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Forecasting time and place of earthquakes using
a Semi-Markov model (with case study in
Tehran province)
Ramin Sadeghian
Abstract

The paper examines the application of semi-Markov models to the phenomenon of earthquakes in Tehran
province. Generally, earthquakes are not independent of each other, and time and place of earthquakes are related
to previous earthquakes; moreover, the time between earthquakes affects the pattern of their occurrence; thus, this
occurrence can be likened to semi-Markov models. In our work, we divided the province of Tehran into six regions
and grouped the earthquakes regarding their magnitude into three classes. Using a semi-Markov model, it
proceeds to predict the likelihood of the time and place of occurrence of earthquakes in the province.
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Background
Forecasting the time and place of earthquakes is considered
to be very important in science (Sadeghian 2007). Many
researchers in the fields of mathematics, physics, and geol-
ogy have tried to forecast the time and place of earthquake
occurrence. Most of these are one-dimensional studies,
looking at either the time or place of occurrence, and
some of them have studied the prediction of occur-
rence as two-dimensional (Papazachos 1992; Rikitake
1976; Kelleher et al. 1973; Nanjo et al. 2006; Qin et al.
1999). While forecasting time or place alone cannot help
prevent devastation caused by earthquakes, it is helpful if
both dimensions are looked at together; it is useful to con-
sider the dimension of magnitude as the third dimension
along them. Some researchers have explained that the oc-
currence of earthquakes can be considered as memoryless
models such as Markov models (Altinok and Kolcak 1999;
Patwardhan et al. 1980; Nava et al. 2005). Some
researchers have studied on earthquake prediction using a
Markov chain model (such as Di Luccio et al. 1997; Con-
sole et al. 2002; Console 2001), and few of them have con-
sidered the model as semi-Markov (Altinok and Kolcak
1999; Patwardhan et al. 1980). These papers using a semi-
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Markov model don't have either much analysis or any
evaluation on obtained results. Altinok and Kolcak (1999)
and Patwardhan et al. (1980) didn't use scientific techniques
for selecting used regions and magnitudes, while we apply a
clustering method for regions and magnitudes. Altinok and
Kolcak (1999) didn't discuss about selecting time unit. Nava
et al. (2005) used a Markov model for the validation of
earthquake occurrence, while the proposed model is a
semi-Markov model. Patwardhan et al. (1980) and Altinok
and Kolcak (1999) didn't forecast time, place, and magni-
tude of earthquake occurrence simultaneously, while we
obtain joint functions for forecasting all dimensions simul-
taneously. The paper here tries to improve weaknesses of
the papers and apply different methods for determining
regions, magnitudes, and time unit. Using a semi-Markov
model to forecast time, place, and magnitude of occurrence
of earthquakes in the province, it is possible to improve the
precautionary measures. Some advantages of semi-Markov
models in comparison to other models were explained by
Patwardhan et al. (1980). Because energies saved under
faults are freed when an earthquake occurs, the time and
magnitude of the earthquake within a specified region de-
pend on the previous earthquake in the region. Conse-
quently, earthquake occurrence can be explained by
Markov models. Note that future periods can be forecasted
by previous periods in Markov models. Nava et al. (2005)
used a Markov model for the validation of earthquake,
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while the proposed model is a semi-Markov model. Also,
Sadeghian and Jalali-Naini (2008a,b) applied a semi-Mar-
kov model and probability distributions on the field of
earthquakes. In the next sections, we describe definitions
of a semi-Markov model and its necessary parameters such
as holding time, core matrix, interval transition probability
matrix, and their analyses. A semi-Markov model is
used for Tehran province. Next, the data correspond-
ing to the province and its magnitudes during 1966 to
2004 are clustered, and then, both region-to-region
and magnitude-to-magnitude transition matrices are
obtained. Forecasting is performed by matrices obtained
during next 3 years.
Case description
Semi-Markov model
Consider a continuous time chain X tð Þf gt2 0;1½ Þ , taking
value in a discrete state space S:
1. Tn n≥1ð Þ is the time of the nth transition after t ¼ 0.

(Note that the chain does not have to change states
at each transition, as at time T4 in Figure 1).

