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Abstract This paper presents a new mathematical model

to solve cell formation problem in cellular manufacturing

systems, where inter-arrival time, processing time, and

machine breakdown time are probabilistic. The objective

function maximizes the number of operations of each part

with more arrival rate within one cell. Because a queue

behind each machine; queuing theory is used to formulate

the model. To solve the model, two metaheurstic algo-

rithms such as modified particle swarm optimization and

genetic algorithm are proposed. For the generation of ini-

tial solutions in these algorithms, a new heuristic method is

developed, which always creates feasible solutions. Both

metaheurstic algorithms are compared against global so-

lutions obtained from Lingo software’s branch and bound

(B&B). Also, a statistical method will be used for com-

parison of solutions of two metaheurstic algorithms. The

results of numerical examples indicate that considering the

machine breakdown has significant effect on block struc-

tures of machine-part matrixes.

Keywords Cell formation � Queuing theory �
Metaheurstic algorithm � Reliability

Introduction

The concept of group technology (GT) has emerged to

reduce setups, batch sizes, and travel distances. In essence,

GT tries to retain the flexibility of a job shop with the high

productivity of a flow shop. Cellular manufacturing (CM)

is an application of GT in a manufacturing system. CM

involves processing a collection of similar parts (part

families) on a dedicated cluster of machines or manufac-

turing processes (cells). The cell formation (CF) problem in

CM systems is the decomposition of the manufacturing

systems into cells (Singh and Rajamani 1996). Cellular

manufacturing problems can be under static or dynamic

conditions. In static conditions, CF is done for a single-

period planning horizon. In real problems, some input pa-

rameters such as costs, demands, processing times, and

setup times are uncertain and this uncertainty can affect the

results. In the static stochastic problems, it is assumed that

our information on model parameters is incomplete. In

other words, the exact value of the parameters is unknown.

It can only be predicted with probability; however, pa-

rameters are uncertain, static and do not change during

time. In the following, a review of previous studies about

static stochastic cell formation problem is presented in four

parts such as processing time, the mix product, the demand,

and the reliability, respectively.

Saidi-Mehrabad and Ghezavati (2009) assumed the

processing time and the time between two successive ar-

rivals to cell described by exponential distribution in the

CF problem. For analyzing this problem, they used queu-

ing theory in which machine has been considered as a

server and the part as a customer. The aim of this model is

to minimize the summation of three costs: (1) the idleness

costs for machines (2) total cost of sub-contracting for

exceptional elements, and (3) the cost of resource un-

derutilization. Ghezavati and Saidi-Mehrabad (2010)

proposed a mathematical model for the CM problem in-

tegrated with group scheduling in an uncertain space.

Within this model, CF and scheduling decisions are opti-

mized concurrently. It is assumed that processing time of
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parts on machines is stochastic and described by discrete

scenarios. Their model minimizes the expected total cost

including maximum tardiness cost among all parts, the

cost of sub-contracting for exceptional elements, and the

cost of resource underutilization. Egilmez and Suer

(2011a, b) presented a mathematical model for CF which

minimized the number of tardy jobs and total probability

of tardiness. They assumed that processing time of each

job has a normal distribution. Ghezavati and Saidi-Meh-

rabad (2011) assumed that each machine works as a server

and each part is a customer where servers should provide

service to customers. Accordingly, they defined formed

cells as a queue system which can be optimized by queuing

theory. The optimal cells and part families were formed by

maximizing the probability that a server is busy. Ghezavati

(2011) evaluated the CF problem, scheduling, and layout

decisions, concurrently. Also, he considered processing

time as stochastic with discrete scenarios under supply

chain characteristics. This model minimized holding cost

and the costs with respect to the suppliers network in a

supply chain in order to outsource exceptional operations.

Fardis et al. (2013) examined the CF problem considering

that the arrival rate of parts into cells and machine service

rate are stochastic parameters, which have described by an

exponential distribution. The objective function of pre-

sented model minimized summation of the idleness cost of

machines, the sub-contracting cost for exceptional parts,

non-utilizing machine cost, and the holding cost of parts in

the cells.

The mix product is defined as the set of part types in a

factory which can be produced and each factory looks for

the best mix product. The mix product and value of de-

mand for each product in the mix product due to cus-

tomized products, shorter product life cycles, and

unpredictable patterns of demand, are not known exactly

at the time of designing the manufacturing cells. The

composition of the product mix is determined by demand

and is probabilistic in nature. Seifoddini (1990) proposed

a stochastic CF model in which for each mix product a

probability had been attributed. He calculated the ex-

pected intercellular material handling cost for each ma-

chine cell arrangement under all possible product mixes.

Madhusudanan Pillai and Chandrasekharan (2010)

evaluated the CF problem under probabilistic product

mix. Each product mix is specified with a scenario and to

each scenario has been attributed probability of occur-

rence. They minimized inter-cell material handling.

Jayakumar and Raju (2011) presented a mathematic

model for the CF problem in which for each scenario

probability of occurrence has been attributed. The ob-

jective function of this model is to minimize the total

machine constant (investment) cost, the operating cost,

the inter-cell material handling cost, and the intra-cell

material handling cost for a particular product mix.

