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Abstract Markov model of multi-component machining

system comprising two unreliable heterogeneous servers

and mixed type of standby support has been studied. The

repair job of broken down machines is done on the basis of

bi-level threshold policy for the activation of the servers.

The server returns back to render repair job when the pre-

specified workload of failed machines is build up. The first

(second) repairman turns on only when the work load of N1

(N2) failed machines is accumulated in the system. The

both servers may go for vacation in case when all the

machines are in good condition and there are no pending

repair jobs for the repairmen. Runge–Kutta method is

implemented to solve the set of governing equations used

to formulate the Markov model. Various system metrics

including the mean queue length, machine availability,

throughput, etc., are derived to determine the performance

of the machining system. To provide the computational

tractability of the present investigation, a numerical illus-

tration is provided. A cost function is also constructed to

determine the optimal repair rate of the server by mini-

mizing the expected cost incurred on the system. The

hybrid soft computing method is considered to develop the

adaptive neuro-fuzzy inference system (ANFIS). The val-

idation of the numerical results obtained by Runge–Kutta

approach is also facilitated by computational results gen-

erated by ANFIS.

Keywords Threshold policy � Vacation � Machine repair �
Cost optimization � Runge–Kutta method � ANFIS

Introduction

In this industrial age, the machining system becomes the

great boon for the human beings. In machining systems, the

failure of its components is quite common phenomenon

which causes adverse effect on the efficiency, quality, and

output of the system. To overcome these problems, many

queue theorists have paid attention towards the machine

repair problems in different contexts. To enhance the per-

formance and reliability of any machining system, there is

need of backup support (standby) to working machines.

The backup support in terms of redundancy is also helpful

in enhancing the performance and smooth functioning of

the machining system. The system with standby support

plays a vital role in real-time machining systems due to its

critical requirement in many computer embedded systems

such as computer networks and telecommunication sys-

tems, industrial and information systems, and many more.

In queueing and reliability literature, the notable research

works on Markov modeling of machining system with

standby support can be found [cf. Wang and Kuo (2000),

Wang and Ke (2003), and Haque and Armstrong (2007)].

Shree et al. (2015) proposed a Markov model for the

machining systems with hot spares. Jain (2016) presented

the transient study of machining system by incorporating

some realistic features, namely service interruption, prior-

ity and mixed standbys support. Recently, Jain et al. (2017)

proposed a Markov model for the repairable system

including the features of F-policy, working vacation, and

server break down. In this study, they have derived system

indices and steady-state probabilities using SOR method.
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Newton-quasi method and heuristic approach to find the

optimal parameters and minimum cost incurred to the

system have also been implemented.

The threshold policy for starting of service can be used

to overcome the waste of valuable resources, time and

money of an industry, or company operating in machining

environment. For any single-machine repair system,

N-policy can be implemented for the economic utilization

of the server. Threshold N-policy states that the server is

turned on to render repair only when the workload of repair

job of failed machines reaches to pre-defined threshold

level N. To explore the performance of a Markovian

machining system operating under N-policy, reneging, and

the provision of warm standbys, Jain et al. (2004a, b)

proposed a finite source queueing model. The matrix

method is employed by Jain and Upadhyaya (2009) to

evaluate the steady-state probabilities and other system

indices of a degraded system by including the realistic

concepts of threshold N-policy, multiple vacations, and

multiple type spare support. Furthermore, Yang and Chang

(2014) examined Markov machine repair model with

threshold recovery policy to facilitate the performance

analysis by taking some realistic factors into account. They

also developed the queueing model for the cost analysis of

multi-component machining system by particle swarm

optimization. Kuo and Ke (2015) developed queueing

model for a repairable multi-component machining system

by including the concepts of spare provisioning, switching

failure and unreliable server. Recently, a time shared

Markov study of machine repair problem having some

realistic features such as threshold policy, additional

repairman, and mixed spares has been carried out by Jain

et al. (2016).