2. The duration between two consecutive transitional
epochs Tn�1;Tn is defined as the chain's nth holding
time.

3. If the chain's sample path is right continuous (i.e.,
the time is considerable as piecemeal), then we write
Xn � X Tnð Þ.

The chain of X tð Þf gt2 0;1½ Þ is said to be semi-Markov if

its development after each transition is independent of
its behavior before that time. This means that the distri-
bution of its holding time Tn � Tn�1 is independent of
its behavior before Tn�1 but may be a function of
Xn�1 ¼ X Tn�1ð Þ;Xn ¼ X Tnð Þ. If Xn�1 ¼ i;Xn ¼ j, we de-
note the holding time Tn � Tn�1 by tij.
If all holding times in a semi-Markov chain are equal

to a constant value, the chain can be studied as a
discrete-time Markov chain. To describe it completely,
we need only to have all transition probabilities.
Figure 1 A continuous time chain.
If a semi-Markov chain has only one state, all its hold-
ing times can only be a function of this one state; hence,
they are independent and identically distributed. The
chain therefore can be studied as a renewal stream, with
a renewal at each transition; we only need its holding
time distribution as the life distribution of the stream
(Jalali-Naini 1997; Minh 2001). See previous studies of
Kulkarni (1995), Cotea and Stein (2006), Bradley et al.
(2006), Bradley and Wilson (2005), and Jenamani et al.
(2003) for some general references about semi-Markov
models.

Transition matrix
The transition probability Gij is the probability that a
semi-Markov process which has entered state ί on its
last transition will enter state j on its next transition.
These probabilities must satisfy the conditions:

Gij≥0 ; i ¼ 1; . . . ;N ; j ¼ 1; . . . ;NXN
j¼1

Gij ¼ 1 ; i ¼ 1; . . . ;N ð1Þ

where N is the total number of states in the system
(Minh 2001; Altinok and Kolcak. 1999; Kulkarni 1995;
Jenamani et al. 2003).

Holding time
Before the transition from state i to state j, the process
remains in state i for a time tij . The holding times tij are
positive, integer-valued, random variables. All holding
times are finite, and each is at least equal to one time unit.
The probability mass function Tij in tij is called the hold-
ing time mass function for a transition from state i to j:

Pr tij ¼ m
� � ¼ Tij mð Þ; m ¼ 1; . . . ; n ð2Þ

Here, n is the number of time intervals. We must specify
both the holding time mass functions and the transition
probabilities to describe a discrete-time semi-Markov
process completely (see Minh 2001; Altinok and Kolcak
1999; Kulkarni 1995; Jenamani et al. 2003).

Core matrix
The ijth element of the core matrix C mð Þ is the probabil-
ity of the joint event in which a system that entered state i
at time 0 makes its next transition to state j and makes
that transition after a holding time m (Altinok and Kolcak
1999).

Cij mð Þ ¼ Pr Xn ¼ jð jXn�1 ¼ ið Þ; tij ¼ m
� � Þ

¼ Pr Xn ¼ jð jXn�1 ¼ iÞ:Pr tij ¼ m
� �

¼ Gij:Tij mð Þ⇒Cij mð Þ ¼ GijTij mð Þ; i; j
¼ 1; . . . ;N ;m ¼ 1; . . . ; n ð3Þ



Figure 2 Map of Tehran province.
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We denote the above equation in congruent matrix
multiplication form by,

C mð Þ ¼ G�T mð Þ; ð4Þ

where the operator � denotes multiplication of corre-
sponding elements. If we sum the elements of C mð Þ
across the i throw, we obtain the waiting time mass
function wi mð Þ for the ith state:

XN
j¼1

Cij mð Þ ¼
XN
j¼1

GijTij mð Þ ¼ wi mð Þ; ð5Þ

Indeed, wi mð Þ is the probability that waiting time for
the ith state is equal to m.
The cumulative probability distribution of the waiting

time is obtained from

LEwi nð Þ ¼
Xn
m¼1

wi mð Þ; ð6Þ

LEwi mð Þ is the probability that the waiting time for
the ith state is less than or equal to n. The complemen-
tary of LEwi is then given by

Gwi nð Þ ¼
X1

m¼nþ1

wi mð Þ; ð7Þ

Gwi mð Þ is the probability that waiting time for the ith
state is greater than n.