A review of studies done in the demand area is provided

in the following. Cao and Chen (2005) offered CF with

scenarios for product demand. In this model, an occurrence

probability had been assigned for each scenario. The ob-

jective function of this model minimized machine cost and

the expected inter-cell material handling cost. Tavakkoli-

Moghaddam et al. (2007) examined a mathematical model

to solve a facility layout problem in CM systems with

stochastic demands. The main purpose of their study is to

minimize the total costs of inter-cell and intra-cell move-

ments in both machine and cell layout problems in CM

system simultaneously. They considered part demands as

an independent variable with the normal probability dis-

tribution. Egilmez and Suer (2011a, b) proposed a two-

phase hierarchical methodology to find the optimal man-

power assignment and cell loads simultaneously. In the first

phase, the manufacture cells are formed with the objective

function of the production rate maximization. Then, the

manpower is assigned to the manufacture cells to minimize

number of labors. In both the models, the processing time

and demand have the normal distribution. Ariafar et al.

(2011) purposed the model for cell layout in the shop and

machines in the machine cells. The demand has been

considered as stochastic and with a uniform distribution.

This model minimizes the inter-cell and intra-cell material

handling costs. Egilmez et al. (2012) considered processing

times and customer demand uncertain with the normal

distribution. The objective is to design a CM system with

product families that are formed with the most similar

products and minimum number of cells and machines for a

specified risk level. Ariafar et al. (2012) examined the ef-

fect of demand fluctuation on cell layout in shop and ma-

chine layout in cell. This model minimizes the inter-cell

and intra-cell material handling costs. They assumed which

demand has the normal distribution. Rabbani et al. (2012)

proposed a bi-objective CF problem with demand of

products expressed in a number of probabilistic scenarios.

Their model in the first objective minimizes the sum of

machine constant cost, expected machine variable cost, cell

fixed-charge cost, and expected intercell movement cost

and in the second objective minimizes the expected total

cell loading variation. Egilmez and Suer (2014) offered two

models for analyzing the interaction between CF stage and

cell scheduling stage in terms of the risk taken by decision-

makers. The first model formed manufacturing cells with

the objective of maximizing total pair-wise similarity

among products assigned to cells and minimizing the total

number of cells. The second model maximizes the number

of early jobs. The demand and the processing time in both

models are random variables with the normal distribution.
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Jabal Ameli et al. (2008) investigated the effects of

machine breakdowns in the CF problem with a new per-

spective. The results of their study showed that although

considering machine reliability can increase the movement

costs, it significantly reduces the total costs and total time

for CM system. Jabal Ameli and Arkat (2008) have con-

ducted a study on the configuration of machine cells con-

sidering production volumes and process sequences of

parts. Further, they studied on alternative process routings

for part types and machine reliability considerations. They

found out that the reliability consideration has significant

impacts on the final block diagonal form of machine-part

matrixes. Chung et al. (2011) found that machine reliability

has meaningful effects on reducing the total system cost in

the CF problem. Arkat et al. (2011) presented the CF

problem in general state and considering the reliability. The

generalized CF problem follows selecting the best process

plan for each part and assigning machines to the cells. In

this model, it has been assumed that the number of break-

downs for each machine follows a Poisson distribution with

a known failure rate. Because of the probabilistic nature of

the machine breakdowns, a set of chance constraints have

been introduced. These constraints guarantee that the

number of breakdowns for each machine never exceeds a

predefined percentile. The objective function of this model

minimized intercellular and intracellular movement costs

and machine breakdown costs.

Many articles investigate CM system problems in cer-

tain conditions, demand, machine availability, processing

time, raw materials, and etc., but they are uncertain in real

world and are changed randomly during the time horizon.

Therefore, cellular manufacturing in uncertainty condition

is an important area for investigation for making more

accurate decisions. In this paper, uncertainty in processing

time, time between two successive arrivals to cell, and

reliability are considered to fill this gap in literature. The

structure of this paper is as follows. In Sect. ‘‘Problem

formulation’’, the problem formulation is described. The

MPSO algorithm and GA are described in Sect. ‘‘Nota-

tion’’. The computational results and conclusion are re-

ported in Sects. ‘‘Mathematical model’’ and ‘‘The proposed

algorithms’’, respectively.

Problem formulation

In this section, a new mathematical model is proposed for

static stochastic cell formation problem. The presented

model forms manufacturing cells considering three

stochastic parameters including the processing time, the

time between two successive arrival parts to the cell, and the

machine availability, simultaneously. In this model, cells

are assigned to the parts according to priority of arrival rate,

i.e., at first, the cell is assigned to the part which has the

most arrival rate. In fact, exceptional elements (EEs) are

minimized in this way. EEs are defined as parts which must

be processed in different cells, and therefore they have in-

tercellular movements. In this paper, EEs will be outsourced

to be operated. M/G/1 queuing model is used to formulate

the problem and the machine is assumed as a server and the

part as a customer. In the M/G/1 model, the time between

two successive arrival customers is exponentially dis-

tributed and service time is generally distributed. Service

discipline is based on first come, first service. In the M/G/1

model, when those entities that are lost are included, the

output stream is Poisson. This assumption is supported by

several empirical results which have been pointed out by

these researchers in the article presented by the Cruz et al.

(2010). Since the arrival rate to each queuing system is less

than the service rate in the presented model, the arrival rate

is equal to the output rate. Besides, the arrival time or output

time of parts is exponentially distributed. The queuing

system is shown in Fig. 1.