In the recent past, the server vacation models have been

studied to analyze the system performance in specific sit-

uations wherein the server becomes unavailable for some

times. From the cost-economic point of view, it is benefi-

cial to send the server on vacation as soon as he becomes

idle or no repair job available in the system. Due to its

critical applications, queueing model with server vacation

can be applied in many systems operating in machining

environment in different setup. In most of the machine

repair queueing models, it is assumed that if any failed

machine joins the queue, the server will be immediately

activated for rendering the service. The important contri-

butions on vacation queueing models in different contexts

can be found in the article reported by Gupta (1997), Jain

et al. (2004a, b), Ke and Wang (2007), Ke and Wu (2012),

Wu and Ke (2014) and many more. Recently, Jain and

Meena (2017) studied an unreliable server Markovian

multi-component fault tolerant machining system with

arrival controlling policy. They have included the feature

of optional working vacation instead of complete vacation

which makes the study quite interesting and applicable to

realistic scenarios. In this study, they obtained the steady-

state probabilities and system metrics to characterize the

system behavior using SOR method.

The use of soft computing technique for the perfor-

mance modeling plays a vital role due to its critical utility

in decision analysis, automatic control, data classification,

and many more. The combination of neural network and

fuzzy logic presents an emerging soft computing technique

ANFIS. The noticeable works on ANFIS has been done by

Jang (1993). Bhargava and Jain (2014) explored the uti-

lization of the hybrid ANFIS technique to provide the

comparative study of queueing and reliability results

obtained by matrix geometric method (MGM) of a Markov

queueing model having an unreliable server operating

under vacation policy. Recently, Jain and Meena (2016)

used the ANFIS technique for the analysis of Markovian

fault tolerant machine repair problem to compute some

performance metrics and to compare those with the results

obtained using Runge–Kutta approach.

The provision of more servers is always helpful in

reducing the work load and to facilitate the faster service.

However, to keep the server active in case of less work

load is costly affairs. In this article, we study the transient

analysis of machine repair problem having mixed warm

standby support and two heterogeneous unreliable servers.

The first (second) server is activated only when workload

of N1 (N2) failed machines is accumulated in the system.

As soon as the server becomes idle, he goes for vacation.

The remaining part of the paper is structured as follows.

The system description to formulate the mathematical

model is presented in Sect. 2. In Sect. 3, Chapman–Kol-

mogorov equations at transient state are constructed. To

predict the performance of the developed model, some

metrics have been constructed. Furthermore, total expected

cost function is also constructed to evaluate the optimal

service rate in Sect. 4. The architecture of ANFIS model is

also briefly described. In Sect. 5, numerical illustration and

cost analysis have been presented. Finally, the noble fea-

tures of work done and concluding remarks are given in

Sect. 6.
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Model description

Notations

M : The number of operating machines:

S : The number of warm standbys machines

i:e: SðkÞ¼
Xk

j¼1

Sj ðj ¼ 1; 2; 3; . . .; kÞ:

K : The sum of both operating and warm

standby machines i:e:K ¼ M þ SðkÞ:

k : The failure rate of operating machines:

aj : The failure rate of jthðj ¼ 1; 2; 3; . . .; kÞ
types of warm standby machines:

ti : Mean vacation rate by which the ithði ¼ 1; 2Þ
server returns from the vacation:

kd : Degraded failure rate of machines:

li : Mean service rate of ithði ¼ 1; 2Þ server
ai : The life time of ithði ¼ 1; 2Þserver:
bi : Repair rate of ithði ¼ 1; 2Þserver:

To study the machine repair problem (MRP), we

develop Markov machining system with vacation. For the

maintenance purpose, there is provision of two unreliable

servers and mixed-type warm standbys. Markovian model

is formulated by considering the following assumptions:

• The system consists of M operating and k-types of

warm standbys machines having the dissimilar failure

characteristic. At least M operating machines are

required for the normal operation of the system;

however, the system can operate in short mode with

at least l (\M) operating machines. The operating

machine may fail in Poisson pattern with failure rate k.
The jth type of warm standbys machines fail according

to Poisson process with rates aj j ¼ 1; 2; 3; . . .; kð Þ.
• The repair facility consists of two heterogeneous

repairmen. The first (second) server becomes activate

after taking exponentially distributed setup time

m�1
i ði ¼ 1; 2Þ to render repair of failed machines when

the workload of N1(N2) failed machines has accumu-

lated in the system.

• The repair job of the failed machines is done by the ith

(i = 1, 2) repairman according to exponential distribu-

tion with repair rate li. The repairman follows first in

first out (FIFO) discipline to render the repair to the

failed machines and can repair only one failed machine

at a time.

• The switchover time from standby state to operating or

from repair to standby state is negligible and assumed

to be perfect.

• While rendering the service to the failed machine, the

ith ði ¼ 1; 2Þ server may fail following Poisson distri-

bution with rate ai.
• When the server fails during the busy period, the

ith ði ¼ 1; 2Þ repair of the broken down server is done

immediately by the repairman according to exponential

distribution with rate bi ði ¼ 1; 2Þ.

The following indicator function nðsÞ is used to define

the server status at time epoch 0s0:

nðsÞ ¼
0;when both the servers are on vacation.

1;when the server 1 is in busy state and server 2 is on vacation:

2;when the server 1 is brokendown and server 2 is on vacation:

3;when both the servers are busy:

4;when the server 1 is brokendown and server 2 is busy:

5;when the server 2 is brokendown and server 1 is busy:

6;when both the servers are brokendown:

8
>>>>>>>>>>><

>>>>>>>>>>>:

The transient state probabilities of the system states are

defined as follows:

P0;mðsÞ: The probability that at time s, there are

m (0 B m B K) failed machines in the system and both the

servers are unavailable due to vacation.

Pi;mðsÞ: The probability that at time s, there are m

(1 B m B K) failed machines in the system and the server

is in state nðsÞ ¼ i; 1� i� 6:

Model governing equations

To develop Markov model for the transient behavior of

machining system described in the previous section, the state-

dependent transition rates for all the system states are to be

specified. Using these rates, the governing Chapman–Kol-

mogorov differential difference equations can be easily con-

structed to formulate the model using birth–death process.

For notational convenience, we shall use lð2Þ ¼ l1 þ l2;

a ¼ a1 þ a2, and SðkÞ ¼
Pk

j¼1

Sj.

The failure rate of operating machines km is given by

km ¼

Mkþ an; 0�m\S1
Mkþ an; Sðj�1Þ �m\SðjÞ; 2� j� k

ðK � nÞkd; SðkÞ �m\M þ SðkÞ ¼ K

0; otherwise

8
>><

>>:

where

am ¼
ðS1 � mÞd1 þ

Pk

i¼2

Sidi; 0�m\S1

ðSðjÞ � mÞdj þ
Pk

i¼jþ1

Sidi; Sðj�1Þ �m\SðjÞ; 2� j� k:

8
>>><

>>>:
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The repair rate li;m depends upon the server status
0nðsÞ ¼ i0; defined in the previous section. Now, we define

li;m ¼
lð2Þ; 2�m�K; nðsÞ ¼ 3

l1; 1�m�K; nðsÞ ¼ 1; 5
l2; 1�m�K; nðsÞ ¼ 4:

8
<

:

The transient equations to frame the Markov model are

constructed by the following flow conversation law. Now,

we frame the equations using the appropriate transition

rates for different level i (0 B i B 6) as follows:

(i) For i = 0: When both servers are on vacation:

dP0; 0ðsÞ
ds

¼ �k0P0;0ðsÞ þ l1P1;1ðsÞ ð1Þ

dP0;mðsÞ
ds

¼ �knP0;mðsÞ þ km�1P0;m�1ðsÞ;
1�m�N1 � 1

ð2Þ

dP0;mðsÞ
ds

¼�ðkm þ t1ÞP0;mðsÞ
þ km�1P0;m�1ðsÞ;N1�m�K � 1 ð3Þ

dP0;KðsÞ
dt

¼ �t1P0;KðsÞ þ kK�1P0;K�1ðsÞ: ð4Þ

(ii) For i = 1: Busy state for server 1, while the server

2 is on vacation:

dP1; 1ðsÞ
ds

¼ �ðk1 þ l1 þ a1ÞP1;1ðsÞ þ l1P1;2ðsÞ
þ b1P2;1ðsÞ þ l2P3;2ðsÞ

ð5Þ
dP1;mðsÞ

ds
¼ �ðkm þ l1 þ a1ÞP1;mðsÞ

þ km�1P1;m�1ðsÞ þ l1P1;mþ1ðsÞ
þ b1P2;mðsÞ; 2�m�N1 � 1

ð6Þ

dP1;mðsÞ
ds

¼ �ðkm þ l1 þ a1ÞP1;mðsÞ

þ km�1P1;m�1ðsÞ þ l1P1;mþ1ðsÞ
þ b1P2;mðsÞ þ t1P0;mðsÞ;N1 �m�N2 � 1

ð7Þ
dP1;mðsÞ

ds
¼ �ðkm þ l1 þ a1 þ t2ÞP1;mðsÞ

þ km�1P1;m�1ðsÞ þ l1P1;m�3ðsÞ
þ b1P2;mðsÞ þ t1P0;mðsÞ; N2 �m�K � 1

ð8Þ
dP1;KðsÞ

ds
¼ �ðl1 þ a1 þ t2ÞP1;KðsÞ

þ kK�1P1;K�1ðsÞ þ b1P2;KðsÞ
þ t1P0;KðsÞ: ð9Þ

(iii) For i = 2: Broken down state for server 1, while

the server 2 is on vacation:

dP2; 1ðsÞ
ds

¼ �ðk1 þ b1ÞP2;1ðsÞ þ a1P2;1ðsÞ ð10Þ

dP2;mðsÞ
ds

¼ �ðkm þ b1ÞP2;mðsÞ þ km�1P2;m�1ðsÞ
þ a1P1;mðsÞ;

2�m�K � 1

ð11Þ
dP2;KðsÞ

ds
¼ �b1P2;KðsÞ þ kK�1P2;K�1ðsÞ

þ a1P1;KðsÞ ð12Þ

(iv) For i = 3: When both servers are busy:

dP3; 2ðsÞ
ds

¼ �ðk2 þ aþ l2ÞP3;2ðsÞ þ lð2ÞP3;3ðsÞ
þ b1P4;2ðsÞ þ b2P5;2ðsÞ

ð13Þ
dP3;mðsÞ

ds
¼ �ðkm þ aþ lð2ÞÞPi;mðsÞ

þ km�1Pi;m�1ðsÞ þ lð2ÞPi;mþ1ðsÞ þ b1Piþ1;mðsÞ
þ b2Piþ2;mðsÞ; 3�m�N2 � 1

ð14Þ
dP3;mðsÞ

ds
¼ �ðkm þ aþ lð2ÞÞPi;mðsÞ

þ km�1Pi;m�1ðsÞ þ lð2ÞPi;mþ1ðsÞ
þ b1Piþ1;mðsÞ þ b2Piþ2;mðsÞ
þ t2Pi�2;mðsÞ; N2 �m�K � 1

ð15Þ

dP3;KðsÞ
ds

¼ �ðaþ lð2ÞÞPi;KðsÞ þ kK�1Pi;K�1ðsÞ

þ lð2ÞPi;Kþ1ðsÞ þ b1Piþ1;KðsÞ
þ b2Piþ2;KðsÞ þ t2Pi�2;KðsÞ:

ð16Þ

(v) For i = 4: When server 1 is broken down and

server 2 is busy:

dP4; 2ðsÞ
ds

¼ �ðk2 þ b1 þ a2ÞP4;2ðsÞ þ l2P4;3ðsÞ
þ a1P3;2ðsÞ þ b2P6;2ðsÞ

ð17Þ
dP4;mðsÞ

ds
¼ �ðkm þ b1 þ l2 þ a2ÞPi;mðsÞ

þ km�1Pi;m�1ðsÞ þ l2Pi;mþ1ðsÞ
þ a1Pi�1;mðsÞ þ b2Piþ2;mðsÞ;
N1 �m�K � 1

ð18Þ

dP4;KðsÞ
ds

¼ �ðb1 þ l2 þ a2ÞP4;KðsÞ
þ kK�1P4;K�1ðsÞ þ a1P3;KðsÞ
þ b2P6;KðsÞ ð19Þ
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(vi) For i = 5: When server 2 is broken down and

server 1 is busy:

dP5; 2ðsÞ
ds

¼ �ðk2 þ b2 þ a1ÞP5;2ðsÞ þ l1P5;3ðsÞ
þ a2P3;2ðsÞ þ b1P6;2ðsÞ

ð20Þ
dP5;mðsÞ

ds
¼ �ðkm þ b2 þ l1 þ a1ÞP5;mðsÞ

þ km�1P5;m�1ðsÞ þ l1P5;mþ1ðsÞ
þ a2P3;mðsÞ þ b1P6;mðsÞ;
N1 �m�K � 1

ð21Þ

dP5;KðsÞ
ds

¼ �ðb2 þ l1 þ a1ÞP5;KðsÞ
þ kK�1P5;K�1ðsÞ þ a2P3;KðsÞ
þ b1P6;KðsÞ: ð22Þ

(vii) For i = 6: When both servers are broken down:

dP6; 2ðsÞ
ds

¼ �ðk2 þ b1 þ b2ÞP6;2ðsÞ þ a2P4;2ðsÞ
þ a1P5;2ðsÞ

ð23Þ
dP6;mðsÞ

ds
¼ �ðkm þ b1 þ b2ÞP6;mðsÞ

þ km�1P6;m�1ðsÞ þ a2P4;mðsÞ
þ a1P5;mðsÞ; N1 �m�K � 1 ð24Þ

dP6;KðsÞ
ds

¼ �ðb1 þ b2ÞP6;KðsÞ þ kK�1P6;K�1ðsÞ

þ a2P4;KðsÞ þ a1P5;KðsÞ:
ð25Þ

Performance measures

The performance of any real-time system can be assessed

in terms of metrics which reveal the system’s operating

behavior in different scenarios.

Queueing indices

To predict and explore the behavior of the system, we

formulate transient performance indices, viz., (i) expected

number of broken down machines E½NðsÞ�, (ii) machine

availability MAðsÞ, (iii) carried load keffðsÞ, and (iv)

throughput ThðsÞ at time epoch 0s0 as follows:

ðiÞ E½NðsÞ� ¼
XK

m¼0

nP0;nðsÞ þ
X2

i¼1

XK

m¼1

nPi;mðsÞ

þ
X6

i¼3

XK

m¼2

nPi;mðsÞ
ð26Þ

ðiiÞ MAðsÞ ¼ 1� E½NðsÞ�
M þ SðkÞ

ð27Þ

ðiiiÞ keffðsÞ ¼
XK

m¼0

kmP0;mðsÞ þ
X2

i¼1

XK

m¼1

kmPi;mðsÞ

þ
X6

i¼3

XK

m¼2

kmPi;mðsÞ
ð28Þ

ðivÞ ThðsÞ ¼
XK

n¼1

l1P1;mðsÞ þ
XK

m¼2

lð2ÞP3;mðsÞ

þ
XK

m¼2

l2P4;mðsÞ þ
XK

m¼2

l1P5;mðsÞ:
ð29Þ

Long-run system states probabilities

The long-run probabilities of the server being in different

states, i.e., (i) both servers being on vacation PvðsÞ, (ii)
only server 1 being busy PB1ðsÞ, (iii) only server 2 being