Interval transition probability matrix
The most important statistics of the semi-Markov process
are the interval transition probabilities. The probability of
a transition from state i to state j in the interval 0; nð Þ
requires that the process makes at least one transition dur-
ing that interval. The process could have made its first
transition from state i to some state at time m, where
0≤m≤nð Þ , and then by the sum of a succession of transi-
tions, it could have made its way to state j at time n.

F nð Þ ¼ GW nð Þ þ
Xn
m¼0

G�T mð ÞF n�mð Þ

¼ GW nð Þ þ
Xn
m¼0

C mð ÞF n�mð Þ; n

¼ 0; 1; 2; . . . ð8Þ

Here, GW nð Þ is a diagonal matrix with its ith element
equal to Gwi nð Þ. The interval transition probability F nð Þ
is obtained by a recursive procedure. Because T 0ð Þ is
equal to 0, F nð Þ is obtained for the interval 1≤m≤n . In
the case n ¼ 0 , F nð Þ is equal to the Kronecker Delta
(Equation 9) or identity matrix.

Fij 0ð Þ ¼ 1 i ¼ j
0 i 6¼ j

�

ð9Þ

In the earthquake phenomenon, these probabilities
can be used for studying earthquake hazards (Altinok
and Kolcak 1999; Patwardhan et al. 1980) and evaluating
seismic hazard (Nava et al. 2005).

Discussion and evaluation
Application of the model
Tehran province is selected as an area of investigation.
This area is bounded by longitudes 50:42�E ; 53:16�E
and latitudes 35:23�N ; 36:33�N (Figure 2). Earthquake
data are obtained from a catalog in the USGS website
(USGS 2011).
After filtering and removing unsuitable data, the data

wherein 44 earthquakes occurred from 1966 to 2004 are
used. Note that if there are sufficient data such as a large
number, accuracy, and long time interval, we expect that
the accuracy of forecasting is increased and that the pro-
posed model is validated mathematically.
We consider two transitions: from region-to-region

and magnitude-to-magnitude.

Region-to-region transition
In the first stage, regions are chosen as states. We divided
Tehran province into six regions R1;R2;R3;R4;R5;R6

(Figure 2). The transition probability matrix of region-to-
region transitions was determined in Equation 10. Selecting
1 year for time unit, the largest time interval for the region-
to-region transitions is found to be 5 years; therefore, hold-
ing time mass functions TR mð Þ are obtained by taking into
account the time lapse between successive earthquakes
(Equation 11). Also, interval transition probabilities FR nð Þ
are calculated using Equation 8. They are shown in
Equations 11 and 12.



FR 1ð Þ ¼

:335 0 :335 0 :33 0
:125 :375 :375 :125 0 0
0 :17 :494 0 0 :336
0 1 0 0 0 0
0 :25 0 0 :5 :25
0 :06 :11 0 :055 :775

0
BBBBBB@

1
CCCCCCA

:335 :14 :165 0 :165 :195
:089 :329 :368 :047 :041 :126
:021 :14 :345 :021 :018 :455

0
BBB

1
CCC
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GR ¼

R1

R2

R3

R4

R5

R6

0 0 :67 0 :33 0
:125 :375 :375 :125 0 0
0 :17 :33 0 :08 :42
0 1 0 0 0 0
:25 :25 0 0 0 :5
0 :06 :22 0 :11 :61

0
BBBBBB@

1
CCCCCCA
ð10Þ
TR 1ð Þ ¼

0 0 :5 0 1 0
1 1 1 1 0 0
0 1 1 0 0 :8
0 1 0 0 0 0
0 1 0 0 0 :5
0 1 :5 0 :5 :91

0
BBBBBB@

1
CCCCCCA

TR 2ð Þ ¼

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 :2
0 0 0 0 0 0
0 0 0 0 0 :5
0 0 :25 0 :5 :09

0
BBBBBB@

1
CCCCCCA

TR 3ð Þ ¼

0 0 :5 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 :25 0 0 0

0
BBBBBB@

1
CCCCCCA

TR 4ð Þ ¼

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0
BBBBBB@

1
CCCCCCA

TR 5ð Þ ¼

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0
BBBBBB@

1
CCCCCCA

ð11Þ

FR 2ð Þ ¼
:125 :375 :375 :125 0 0
:031 :109 :121 :031 :264 :444
:008 :088 :193 :008 :113 :59