Notation

Indexing sets

• i index for parts i ¼ 1; :::;P

• j index for machines j ¼ 1; :::;M

• k index for cells k ¼ 1; :::;C

Parameters

• ki mean arrival rate for part i (mean number of parts

entered per unit time)

• lj mean service rate for machine j (mean number of

customers served per unit time by machine j)

• Mmax The maximum number of machines per cell

• MTBFj Mean time between failures for machine j

• MTTRj Mean time to repair for machine j

aij ¼
1 if part i is to be processed on machine j

0 otherwise

�

Decision variables

xik ¼
1 if part i is assigned to cell k

0 otherwise

�

yjk ¼
1 if machine jis assigned to cell k

0 otherwise

�
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Mathematical model

Machine reliability has a probabilistic nature. It is assumed

that the breakdown time for each machine follows a gen-

eral distribution with known mean time to repair (MTTR)

and known mean time between failures (MTBF). In this

section, the reliability of machines into the CF model is

discussed. The approach presented by Ameli et al. (2008)

has been used for considering the reliability. For investi-

gation of the effect of the reliability on the CF problem,

two definitions are given. The number of machine break-

downs for machine j, Nj (t), can be acquired by dividing the

production time for machine j, tj, by the MTBFj.

Nj tð Þ ¼
tj

MTBFj
: ð1Þ

By multiplying the MTTRj by the number of break-

downs calculated in Eq. (1), the total repair time for ma-

chine j, Tj (t), can be obtained as follows:

Tj tð Þ ¼
tj �MTTRj

MTBFj
: ð2Þ

In order to obtain the total time for a machine, the repair

time for the machine is added to its production time.

mean of total time for machine j

¼ EjðtÞ �MTTRj

MTBFj
þ Ej tð Þ ¼

MTTRj

lj �MTBFj
þ 1

lj

mean of total time for machine j ¼ 1

lj

MTTRj þMTBFj

MTBFj

� � ;

ð3Þ

where Ej tð Þ is the production time expectation for ma-

chine j. Finally, the production rate can be obtained con-

sidering the reliability as follows:

the production rate for machine j¼ lj
MTBFj

MTTRjþMTBFj

� �

ð4Þ

As might be expected, the value of production rate is

reduced by considering reliability. As said by above

contents, the reliability affects only on the production

rate.

According to the queuing model and the Fig. 1, the

inter-arrival time of parts is uncertain and it is described

by the exponential distribution. Also, as each machine

processes different parts with different arrival rates, ac-

cording to this property, the minimum of independent

exponential random variables with the arrival rate of

k1; k2; . . .; kP is also exponential with rate
PP

i¼1 ki (Fred-
erick and HillIer 2001). Hence, the minimum of the inter-

arrival times has an exponential distribution with pa-

rameter keff (effective arrival rate). The keff can be com-

puted as follows:

keff ¼
XP
i¼1

ki;

in which ki is the arrival rate for the part i and P is the

number of parts that are processed on the same machine.

Based on the presented description, the proposed model

can be formulated as follows:

MP PP

Part Machine

Queue

MP PP

P
P

P

M

Queuing system

Cell 1

P
P

P

M

Cell 2

Fig. 1 An example of queuing system in the CM system
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Max z ¼ 1

M

XC
k¼1

XM
j¼1

XP
i¼1

kiaijxikyjk ð5Þ

s:t :
PC
k¼1

xik ¼ 1 8i ð6Þ

PC
k¼1

yjk ¼ 1 8j ð7Þ

PM
j¼1

yjk �Mmax 8k ð8Þ

PC
k¼1

PP
i¼1

kiaijxikyjk\lj
MTBFj

MTTRj þMTBFj

� �
8j ð9Þ

xik; yjk 2 0; 1f g 8i; j; k : ð10Þ

The objective function (5) maximizes the average ef-

fective arrival rate. Maximizing the average effective ar-

rival rate increases processing operations of the part with

more arrival rate within one cell. Hence, the number of

intercellular movement becomes lower. The main point in

the objective function is that the arrival rate for each part is

added to the effective arrival rate for each machine when

part needs to be operated on the machine, and the part and

the machine allowed in each cell. Constraint (6) guarantees

that each part must be allocated to one cell only. Constraint

(7) guarantees that each machine must be allocated to one

cell only. Constraint (8) guarantees that the number of

machines to be allocated to each cell should be less than

the maximum number of machines allowed in each cell.

Constraint (9) avoids instability of the queuing system, that

is, the effective arrival rate will be necessarily less than the

service rate. Constraint (10) specifies the type of decision

variables.

In the proposed mathematical model, the objective

function (5) and constraint (9) are nonlinear. For lin-

earization, new binary integer variable Vijk is defined which

is computed by the following equation:

Vijk ¼ xik � yjk 8i; j; k : ð11Þ

For linearization of the objective function (5) and con-

straint (9), the following equations should be added to the

proposed model by enforcing these two linear inequalities

simultaneously:

Vijk � xik � yjk þ 1:5� 0 8i; j; k ð12Þ
1:5Vijk � xik � yjk � 0 8i; j; k : ð13Þ

The proposed algorithms

The CF problem is NP-hard problem (King and Nakornchai

1982). Therefore, precise solution procedures and com-

mercial optimization softwares are unable to reach global

optimum in an acceptable amount of time for medium- and

large-scale problems. To deal with this deficiency, two

algorithms based on MPSO and GA metheuristics have

been developed in this paper.

