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A seller-buyer supply chain model with
exponential distribution lead time
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Abstract

Supply chain is an accepted way of remaining in the competition in today's rapidly changing market. This paper
presents a coordinated seller-buyer supply chain model in two stages, which is called Joint Economic Lot Sizing
(JELS) in literature. The delivery activities in the supply chain consist of a single raw material. We assume that the
delivery lead time is stochastic and follows an exponential distribution. Also, the shortage during the lead time is
permitted and completely back-ordered for the buyer. With these assumptions, the annual cost function of JELS
is minimized. At the end, a numerical example is presented to show that the integrated approach considerably
improves the costs in comparison with the independent decisions by seller and buyer.
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Background
Supply chain takes on an importance because of the
rapid market changes which is the result of the explo-
sion of product varieties with short life cycles in today’s
global market (Ben-Daya et al. 2008). The effective col-
laboration of partners and coordination of all activities
within the supply chain are prerequisites in such com-
petitive and dynamic market conditions (Soroor et al.
2009b; Tarantilis 2008). So in the recent years, supply
chain was dealt with from many points of view such as
pricing problem in Hu et al. (2010), Chen and Kang
(2010), and Huang et al. (2010), or the fuzzy conditions
in supply chain elements in Xu and Zhai (2010) and
many others.
One major subject in this topic is managing the inven-

tory across the whole supply chain to reduce the costs
for customers (Soroor et al. 2009a). To deal with this
problem, some researchers follow real-time data proces-
sing such as radio frequency identification, global posi-
tioning system, flow control sensors, cellular telephones,
navigation systems, and satellite positioning systems
(Tarantilis 2008; Soroor et al. 2009c). There are some
other parallel researches that try to elicit a mathematical
model from the integrated supply chain. In order to
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construct such a model, it is necessary to use some sim-
plifying assumptions. The first integrated supply chain
model which was introduced by Goyal (1977) and con-
tained only one seller and one buyer was called Joint
Economic Lot Sizing (JELS) problem. It was under the
most simplifying and deterministic conditions. Goyal
(1977) presented a solution to the problem under the
assumption of the seller’s infinite production rate and
lot-for-lot policy for the shipments from the seller to the
buyer. In this policy, before shipment, the entire produc-
tion lot should be ready and each production lot is
sent to the buyer as a single shipment. Banerjee (1986)
eliminated the infinite production rate assumption, but
retained lot-for-lot policy. Then the lot-for-lot policy
was relaxed by Goyal (1988) in an effort to generalize
the problem. By constructing a model which allowed
shipments to take place during production, Lu (1995)
decreased the assumption of completing a batch before
starting shipments. Banerjee and Kim (1995), Ha and
Kim (1997), and Kim and Ha (2003) also considered
JELS model with equal-shipment policies. Viswanathan
(1998) proposed an optimal policy for a particular model
relating to problem parameters. Hill (1997) further took
the geometric growth factor as a decision variable and
so generalized the model of Goyal (1995). Goyal and
Nebebe (2000) suggested another simple geometric
policy to produce acceptable results. This was a model in
which a small shipment is followed by a series of larger
and equal-sized shipments. Another generalization made
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by Hill (1999) found the optimal solution and proposed
an exact iterative algorithm for solving the problem. The
structure of the optimal policy presented on the basis of
geometric series was followed by equal-sized shipments.
Hill and Omar (2006) and Zhou and Wang (2007)
relaxed the assumption of holding costs. The resultant
assumption is that the successive shipment sizes are
increased by a fixed factor when the vendor’s holding
cost is larger than the buyer’s. The unreliability of the
process on JELS is considered by Ben-Daya and Zamin
(2002a) and Huang (2004). Other extensions of this
problem are considered as stochastic parameters. Ben-
Daya and Zamin (2002b) considered a JELS problem
under equal-shipment policy with stochastic demand.
Ouyang et al. (2004) assumed the lead time to be sto-

chastic and controllable. He also permitted a shortage
during the lead time. In this paper we relax the assump-
tion of deterministic lead time of transporting products
from the seller to the buyer and assume lead time as a
stochastic variable with exponential distribution. This
paper is organized in the following form. In Section
Definition of the problem, we define the problem, and
also introduce notations and assumptions. The Model
formulation Section gives a discussion on independent
and integrated policies for seller and buyer. Solution for
separate and joint models Section deals with the optimal
solution of the independent and integrated model. Nu-
merical results Section presents some numerical exam-
ples to compare two models. The conclusion of the
paper is given in the Conclusions Section.