busy PB2ðsÞ, (iv) both servers being busy PBðsÞ, (v) only
server 1 is under repair PD1ðsÞ, (vi) only server 2 is under

repair PD2ðsÞ, and (vii) both servers are broken down

PDðsÞ, respectively, at time epoch 0s0 are constructed as

follows:

ðiÞ PvðsÞ ¼
XK

m¼0

P0;mðsÞ ð30Þ

ðiiÞ PB1ðsÞ ¼
XK

m¼1

P1;mðsÞ þ
XK

m¼2

P5;mðsÞ ð31Þ

ðiiiÞ PB2ðsÞ ¼
XK

m¼2

P4;mðsÞ ð32Þ

ðivÞ PBðsÞ ¼
XK

m¼2

P3;mðsÞ ð33Þ

ðvÞ PD1ðsÞ ¼
XK

m¼1

P2;mðsÞ þ
XK

m¼2

P4;mðsÞ ð34Þ

ðviÞ PD2ðsÞ ¼
XK

m¼2

P5;mðsÞ ð35Þ

ðviiÞ PDðsÞ ¼
XK

m¼2

P6;mðsÞ: ð36Þ

System cost

To determine the cost incurred for the system operation, we

formulate a cost function involving some cost elements

associated with different states of the machining system.
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The various cost elements per unit time associated with the

status of the system, are defined as follows:

CH Holding cost of one failed unit in the system

CV Cost spent on the system when both the servers are

on vacation

CB1 Cost spent on the system when the server 1 is busy

CB2 Cost spent on the system when the server 2 is busy

CB Cost spent on the system when both the servers are

busy

CD1 Cost spent on the system, while only server 1 is

under repair

CD2 Cost spent on the system, while only server 2 is

under repair

CD Cost spent on the system when both the servers are

under repair

Now, we frame the cost function TC(t) which involves

the total cost per unit time by considering the above cost

elements and respective performance measures as follows:

TCðsÞ ¼ CH E½NðsÞ� þ CV PVðsÞ þ CB1 PB1ðsÞ
þ CB2 PB2ðsÞ þ CB PBðsÞ þ CD1 PD1ðsÞ
þ CD2 PD2ðsÞ þ CD PDðsÞ: ð37Þ

Neuro-fuzzy-based ANFIS Model

Now, we outline a brief concept of ANFIS approach which

is based on a neural network underlying the fuzzified

parameters. The fuzzy rules employed in ANFIS can be

formulated as

IF ðe1is E1Þ AND ðe2 is E2Þ. . . AND ðen is EnÞ
THEN G ¼ Fðe1; e1; . . .; en Þ:

ð38Þ

Here, F is a linear combination of the input variables

ðe1; e2; . . .; en Þ; and Ei’s are the respective fuzzy sets. Now,

output is obtained using weighted average for the

defuzzification method, given by

Fðe1; e2; . . .; en Þ ¼ h0 þ h1e1 þ h2e2 þ � � � þ hnen ð39Þ

where hi represents the weights corresponding to input

parameter ei ði ¼ 0; 1; 2; . . .; nÞ.
For our FTS model, an adaptive neuro-fuzzy inference

system is constructed by considering the input parameters k
and m and one output E½NðsÞ�.