Particle or chromosome structure

The particle representation or the chromosome representa-

tion involves two sections: the first section indicates the cells

assigned to machines and the second section represents the

cells assigned to parts. The used particle or the used chro-

mosome for the proposedmodel has been presented in Fig. 2.

The proposed generating initial population

To present a qualified initial population, a heuristic method

is proposed that always produces a feasible solution. The

heuristic method has been presented in Fig. 3. In the first

step, machines are allocated to cells based on the capacity

of cells, and in the second step parts are allocated to cells

considering constraint (9) for all machines.

The MPSO algorithm

Particle swarm optimization (PSO) algorithm by Kennedy

and Eberhart (1995), (Eberhart and Kennedy 1995) has been

presented for problems which have continuous solution

space. PSO is a nature-based evolutionary algorithm and

starts with an initial population of random solutions. Each

potential solution is called particle (x~). Particles move

Part P Part2 Part1 Machine M Machine2 Machine1 

3 2 3 1 2 1 
number of 
cells 

Fig. 2 The sample of particle (chromosome) structure
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around in a multidimensional search space, and during

movement, each particle adjusts its position based on its own

past and the experience of neighbor particles. Particle’s

fitness is compared with its pbesti (value of the best function

result so far, for particle i). If existing value is better than

pbesti, then set pbesti equal to the current value, and pi equal

r=1 (index for population) 

The number of all machines of the 
cell =0 

i=1 (index for machine and part) 

Finding the value of the 
fitness function 

population r 

Stop 

Generate a random integer 
between 1 to C d

The number of assigned 
machines to the cell d

 (particle) X(i)

(The number of machines of the cell d)  (the number 
of machines of the cell d)

Generate a random integer between 
1 to C d

Is there a machine in 
all the cells that its 

queue length is 
infinite? 

Is the machine queue 
length in the cell d, 

infinite? 

The part i on which machines need to 
be processed? 

Adding the arrival rate of the part i to 
the queue length of machines that are 
needed to process on them 

Is there the machine that its 
queue length is infinite? 

Subtract the arrival rate for the 
part i of the queue length  of 
machines that are needed to 
process on them 

-1 

X(i) d

No 

Yes 

No 

No 

Yes

No 

Yes

Yes 

No 

Yes

Yes

Yes

No 

No 

No 
Yes

Fig. 3 Heuristic algorithm to generate a feasible initial population
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to the current location x~i inmultidimensional space. Value of

the best function result so far for all particles is called gbest,

and its location is assigned to pg.

In the original PSO process, the velocity of each particle

is iteratively adjusted so that the particle stochastically

oscillates around p~i and p~g locations. In fact, the velocity

of a particle must be understood as an ordered set of

transformations that operate on a solution. The MPSO al-

gorithm uses this concept for optimizing.

The pseudocode main steps of the MPSO algorithm are

as follows:

1. Initial population is generated using the proposed

heuristic algorithm (Fig. 3).

2. The fitness value of all particles is calculated by the

linearization objective function.

3. The fitness value of each particle is assigned to pbesti
and its location to p~i. Identification of the particle in

whole swarm with the best success so far, and assign-

ment of its fitness value to gbest and its location to p~g.

4. Producing a new population is based on the repetition

of the following steps:

4:1. A new vector P is generated to record the

positions where the x~i and p~i elements are not

equal. A vector Q is defined with the same

length with the vector P. Binary elements for the

vector Q are generated randomly.

4:2. In each position of the vector Q, if the element is

0, the change is not made, but if the element is 1,

the element of the same position of vector P is

selected. This element in the vector P shows the

position of vector p~i which should be copied in

the vector x~i. Then, the feasibility of constraints

(8) and (9) is evaluated. The procedure contin-

ues, if it is true, otherwise, the made changes

return and the next element of vector P will be

tested, which is specified by the vector Q (see

Fig. 4).

4:3. For the new location (x’
!

i) a new vector P is

generated to record the positions where the x’
!

i

and p~g elements are not equal. A new vector Q,

is defined with the same length with vector P.

Binary elements for vector Q are generated

randomly.

4:4. In each position of vector Q, if the element is 0, the

change is not made, but if the element is 1, the

element of the sameposition of vectorP is selected.

This element in the vector P shows the position of

vector p~g which should be copied in vector x’
!

i.

Then, the feasibility of constraints (8) and (9) is

evaluated. The procedure continues, if it is true,

otherwise, the made changes return and the next

element of vector P will be tested, which is

specified by vector Q.

5. Comparing particle’s fitness value with its pbesti. If

current value is better than pbesti, then set pbesti equal

to the current value, and set p~i equal to the current

location x~i. Comparing previous gbest with current

gbest. If current value is better than previous gbest,

then set gbest equal to the current value, and assign its

location to p~g.

6. Check stopping criteria (number of iterations).

7. If the stopping condition is not met, go to step four.

The proposed genetic algorithm

Genetic algorithms (GAs) are search algorithms based on

mechanics of the natural selection and the natural genetics.