Definition of the problem
Model notation
The model is a supply chain which represented a seller
with a constant produce rate of ‘p’, and his product is sent
to a buyer by shipment equal size of ‘Q’. The demand for
the buyer inventory is constant value of ‘D’, when the
inventory drops to r; buyer makes a new order in the
size of ‘Q’. The notations below are used in the model:

D demand rate for buyer inventory
p production rate of the seller
Q shipment size
r buyer’s reorder point
Av seller’s setup cost
Ab buyer’s ordering cost
hv holding cost for the seller
hb holding cost for the buyer
π shortage cost for the buyer per unit per unit time
n number of shipments
T buyer’s cycle time (time between two successive orders)
L lead time to replenish the buyer’s order
TCb(r,Q) buyer’s expected total cost per unit time
tcb(r,Q,L) buyer total cost of one time cycle in term of L
tcb(r,Q) expected total cost in one cycle for given r and Q
TIv seller’s total inventory
TCv seller’s expected total cost
STC(r,Q,n) separate total cost for buyer and seller
JTC(r,Q,n) joint total cost for buyer and seller

Model assumptions
The assumptions made in the paper are as follow:

(1) Product is manufactured with a finite product rate p.
(2) The final demand for product is deterministic and

constant D, where p >D.
(3) The lots delivered to buyer by seller in equal size

batches, Q.
(4) The buyer makes an order of Q-size as soon as the

inventory drops to r.
(5) In each setup, seller manufactures nQ product to

reduce the average setup cost.
(6) Shortage is acceptable and completely back ordered

for the buyer.
(7) The policy of shipment is non-delayed i.e., as soon

as receiving an order, the seller delivers it, if
available; otherwise, it manufactures product of
nQ-size and delivers orders during manufacturing
phase and after that.

(8) The lead time to deliver the shipment from seller to
buyer follows an exponential distribution with
parameter λ, i.e., L approximately exp(λ).

(9) Time horizon is infinite.

Model formulation
To obtain the buyer’s expected total cost per unit time,
TCb(r,Q), it is considered that the orders are received in
a sequence which are not necessarily the same as they
have been made. Some extra simplifying assumptions
are introduced here to avoid facing intractable problem.

(1) The orders do not cross in time (Hadly and Whitin
1963).

(2) At the start of each time cycle, the net stock is
considered to be r.

Figure 1 presents different possible cases in each cycle
for the buyer. Considering the demand rate as D, from
the time of ordering in which the inventory position is r
until the time r/D current cycle inventory vanishes and
after this time if a new lot reaches, shortage cost should
be paid because the shipment size is Q. If the lot is deliv-
ered to the buyer after time of Q/D, the ordering of new
lot is given before reaching the previous lot.
Figure 1, case 1 shows the condition in which ordered

lot ships the buyer before consuming the recent
stock (L≤ r/D). In this condition shortage cost does not
exist. In case 2, the lead time is more than r/D, but



Figure 1 Net stock vs. time for the buyer.
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in order that the outstanding order would be delivered be-
fore the time of Q/D, it is possible to send next order at
the time in which the inventory position decrease to r. But
in case 3 in which the lead time exceeds Q/D, the next
order is released before receiving the outstanding order.
The buyer total cost of single cycle in terms of L,

tcb(r,Q,L), can be written as follows:

tcb r;Q; Lð Þ ¼

Ab þ hb
Q2

2D
þ rQ

D
� QL

� �
; L≤r D

Ab þ hb
r þ Q� LDð Þ2

2D
þ π

2D
LD� rð Þ2; r D < L≤Q D

Ab þ hb
r2

2D
þ π

2D
LD� rð Þ2;

