2015) Design of intelligent systems

based on fuzzy logic, neural networks and nature-inspired

optimization, 1st edn. Springer, US

Noah SA, Abdullah SNHS, Arshad H, Bakar AA, Othman ZA, Omar

K, Othman Z (2013) Soft computing applications and intelligent

systems, 1st edn. Springer, Berlin

Ouaarab A, Ahiod B, Yang XS (2014) Discrete cuckoo search

algorithm for the travelling salesman problem. Neural Comput

Appl 24(7):1659

Pavlyukevich I (2007) Lévy flights, non-local search and simulated

annealing. J Comput Phys 226:1830–1844

Ralphs T, Kopman L, Pulleyblank WR, Trotter LE (2003) On the

capacitated vehicle routing problem. Math Progr 94(2):343–359

Ren C (2012) Applying genetic algorithm for capacitated vehicle

routing problem. In: 2nd international conference on electronic

& mechanical engineering and information technology

(EMEIT), Paris, France, pp 519–522

Reynolds AM, Frye MA (2007) Free-flight odor tracking in

Drosophila is consistent with an optimal intermittent scale-free

search. PLoS One 2(4):e354

Roy S, Chaudhuri SS (2013) Cuckoo search algorithm using Lévy

flights: a review. Int J Modern Educ Comput Sci 12:10–15

Shin K, Han S (2011) A centroid-based heuristic algorithm for the

capacitated vehicle routing problem. Comput Inform

30(4):721–732

Toth P, Vigo D (2002) Models, relaxations, and exact approaches for

the capacitated vehicle routing problem. Discret Appl Math

123(1–3):487–512

Toth P, Vigo D (2014) Vehicle routing: problems, methods, and

applications, 2nd edn. Soc Ind Appl Math, US

Valian E, Mohanna S, Tavakoli S (2011) Improved cuckoo search

algorithm for feedforward neural network training. Int J Artif

Intell Appl 2(3):36–43

Vázquez RA (2011) Training spiking neural models using cuckoo

search algorithm. In: Proceedings of the IEEE congress on

evolutionary computation, New Orleans, LA, USA, pp 679–686

Walton S, Hassan O, Morgan K, Brown MR (2011) Modified cuckoo

search: a new gradient free optimisation algorithm. Chaos

Solitons Fract 44(9):710–718

Yang XS (2010) Nature-inspired metaheuristic algorithms, 1st edn.

Luniver, Bristol

Yang XS (2014) Nature-inspired optimization algorithms, 1st edn.

Elsevier, Netherlands

Yang XS, Deb S (2009) Cuckoo search via Lévy flights. In:

Proceedings of world congress on nature & biologically Inspire

Computing, India, pp 210–214

Yang XS, Deb S (2010) Engineering optimisation by cuckoo search.

Int J Math Model Numer Optim 1(4):330–343

Yang XS, Deb S (2013) Multiobjective cuckoo search for design

optimization. Comput Oper Res 40(6):1616–1624

Yang XS, Deb S, Karamanoglu M, Xingshi H (2012) Cuckoo search

for business optimization applications. In: National Conference

on Computing and Communication Systems, West Bengal,

India, pp 1–5

Yang XS, Cui Z, Xiao R, Gandomi AH, Karamanoglu M (2013)

Swarm intelligence and bio-inspired computation: theory and

applications, 1st edn. Elsevier, Netherlands

Yildiz AR (2013) Cuckoo search algorithm for the selection of

optimal machining parameters in milling operations. Int J Adv

Manuf Technol 64(1):55–61

Zhang J, Zhao Y, Peng D, Wang W (2008) A hybrid quantum-

inspired evolutionary algorithm for capacitated vehicle routing

problem. Advanced intelligent computing theories and applica-

tions: with aspects of theoretical and methodological issues, 1st

edn. Springer, US, pp 31–38

304 J Ind Eng Int (2018) 14:293–304

123

	Cuckoo search via Lévy flights for the capacitated vehicle routing problem
	Abstract
	Introduction
	Problem
	Capacitated vehicle routing problem
	Approaches to solving CVRP

	Desired algorithm
	Cuckoo search
	Lévy flights
	Fitness function
	Cuckoo search applications and other modifications

	Methodology
	Problem instances
	Problem representation
	CS algorithm on CVRP
	Flow of the algorithm
	Generation of the initial solutions
	2-opt operation
	Double-bridge operation

	Experimental results
	Conclusion
	Acknowledgements
	References