GA exploits the idea of the survival of the fittest and the

interbreeding population to create a novel and innovative

search strategy. A population of the strings representing

solution to the specified problem is maintained by GA,

which then iteratively creates the new population from the

old by ranking the strings and interbreeding the fittest to

create the new strings, which are closer to the optimum

solution to a specified problem (Venkata 2011).

The pseudocode main steps of the proposed GA are as

follows:

1. Initial population is generated using the proposed

heuristic algorithm (see Fig. 3).

2. The fitness value of a chromosome is calculated by

the linearization of objective function.

= [3  1  1  2  2]

= [2  1  2  3  2]
= [1  0 1 1  0]

= [1  3  4]

= [1  0  1]
= [2  1  1  3  2]

= [2  1  2  3  2]

= [3  1  1  2  2]
= [2  1  1  3  2]

Positions 

The selected elements

Fig. 4 An example for the first

stage of the new population

generation of the MPSO

algorithm
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3. Producing a new population is based on the repeti-

tion of the following steps:

3:1. Crossover operator:

3:1:1. Selection of two parent chromosomes in

one population is based on the tourna-

ment selection method. Tournament

selection involves running several

‘‘tournaments’’ among a few individuals

chosen (two or three) at random from

the population. The winner of each

tournament (the one with the best

fitness) is selected for crossover.

3:1:2. Two parents are selected from the

selection population. Then a number

between 1 and M ? P (M is the number

of machines and P is the number of

parts) is selected. A single crossover

point on both parents’ chromosome is

selected. All data beyond that point in

either chromosome are swapped be-

tween the two parent chromosomes.

The resulting combinations are the

children. After crossover, the feasibility

of constraints (8) and (9) are evaluated.

The procedure continues, if it is true,

otherwise, the made change returns.

3:2. The fraction of the initial population is

selected with a probability and then mutations

are performed on them. Used mutation alters

one array value in a chromosome from its

initial state. A number between 1 and

M ? P is selected. Then, mutation operator

of the source (Mahdavi et al. 2009) is used for

the mutation. After mutation, the feasibility of

constraints (8) and (9) are evaluated. The

procedure continues, if it is true, otherwise,

the made change returns.

4. The size of the next population is the same as the

previous one, that is derived from selecting the best

solutions by comparing the previous generations and

the solutions generated by mutation and crossover

operators.

5. Check stopping criteria (number of iterations).

6. If the stopping condition is not met, go to step two.

Computational results

For finding high-quality solutions, some computational

experiments are implemented to validate and verify the

proposed model and evaluate the efficiency and

performance of the proposed GA and MPSO algorithms.

For this purpose, 19 sample problems are defined and then

solved by Lingo software’s B&B algorithm, MPSO, and

GA. Finally, the generated solutions will be compared with

each other using the criteria of solution quality and solving

time. The proposed model is coded in the LINGO 8.0

optimization software and the proposed metaheurstic al-

gorithms are coded in MATLAB 2010a on a computer with

2.99 GB RAM and core i3 with 3.1 GHz processor. For

each problem, it is allowed to run for 5400 s (1.5 h). In the

B&B algorithm (obtained by Lingo software package), if

the problem can be solved in less than 5400 s (1.5 h), it is

categorized as small-, medium-sized problems; otherwise,

it is categorized as large-sized problems. This procedure is

similar to Safaei et al. (2008). Since the efficiency of the

metaheurstics algorithms depends strongly on the operators

and the parameters, the design of experiments is done to set

parameters. Design of experiments finds the combination

of control factors that have the lowest variation, which

aims for robustness in solutions. To cover different sizes,

problems with small size (8 9 11), medium size (9 9 18),

and large size (16 9 30) have been selected. The MPSO

and GA parameters are set using a full factorial design and

Taguchi technique design, respectively. A summary of all

obtained MPSO and GA parameters are given in Tables 1

and 2, respectively.

According to the Lingo software’s documents, the Fbest
shows the best feasible objective function value (OFV)

which has been found so far. Fbound indicates the bound on

the objective function value. Thus, a possible domain for

the optimum value of objective function (F�) is limited

between Fbest �F� �Fbound. Table 3 and Table 4 indicate

the comparison of the Lingo software’s B&B algorithm

results with MPSO and GA corresponding to 19 test

problems for states of ignoring reliability and considering

reliability, respectively. Each problem is ran 10 times and

Table 1 The obtained values for MPSO parameters

Size parameter 8 9 11 9 9 18 16 9 30

Population 450 1050 4000

Iteration 10 60 50

Table 2 The obtained values for GA parameters

Size parameter 8 9 11 9 9 18 16 9 30

Population 450 1100 4000

Iteration 20 60 70

Probability of crossover 0.7 0.7 0.6

Probability of mutation 0.4 0.3 0.1

Number of members competing in the

tournament

3 2 3
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the average of OFV (Zave), the best OFV (Zbest), and also

average of run time (TMPSO) are represented in this two

tables. The relative gap between the best OFV found by

Lingo (Fbest) and Zave that is found by the metaheurstic

algorithms are shown in column ‘‘Gave’’. The Gave is cal-

culated as Gave ¼ Zave � Fbestð Þ=Fbest½ � � 100. Also, the

Table 3 Comparison of B&B, MPSO, and GA results for state of ignoring machine reliability