Q
D < L; ð1Þ=

,,

,8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

and the expected total cost in one cycle for given r and
Q, tcb(r,Q) is as follows:

tcb r;Qð Þ ¼ Ab þ
Z r

D

0
hb

Q2

2D
þ rQ

D
� Ql

� �� �
fL lð ÞdL

þ
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D
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hb
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þ
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Q
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Substituting fL lð Þ ¼ λe�λl into the above expression
and by dividing the length of the buyer order cycle, Q/D,
we obtain the buyer's expected total cost per unit time
as the following expression,

TCb r;Qð Þ ¼ DAb

Q
þ hb r þ Q

2
� D

λ

� �
þ D2 hb þ πð Þ

λ2Q
e�

λ
Dr

þ Dhb
Q

r
λ
� D

λ2

� �
e�

λ
DQ: ð3Þ

The way of obtaining the seller’s total inventory is pre-
sented in such literatures as Lee (2005), Wee and Chung
(2007), Lin (2008), Ouyang et al. (2007), Chang et al.
(2006), and Ouyang et al. (2004). We present a
simple manner in Figure 2 for calculating the seller's
total inventory.
By using S as area of a surface, we can write:

TIv ¼ SABCE � SADE � Q2

D
þ 2

Q2

D
þ . . .þ n� 1ð ÞQ

2

D

� �

¼ nQ
Q
p
þ n� 1ð ÞQ

D

� �
� n2Q2

2p

� Q2

D
1þ 2þ . . .þ n� 1ð Þð Þ

� �

¼ nQ2

2D
n� 1ð Þ 1� D

p

� �
þ D

p

� �
ð4Þ

and since orders are received by the seller at known
intervals T ¼ Q

D , the seller’s expected total cost (TCv) is
as follows:

TCv nð Þ ¼ 1
nT

Av þ hv:AIvð Þ

¼ DAv

nQ
þ hv

Q
2

n� 1ð Þ 1� D
p

� �
þ D

p

� �
ð5Þ

We have proved (see Appendix 2) that TCv(n) is
convex in n, and optimal solution (n*), satisfies the
condition:

n� n� � 1ð Þ≤ 2DAv

hvQ2 1� D
p

� � ≤n� n� þ 1ð Þ ð6Þ

Solution for separate and joint models
First, we consider solution for the case in which
the seller and buyer optimize their total cost functions
separately. The optimal solution will be denoted by
(rs
*, Qs

*, ns
*) in this case, and we show sum of costs of

seller and buyer with

STC rs
�;Qs

�; ns�ð Þ ¼ TCb rs
�;Qs

�ð Þ þ TCv ns
�ð Þ ð7Þ



Figure 2 Net stock vs. time for the seller.
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In the other case, joint total cost (JTC) function
is optimized as a whole. In this case we sum the costs
together to obtain joint total cost

JTCðr;Q; nÞ ¼ TCbðr;QÞ þ TCvðnÞ

¼ D nAb þ Avð Þ
nQ

þ hb r þ Q
2
� D

λ

� �

þ D2 hb þ πð Þ
λ2Q

e�
λ
Dr þ Dhb

Q
r
λ
� D

λ2

� �
e�

λ
DQ

þ hv
Q
2

n� 1ð Þ 1� D
p

� �
þ D

p

� �
ð8Þ

and show its optimal solution with (rj
*,Qj

*,nj
*). Because of

convexity of TCb (see Appendix 1) and TCv, the
obtained separate solution is general. On the other hand,
it can be shown that in spite of convexity of JTC on each
of r, Q, or n alone, it is not a convex function generally.