Numerical simulation

The numerical results are presented to explore the sensi-

tivity of the system descriptors for the various performance

measures and to facilitate the cost analysis. The numerical

computation has been done using Runge–Kutta method to

provide the transient solution. For numerical simulation

purpose, 4th order Runge–Kutta algorithm is implemented

using the ode45 function of the MATLAB software. To

characterize the system behavior for different system

descriptors, the numerical results are displayed in Tables 1,

2 and Figs. 2, 3, 4, 5, 6, 7.

In Tables 1 and 2, we display the trends of the mean

number of failed machines E½NðsÞ�, availability of machi-

nes MAðsÞ, throughput Th ðsÞ, and system state long-run

probabilities by varying different input parameters. The

default parameters are chosen as M ¼ 5; l ¼ 2; R ¼
2; k ¼ 2; S ¼ 2; k ¼ 0:5; a1 ¼ 0:02; a2 ¼ 0:04;

kd ¼ 0:5; l1 ¼ 2; l2 ¼ 3; a1 ¼ 0:1; a2 ¼ 0:3; b1 ¼
10; b2 ¼ 8:

As we expect, it is noted in Tables 1, 2 that as time

increases, both E½NðsÞ� and ThðsÞ increase, whereas

MAðsÞ decreases.
To compute the ANFIS results, neuro-fuzzy tool in

MATLAB is used by considering Gaussian membership

function for the input parameters (k and m). For fuzzifica-
tion of k and m, we opt the five members which are shown

in Fig. 1. The members taken for each k and m are (i) very

low, (ii) low, (iii) average, (iv) high, and (v) very high.

In figs. 2, 3, 4, 5, 6, 7, to plot the results evaluated by R–

K method, the continuous lines are used, whereas the

numerical results obtained using ANFIS are depicted by

Table 1 Variations in different

system indices by varying time

for different values of a

a s E[N(s )] Th(s ) MA(s ) PB(s ) PV(s ) TC(s )

0.02 2 0.549268 0.001812 0.921533 7.50E - 07 0.998181 206.6814

6 1.502964 0.057002 0.785291 3.36E - 04 0.94283 275.096

10 2.029223 0.163365 0.710111 2.85E - 03 0.836967 302.3159

0.04 2 0.705696 0.003618 0.899186 2.91E - 06 0.996354 218.9347

6 1.878615 0.096852 0.731626 1.10E - 03 0.902545 299.466

10 2.400913 0.243451 0.657012 8.03E - 03 0.757294 321.1928

0.06 2 0.861606 0.006133 0.876913 8.06E - 06 0.993796 231.0421

6 2.229894 0.141126 0.681444 2.59E - 03 0.857623 321.2991

10 2.72298 0.318345 0.611003 1.65E - 02 0.683456 337.2844
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tick marks. From Figs. 2, 3, it is noticed that as time grows

up, the number of failed machines E½NðsÞ� increases; this
trend matches with the realistic situation also. From Fig. 2,

we see that as failure rate (k) of machine increases, the

number of failed machines E½NðsÞ� also becomes higher. It

is clear from Fig. 3 that the average number of failed

machine lowers down as the value of vacation rate m
increases; the trend for increasing the values of time s is

also observed in the figures. Figures 4, 5 show the

decreasing trend for the system availability MAðsÞ with

respect to time s. The system availability MAðsÞ signifi-

cantly decreases (increases) as value of k (m) increases. The
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for input variable k and m

Table 2 Variations in different

system indices by varying time

for different values of l

l s E[N(s )] Th(s ) MA(s ) PB(s ) PV(s ) TC(s )