Problem No. No. of parts No. of machines No. of cells Mmax B&B MPSO

Fbest Fbound TB&B(s) Zave Zbest

1 4 4 2 3 15.25 15.25 0 15.25 15.25

2 5 5 2 3 21.00 21.00 0 21.00 21.00

3 7 6 2 3 20.50 20.50 0 20.50 20.50

4 8 6 2 4 25.17 25.17 1 24.83 24.83

5 9 7 3 4 22.71 22.71 3 21.74 22.71

6 11 8 3 4 22.00 22.00 13 21.13 22.00

7 12 9 3 4 27.44 27.44 70 25.47 26.33

8 18 8 3 5 28.00 28.00 588 26.11 26.63

9 17 10 3 5 26.80 27.30 5400 26.40 26.60

10 18 9 3 5 28.11 28.11 1766 25.79 26.44

11 19 9 3 5 28.78 28.78 997 27.10 27.33

12 20 9 3 5 28.44 28.44 3560 27.21 27.56

13 19 10 3 5 27.70 28.20 5400 26.25 26.60

14 24 11 4 5 27.91 29.64 5400 26.43 27.36

15 24 14 4 5 25.14 27.57 5400 23.84 24.29

16 30 16 4 5 25.56 29.77 5400 26.81 27.50

17 35 20 4 7 21.60 29.60 5400 26.02 27.05

18 37 20 5 7 25.40 30.10 5400 26.86 27.70

19 43 22 5 7 22.18 27.68 5400 22.89 23.68

Average

GA MPSO & GA comparison (%)

TMPSO(s) Gave(%) Gbest(%) Zave Zbest TGA(s) Gave(%) Gbest(%) Ga-ave Ga-best R

0 0 0 15.25 15.25 0 0 0 0 0 –

0 0 0 21.00 21.00 0 0 0 0 0 –

0 0 0 20.50 20.50 0 0 0 0 0 –

0 -1.32 -1.32 24.83 24.83 0 -1.32 -1.32 0 0 –

0 -4.28 0 22.34 22.71 0 -1.64 0 -2.76 0 –

0 -3.98 0 21.16 21.63 0 -3.81 -1.7 -0.18 1.7 –

4.3 -7.21 -4.05 25.53 26.33 7 -6.96 -4.05 -0.26 0 -38.57

4.7 -6.74 -4.91 26.20 26.50 7 -6.43 -5.36 -0.34 0.47 -32.86

18.3 -1.49 -0.75 26.39 26.60 80.6 -1.53 -0.75 0.04 0 -77.3

4.8 -8.26 -5.93 26.14 26.67 7 -7 -5.14 -1.38 -0.84 -31.43

6.1 -5.83 -5.02 26.87 27.22 7 -6.64 -5.41 0.86 0.41 -12.86

19 -4.34 -3.13 26.93 27.56 7 -5.31 -3.13 1.02 0 171.43

30.2 -5.23 -3.97 26.41 26.50 77.2 -4.66 -4.33 -0.61 0.38 -60.88

21.9 -5.31 -1.95 26.27 26.82 84.1 -5.86 -3.91 0.58 1.99 -73.96

23.6 -5.2 -3.41 23.65 24.07 90.4 -5.94 -4.26 0.78 0.88 -73.89

34.5 4.89 7.58 26.29 27.19 89.1 2.84 6.36 1.96 1.14 -61.28

40.7 20.46 25.23 25.55 26.25 96.9 18.29 21.53 1.81 2.96 -58

40.9 5.73 9.06 26.47 27.10 101.75 4.21 6.69 1.43 2.17 -59.8

42.7 3.18 6.76 22.53 23.27 113.8 1.56 4.92 1.57 1.73 -62.48

-1.31 0.75 -1.59 0.01 0.24 0.68 -36.3
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relative gap between Fbest and Zbest is shown in column

‘‘Gbest’’. In a similar manner, the Gbest is calculated as

Gbest ¼ Zbest � Fbestð Þ=Fbest½ � � 100. In Lingo software’s

B&B algorithm, if Fbound ¼ Fbest, the optimal solution is

achieved. In Tables 3 and 4, in some cases, Zave and Zbest
are between Fbound and Fbest that shows a feasible better

Table 4 Comparison of B&B, MPSO, and GA results for state of considering machine reliability

Problem No. No. of parts No. of machines No. of cells Mmax B&B MPSO

Fbest Fbound TB&B (s) Zave Zbest

1 4 4 2 3 15.25 15.25 0 15.25 15.25

2 5 5 2 3 19.20 19.20 0 19.20 19.20

3 7 6 2 3 20.50 20.50 0 20.50 20.50

4 8 6 2 4 22.67 22.67 1 22.67 22.67

5 9 7 3 4 20.86 20.86 5 20.23 20.86

6 11 8 3 4 22.00 22.00 12 20.59 22.00

7 12 9 3 4 24.89 24.89 24 23.88 24.89

8 18 8 3 5 26.25 26.25 250 25.14 25.75

9 17 10 3 5 25.50 25.50 1517 24.77 25.00

10 18 9 3 5 25.67 25.67 2154 25.08 25.56

11 19 9 3 5 26.11 26.11 1811 25.53 26.11

12 20 9 3 5 27.11 27.11 3855 26.27 26.78

13 19 10 3 5 26.20 26.20 3870 25.74 26.20

14 24 11 4 5 25.64 26.82 5400 25.04 25.64

15 24 14 4 5 22.57 26.00 5400 22.02 22.57

16 30 16 4 5 23.44 27.31 5400 25.91 26.69

17 35 20 4 7 23.55 26.55 5400 24.39 25.00

18 37 20 5 7 24.05 27.85 5400 25.46 26.55

19 43 22 5 7 20.00 25.32 5400 22.15 23.32

Average

GA MPSO & GA comparison (%)