It can be observed that @JTC
@n ¼ @TCv

@n and @2JTC
@n2 ¼ @2TCv

@n2

and hence, the optimality condition on n (Equation 6)
is valid here. Thus in the procedure of solving JTC,
we set n= i, with start of i= 1, and calculate the
optimal values of r and Q, and increase i one unit in
each step until the optimality in condition (Equation 6)
is satisfied. It is not necessary to focus on the
method of finding optimal solution of JTC (when n is
fixed), TCb and TCv because general methods like
derivative-free method in many types of software such
as MATLAB (MathWorks, Natick, MA, USA) can solve
this problem easily.
Results and discussion
Numerical results
In this part an example with the following data will be
presented as follows: D= 1,000/years, Ab = $25/order,
hv = $4/unit/year, hb = $5/unit/year, π= $30/unit/year;
and we change p by the values 5,000, 7,000, and 9,000,
and 1/λ by the values 10, 15, 20, 25, 30, 35, 40, 45, and
50 to explore variation effects of lead time to the per-
centage of saving in individually optimized total cost
over integrated inventory policy. As mentioned by Goyal
(1977) and Ouyang et al. (2004), the total benefit under
integrated optimization should be shared by both parties
to encourage them to cooperate together. It can be done
as follows:

JTCv ¼
TCv n�s

� 	
STC r�s ;Q�

s ; n
�
s

� 	 � JTC r�j ;Q
�
j ; n

�
j

� �
ð9Þ

JTCb ¼
TCb r�s ;Q

�
s

� 	
STC r�s ;Q�

s ; n
�
s

� 	 � JTC r�j ;Q
�
j ; n

�
j

� �
ð10Þ

Referring to the existing literature, we consider per-
centage saving ‘ps’ as (STC-JTC)/STC*100. Figure 3
shows ps increases for more variable lead time, which
is the characteristic of many cases in unpredictable
real environment. It also shows that the percentage
of improvement increases when there is a rise in
the production rate. For instance, the percentage of
improvement is 3.7 % for p= 5,000 (increase from 1.6
for 1/λ= 5 days to 5.3 for 1/λ= 50 days) and where it
is 6.2 % for p= 9,000 (increase from 2.4 for 1/λ= 5 days



Figure 3 Effect of lead time variability on percentage saving.

Table 1 Optimal solution of non-integrated model vs. joint model

Parameters Non-integrated optimization Integrated optimization Ps

P 1/λ rs
* Qs

* ns
* TCb TCv STC rj

* Qj
* nj

* JTCb JTCv JTC

5,000 5 −2.4 114.6 4 492.4 1,468.5 1,960.9 −7.6 166.8 3 484.4 1,444.4 1,928.8 1.6

10 10.4 130.9 4 570.4 1,444.6 2,015.0 2.9 172.7 3 561.8 1,422.8 1,984.6 1.5

15 26.7 149.0 3 674.9 1,431.4 2,106.3 6.2 247.6 2 658.1 1,395.6 2,053.7 2.5

20 44.1 169.1 3 794.2 1,397.3 2,191.5 22.1 255.9 2 776.0 1,365.3 2,141.4 2.3

25 61.5 191.1 3 922.9 1,385.7 2,308.6 40.3 264.6 2 897.0 1,346.8 2,243.9 2.8

30 78.7 214.8 2 1,058.0 1,360.6 2,418.6 18.3 459.9 1 1,027.8 1,321.8 2,349.6 2.9

35 95.6 239.7 2 1,197.5 1,313.7 2,511.2 33.2 473.9 1 1,162.4 1,275.2 2,437.6 2.9

40 112.3 265.5 2 1,340.2 1,284.3 2,624.4 49.2 488.2 1 1,293.6 1,239.6 2,533.2 3.5

45 128.8 292.0 2 1,485.2 1,268.9 2,754.1 66.1 502.8 1 1,421.1 1,214.1 2,635.2 4.3

50 145.1 319.0 2 1,632.0 1,265.0 2,897.0 83.6 517.9 1 1,545.2 1,197.7 2,742.9 5.3

7,000 5 −2.4 114.6 4 492.4 1,494.7 1,987.1 −7.5 165.2 3 482.7 1,465.1 1,947.8 2.0