1 1 1.647587 0.030931 0.76463 5.01E - 05 0.984513 312.5974

3 3.971559 0.43216 0.432634 0.009167 0.787161 471.2221

5 4.605148 0.827214 0.342122 0.042498 0.604173 499.1506

5 1 0.868953 0.012663 0.875864 2.00E - 06 0.996826 292.0626

3 2.30164 0.247366 0.671194 4.90E - 04 0.938067 398.3246

5 3.175741 0.609982 0.546323 5.43E - 03 0.849098 456.0356

9 1 0.867817 0.017336 0.876026 1.47E - 06 0.997103 332.0112

3 2.26336 0.275525 0.676663 2.70E - 04 0.953961 437.5128

5 2.916208 0.51288 0.583399 1.30E - 03 0.914607 484.2185

Fig. 2 E½NðsÞ� vs time at various values of k Fig. 3 E½NðsÞ� vs time at various values of m
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throughput ThðsÞ plotted in Figs. 6 and 7, is significantly

increases as k and m increase. In these figures, it is quite

clear that the effects of parameters k and m on throughput

ThðsÞ are much prevalent as time s grows; however, after

a certain time, the impact seems to be stabilized.

In Figs. 2, 3, 4, 5, 6, and 7, numerical results for

E½NðsÞ�, MAðsÞ, and Th(sÞ, respectively, are plotted using

both Runge–Kutta method (curve) and ANFIS (ticked

marks) approach. From these figures, we can easily see that

the ANFIS results are at par with the results obtained by the

Runge–Kutta method. In addition, we conclude that the

neuro-fuzzy controller can be developed for the quantita-

tive assessment of metrics of unreliable machining system

to track the system performance.

The total expected cost incurred on the system TC(s) can
be minimized with respect to the decision parameter repair

rate (l) of the failed machines using heuristic search

approach. To search the optimal value of repair rate ‘l*’, we
choose three sets of cost elements (in $) as given in Table 3.

To make the study more useful from the cost–benefit view

point, the total cost function is plotted in Figs. 8, 9, and 10 for

three cost sets I, II, and III, respectively, and varying values

of l and s. It is noticed that the TC(l*) is a convex function
with respect to l and s both which can be seen in Figs. 8, 9,
10. The results obtained are quite interesting and can be

applied to any real-time machining systems for upgrading

the system by suitable choice of service/repair rate.

The minimum expected cost of the system is obtained as

TC(l*) = $190.59 at time s = 1 and the corresponding

optimal repair rate is l* = 1.54485 for cost set I. For cost

set II, the minimum expected cost of the system obtained is

TC(l*) = $150.37 and the associated optimal repair rate is

l* = 1.485456 at time s = 1. The minimum expected cost

of the system is TC(l*) = $128.07 and the corresponding

optimal repair rate is achieved l* = 1.24788 at time s = 1

for the cost set III.

Fig. 4 MAðsÞ vs time at various values of k

Fig. 5 MAðsÞ vs time at various values of m

Fig. 6 ThðsÞ vs time at various values of k

Fig. 7 ThðsÞ vs time at various values of m

Table 3 Cost elements (in $) associated with various system indices

Cost set CH CV CB1 CB2 CB CD1 CD2 CD Cm

I 170 70 50 60 70 80 90 130 30

II 120 70 50 60 70 80 90 130 25

III 80 70 50 60 70 80 90 130 20
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Conclusion

In this article, we have studied a Markov model by

including the features of vacation, threshold policy, two

unreliable heterogeneous servers, and mixed warm

standbys which make our model generic and more ver-

satile from application point of view. The transient study

of the system has been carried out using the Runge–

Kutta method to evaluate various system metrics in

terms of transient probabilities. To determine the total

cost of the system, a heuristic search approach is used so

as to obtain the minimum cost and corresponding opti-

mal repair rate of the server. The provision of unreliable

servers which are allowed to take vacation can be

noticed in many multi components redundant machining

systems. In industrial scenario, the model developed can

be used to provide the valuable insights for the fault

tolerant embedded systems such as computers, power

transmission lines, distributed data networks, telecom-

munications, and power plants, wherein the server as

well as machining components are failure prone. The

present work can be further extended by including the

optimal threshold N-policy or F-policy. Furthermore, the

realistic feature of bulk failure can be included, but in

that case, the evaluation of system performance indices

seems to be tedious.
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