TMPSO (s) Gave (%) Gbest (%) Zave Zbest TGA (s) Gave (%) Gbest (%) Ga-ave Ga-best R

0 0 0 15.25 15.25 0 0 0 0 0 –

0 0 0 19.20 19.20 0 0 0 0 0 –

0 0 0 20.50 20.50 0 0 0 0 0 –

0 0 0 22.67 22.67 0 0 0 0 0 –

0 -3.01 0 20.70 20.86 0 -0.75 0 -2.33 0 –

0 -6.42 0 21.10 22.00 0 -4.09 0 -2.49 0 –

0 -4.06 0 24.44 24.89 7 -1.79 0 -2.37 0 -100

0.4 -4.24 -1.9 25.58 26.00 7 -2.57 -0.95 -1.74 -0.97 -94.29

6.3 -2.86 -1.96 24.71 25.00 7 -3.1 -1.96 0.24 0 -10

18.7 -2.29 -0.43 25.03 25.33 7 -2.47 -1.3 0.18 0.87 167.14

7.2 -2.21 0 25.71 26.11 7 -1.53 0 -0.7 0 2.86

24.2 -3.11 -1.23 25.84 26.33 7 -4.67 -2.87 1.61 1.66 245.71

29.5 -1.76 0 25.19 26.10 7 -3.85 -0.38 2.14 0.38 321.43

22 -2.34 0 25.09 25.45 85.08 -2.13 -0.71 -0.21 0.71 -74.14

23.2 -2.44 0 22.00 22.50 89.2 -2.53 -0.32 0.1 0.32 -73.99

37.7 10.56 13.87 25.38 25.69 88.6 8.27 9.6 2.07 3.75 -57.45

40.9 3.55 6.16 23.86 24.35 94.9 1.3 3.4 2.17 2.6 -56.9

42.5 5.86 10.4 24.73 25.60 100.4 2.83 6.44 2.87 3.58 -57.67

42 10.73 16.59 21.55 22.77 117.2 7.73 13.86 2.71 2.34 -64.16

-0.21 2.18 -0.49 1.31 0.22 0.8 11.43
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solution, under this condition Gave and Gbest are positive.

But in cases where Zave and Zbest are out of the domain of

Fbest;Fbound½ �; Gave and Gbest will be negative numbers. For

comparing MPSO and GA, some columns are defined as Ga-

ave, Ga-best, and R that are formulated as follows:

Gaave ¼ ZMPSO
ave � ZGA

ave

� �
=ZMPSO

ave , Gabest ¼ ZMPSO
best � ZGA

best

� �
=

ZMPSO
best ; and R ¼ TMPSO � TGAð Þ=TGA, respectively.
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Fig. 5 Comparison of B&B, MPSO, and GA results (Table 3) for

state of ignoring machine reliability
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Fig. 6 Comparison of B&B, MPSO, and GA results (Table 3) for

state of ignoring machine reliability
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Fig. 7 Comparison of B&B, MPSO, and GA results (Table 4) for

state of considering machine reliability
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Fig. 8 Comparison of B&B, MPSO, and GA results (Table 4) for

state of considering machine reliability
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Fig. 9 Comparison of solving time for state of ignoring machine
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Fig. 10 Comparison of solving time for state of considering machine

reliability

2 9 10 1 11 3 4 5 6 7 8 12 
1 1 1 1 0 0 0 0 0 0 1 0 0 
4 0 1 1 0 0 1 0 0 0 0 0 1 
6 1 1 1 1 0 1 0 1 0 1 1 0 
7 0 1 1 1 0 0 0 0 0 0 1 0 
8 0 0 0 1 1 0 0 1 0 1 1 0 
2 0 0 0 0 0 0 1 0 1 0 0 1 
3 0 1 0 0 0 0 0 1 0 1 1 0 
5 0 0 0 0 1 0 0 1 0 1 0 0 
9 0 0 0 1 0 0 1 0 1 0 0 1 

Fig. 11 Optimal solution of example 7 for state of ignoring machine

reliability
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As mentioned above in small, medium-sized examples,