10 10.4 130.9 4 570.4 1,474.5 2,044.9 −6.1 239.3 2 554.2 1,432.6 1,986.8 2.8

15 26.7 149.0 3 674.9 1,448.4 2,123.3 6.2 247.6 2 652.8 1,400.9 2,053.7 3.3

20 44.1 169.1 3 794.2 1,416.6 2,210.8 22.1 255.9 2 769.3 1,372.1 2,141.4 3.1

25 61.5 191.1 3 922.9 1,407.5 2,330.4 3.3 456.8 1 878.9 1,340.5 2,219.4 4.8

30 78.7 214.8 2 1,058.0 1,360.6 2,418.6 16.4 471.0 1 1,004.5 1,291.9 2,296.5 5.0

35 95.6 239.7 2 1,197.5 1,313.7 2,511.2 30.9 485.6 1 1,136.2 1,246.5 2,382.8 5.1

40 112.3 265.5 2 1,340.2 1,284.3 2,624.4 46.5 500.5 1 1,264.7 1,212.0 2,476.7 5.6

45 128.8 292.0 2 1,485.2 1,268.9 2,754.1 63.0 515.8 1 1,389.7 1,187.3 2,577.0 6.4

50 145.1 319.0 2 1,632.0 1,265.0 2,897.0 80.1 531.5 1 1,511.4 1,171.5 2,682.9 7.4

9,000 5 −2.4 114.6 4 492.4 1,509.2 2,001.6 −12.1 231.3 2 480.5 1,472.8 1,953.3 2.4

10 10.4 130.9 4 570.4 1,491.2 2,061.6 −6.1 239.3 2 549.7 1,437.1 1,986.8 3.6

15 26.7 149.0 3 674.9 1,457.8 2,132.8 6.2 247.6 2 649.9 1,403.8 2,053.7 3.7

20 44.1 169.1 3 794.2 1,427.3 2,221.6 −8.6 448.6 1 759.9 1,365.7 2,125.7 4.3

25 61.5 191.1 3 922.9 1,419.7 2,342.6 2.4 462.9 1 862.9 1,327.3 2,190.2 6.5

30 78.7 214.8 2 1,058.0 1,360.6 2,418.6 15.3 477.5 1 991.4 1,275.0 2,266.3 6.3

35 95.6 239.7 2 1,197.5 1,313.7 2,511.2 29.6 492.5 1 1,121.4 1,230.3 2,351.7 6.4

40 112.3 265.5 2 1,340.2 1,284.3 2,624.4 45.0 507.8 1 1,248.4 1,196.3 2,444.7 6.8

45 128.8 292.0 2 1,485.2 1,268.9 2,754.1 61.2 523.4 1 1,371.9 1,172.1 2,544.0 7.6

50 145.1 319.0 2 1,632.0 1,265.0 2,897.0 78.1 539.6 1 1,492.3 1,156.6 2,648.9 8.6
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to 8.6 for 1/λ= 50 days). By joining and coordinating,
both seller and buyer can control the variability effect of
lead time by decreasing the number of shipments and
increasing batch sizes for higher level of production rate.
However, this does not happen when they work separ-
ately and cannot react to the variation of shipment lead
time (Table 1).

Conclusions
An integrated model for JELS in which lead time of deli-
vering the shipment is not deterministic, which follows
an exponential distribution, was presented in this article.
We showed that integrated inventory policy increases
profit of both buyer and seller, if they can compromise
to divide the gained benefit of coordination. This policy
is completely executable in a unit system containing
two parts, but may not be suitable for separate systems
when percentage of improvement is low. A numerical
example showed that the cooperation between two
supply chain partners in the integrated situation is more
useful in unreliable purchasing environments in terms
of lead times of shipments. Stochastic lead time with
an exponential distribution is the difference of the
current research with the previous ones. Authors are
in the process of decreasing. simplifying or adding
assumptions of this model ((1) the orders don not
cross in time and (2) at the start of cycle time, the net
stock is considered to be r) to conform it more to the
real system. The model also can be extended to situa-
tions, such as general distributions for lead times,
multi vendor case, stochastic demand, and stochastic
price. We hope that this extension will be helpful to
researchers who are interested in integrating decisions
on supply chain.

Methods
The used method in this article is mathematical model-
ing. This model is an expansion of previous version with
a change in delivery lead time assumption. Like all such
models, to confirm the performance of model, a com-
puter simulation experiment was conducted.
Appendix 1
Here we survey convexity of TCb. By calculating the
second partial derivations of TCb, we get

h11 ¼ @2 TCbð Þ
@r2

¼ hb þ π

Q
e�

λ
Dr;

h12 ¼ h21 ¼ @2 TCbð Þ
@Q@r

¼ D hb þ πð Þ
λQ2

e�
λ
Dr

� h
Q

D
λQ

þ 1

� �
e�

λ
DQ
h22 ¼ @2 TCbð Þ
@Q2

¼ 2AbD
Q3

þ 2D2 hb þ πð Þ
λ2Q3

e�
λ
Dr

þ 2Dhb
λQ

r � D
λ

� �
1
Q2

þ λ

DQ
þ λ2

2D2

� �
e�

λ
DQ

Since h11 > 0, to prove H is positive definite and there-
fore TCb is convex, it should be only shown that Hessian

determinant i.e., Hj j ¼ h11 h12
h21 h22










 is positive. To avoid

the complexity of calculation in general cases for all
values of parameters, we construct some conditions that
stated problems in literature that were satisfied, and so
they are logically acceptable for the application purpose.
These conditions are 0 < λ

D < 1; r≥1 andπ > h. Also, we

define α ¼ λ
D.

Hj j ¼ 2AbD hb þ πð Þ
Q4

e�αr þ hb þ πð Þ2
α2Q4

e�2αr

� h2b
Q2

1
αQ

þ 1

� �2

e�2αQ þ 2hb hb þ πð Þr
αQ2

� 1
Q2

þ α

Q
þ α2

2

� �
e�α rþQð Þ � hb hb þ πð Þ

Q2
e�α rþQð Þ

The first sentence is positive. The sum of next two
sentences is also positive since r <Q, thus e�2α r > e�2αQ ,
and with substitution, it will be to gain

hb þ πð Þ2
α2Q4

e�2αr � h2b
Q2

1
αQ

þ 1

� �2

e�2αQ >
1

α2Q4

� hb þ πð Þ2 � h2b 1þ αQð Þ2� �
e�2αQ ¼ 1

α2Q4

� hb þ πð Þ þ hb 1þ αQð Þð Þ hb þ πð Þ � hb 1þ αQð Þð Þ½ �
e�2αQ ¼ 1

α2Q4
2hb þ π þ αQð Þ π � hbαQð Þ½ �e�2αQ

In the last expression, all elements including second
parenthesis are positive, since

αQ ¼ λ

D
Q ¼ λ

D
Q

< 1⇒� hbαQ > hb⇒π � hbαQ

> π � hb > 0:

On the other hand, the sum of the last two sentences
of |H| is also positive, because

2hb hb þ πð Þr
αQ2

1
Q2

þ α

Q
þ α2

2

� �
e�α rþQð Þ � hb hb þ πð Þ

Q2
e�α rþQð Þ

>
hb hb þ πð Þ

Q2

1þ 1þ αQð Þ2 � αQ
αQ2

" #
e�α rþQð Þ > 0

Consequently TCb is strictly convex.
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Appendix 2
In equating the first derivation of TCv with zero,
we obtain

d
dn

TCv nð Þ ¼ �DAv

n2Q
þ hv

Q
2

1� D
p

� �
¼ 0

nðn� 1Þ≤n2 ¼ 2DAv

hvQ2 1� D
p

� � ≤nðnþ 1Þ

On the other hand, derivation of the second order of

TCv is d2

dn2 TCv nð Þ ¼ 2DAv
n3Q > 0 , and hence, TCv is strictly

convex on n.
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