a limited run time (1.5 h) is considered for Lingo solver to

find optimal solutions. Therefore, as it can be concluded

from Tables 3 and 4, the percent error of optimal solution

is very low when different problems are selected. Also, in

large-sized examples, MPSO and GA perform better than

the Lingo software’s B&B algorithm in most problems in

limited time. It implies that MPSO and GA algorithms are

so effective to solve the proposed model in all class of

problems. Also, performance of MPSO and GA in two

states of ignoring reliability and considering reliability has

been indicated in Figs. 5, 6, 7, 8, and 9. From Figs. 6, 7, 8,

and 9, it can be gathered that Zave and Zbest solutions for

small- and medium-sized problems are so close to Fbest and

even coincided. In large-sized problems, the metaheurstic

algorithms which have been used, generate better solutions

from lingo software’s B&B algorithm or solve problems

with negligible error. Figures 10 and 11 represent the time

for solving the metaheurstic algorithms and the Lingo

software’s B&B algorithm for two states of ignoring re-

liability and considering reliability, respectively. It is ob-

vious that the solving time for the metaheurstic algorithms

with the increasing size of the problem is much less than

the Lingo software’s B&B algorithm. Two series of paired

t test were conducted to analyze significant difference

between the obtained solutions of the metaheurstic algo-

rithms for two states of ignoring reliability and considering

reliability, respectively. The statistical details are shown in

Tables 5 and 6. Tests show that there is no statistically

significant difference between solutions obtained by

MPSO and GA in both states.

In Table 7, the best solution obtaining from three al-

gorithms for each problem has been used for comparison of

effect of machine failure. Based on the constraint (9), the

solution space of the proposed model in the state of con-

sidering machine reliability is less than the state of ignoring

machine reliability. The small solution space is the reason

that some values given for state of considering machine

reliability are less than that for state of ignoring machine

reliability. Because the objective function of this model is

maximization, the values for reduction percent mentioned

in Table 7 are positive. The optimal solutions of example 7

for two states of ignoring reliability and considering re-

liability have been given to evaluate the effect of reliability

(see Figs. 11, 12). The results of solving numerical ex-

amples show that the reliability consideration has sig-

nificant impacts on the final block diagonal form of

machine-part matrixes. Besides, the reduction of reliability

reduces the right side of the constraint (9) (see appendix

A). Therefore, some operations of some parts do not pro-

cess within the cell as there is an unreliable machine,

although they need that machine for processing. Thus, an

unreliable machine tends to form a smaller cell. The opti-

mal solutions for example 2 for three states of MTBF of the

machine 1 are presented in Figs. 13, 14, and 15. At the

state MTBF = 1.9, the machine 1 cannot process any part

within the cell 2 because the processing time of parts is

more than the service capacity of the machine 1. Thus,

those operations of parts are outsourced. Indeed, machine 1

can be deleted at this state.

Conclusion and future work

In this paper, a new stochastic nonlinear model to solve CF

problem within the queuing theory framework with random

variables such as time between two successive arrival parts,

processing time, and machine availability has been

Table 5 Detailed statistics of paired t test for state of ignoring machine reliability

Paired differences t df Sig. (2-tailed)

Mean Std. deviation Std. error Mean 95 % Confidence interval of the difference

Lower Upper

Pair1 MPSO-GA 0.06947 0.27840 0.06387 -0.06471 0.20366 1.088 18 0.291

Table 6 Detailed statistics of paired t test for state of considering machine reliability

Paired Differences t df Sig. (2-tailed)

Mean Std. deviation Std. error mean 95 % confidence interval of the difference

Lower Upper

Pair1 MPSO-GA 0.06789 0.40029 0.09183 -0.12504 0.26083 0.739 18 0.469
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presented. To find out the optimal solution in a reasonable

time, the proposed nonlinear model was linearized using

auxiliary variable. The time between two successive arrival

customers had exponential distribution and service time is

distributed generally. Numerical examples showed that the

reliability consideration has meaningful effects on the final

block diagonal form of machine-part matrixes. Because of

complexity class of this problem that was categorized as

NP-hard, two metaheurstic algorithms based on genetic

and MPSO algorithms were developed to solve problems.

Also, since the efficiency of metaheurstic algorithms de-

pends strongly on the operators and the parameters, design

of experiment was done for set parameters. DeterministicT
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Fig. 12 Optimal solution of example 7 for state of considering

machine reliability
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Fig. 13 Optimal solution of example 2 for state of MTBF = 60

    1 5 2 3 4 
1 1 0 0 0 1 
3 1 0 0 0 0 
2 0 1 1 1 0 
4 0 0 1 1 0 
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Machine 
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Fig. 14 Optimal solution of example 2 for state of MTBF = 4.1
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Fig. 15 Optimal solution of example 2 for state of MTBF = 1.9
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method of the Lingo software’s B&B algorithm was used

to evaluate the results of both metaheurstic algorithms. The

results indicated that proposed metaheurstic algorithms

have better performance in quality of final answer and

solving time against the method of Lingo software’s B&B.

For future research, considering machine capacity and

costs in stochastic CF problem are offered.

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.

Appendix A

The reliability function is expressed as

R tð Þ ¼ P T [ tð Þ ¼
Z1

t

f ðxÞdx

where f xð Þ is the failure probability density function and t

is the length of the period of time (which is assumed to

start from time zero). On the other hand, the MTBF can be

defined in terms of the expected value of the density

function f xð Þ,

MTBF ¼
Z1

0

xf xð Þdx:

Thus,

MTBF ¼
Z1

0

xf xð Þdx ¼
Z1

0

P T[ xð Þdx ¼
Z1

0

RðxÞdx:

The reliability has straight relationship with the mean

time between failures. Hence, reduction of the reliability

reduces the right side of the constraint (9). Figure 16 is

presented for more illustration of the relationship between

MTBF and coefficient MTBF

MTTRþMTBF of the constraint (9)

in the constant value of MTTR.
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