BBB@
CCCA

FR 3ð Þ ¼

:017 :083 :49 :017 :093 :3
:1 :24 :334 :041 :043 :242

:025 :137 :33 :018 :056 :434
:089 :329 :368 :047 :041 :126
:274 :119 :168 :014 :052 :373
:014 :117 :262 :011 :112 :484

0
BBBBBB@

1
CCCCCCA

FR 4ð Þ ¼

:1 :142 :331 :01 :036 :381
:06 :193 :356 :03 :054 :307
:03 :133 :35 :017 :073 :397
:1 :24 :334 :041 :043 :242
:114 :11 :281 :015 :15 :33
:035 :129 :274 :015 :096 :451

0
BBBBBB@

1
CCCCCCA

FR 5ð Þ ¼

:055 :128 :325 :018 :08 :394
:058 :17 :348 :025 :054 :342
:033 :13 :29 :017 :155 :375
:06 :193 :356 :03 :054 :307
:111 :144 :264 :014 :107 :36
:051 :132 :288 :016 :086 :427

0
BBBBBB@

1
CCCCCCA
ð12Þ
Magnitude-to-magnitude transitions
In the second stage, magnitudes are chosen as states. Simi-
lar to the previous stage, we apply the AGNES method
(Ghazanfari and Rezaei 2006) for the clustering of magni-
tudes, and three clusters on magnitudes as states are
established in the whole regions as follows:

M1 : MB < 4:5
M2 : 4:5 ≤ MB ≤ 5
M3 : 5 < MB

ð13Þ

where MB is a unit of the magnitude of earthquakes; it is
called as body wave magnitude.
The transition matrix of magnitude-to-magnitude

transitions is given in Equation 17. The holding time
mass functions TM mð Þand interval transition probabilities



Table 1 Matrix P1

1 2 3 4 5

P1 = R1 to R1 0.335 0.335 0.017 0.1 0.055

R1 to R2 0 0.14 0.083 0.142 0.128

R1 to R3 0.335 0.165 0.49 0.331 0.325

R1 to R4 0 0 0.017 0.01 0.018
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FM nð Þ are calculated using Equation 2 through Equation
8. These are shown in Equations 15 and 16.

GM ¼
M1

M2

M3

:5 :3 :2
:45 :5 :05
:167 :5 :333

0
@

1
A ð14Þ
TM 1ð Þ ¼
1 1 :75
:67 :7 0
0 1 1

0
@

1
A TM 2ð Þ ¼

0 0 :25
:11 :2 0
1 0 0

0
@

1
A

TM 3ð Þ ¼
0 0 0
:22 0 1
0 0 0

0
@

1
A TM 4ð Þ ¼

0 0 0
0 0 0
0 0 0

0
@

1
A

TM 5ð Þ ¼
0 0 0
0 :1 0
0 0 0

0
@

1
A

ð15Þ

FM 1ð Þ ¼
:55 :3 :15
:302 :698 0
0 :5 :5

0
@

1
A FM 2ð Þ ¼

:365 :435 :2
:322 :633 :045
:318 :515 :167

0
@

1
A

FM 3ð Þ ¼
:326 :51 :164
:38 :486 :134
:359 :538 :103

0
@

1
AFM 4ð Þ ¼

:347 :507 :146
:336 :514 :15
:37 :495 :135

0
@

1
A

FM 5ð Þ ¼
:347 :51 :143
:328 :526 :146
:346 :507 :147

0
@

1
A

ð16Þ

R1 to R5 0.33 0.165 0.093 0.036 0.08

R1 to R6 0 0.195 0.3 0.381 0.394

Table 2 Matrix P2

1 2 3 4 5

P2 = R2 to R1 0.125 0.089 0.1 0.06 0.058

R2 to R2 0.0375 0.329 0.24 0.193 0.17

R2 to R3 0.375 0.368 0.334 0.356 0.348

R2 to R4 0.125 0.047 0.041 0.03 0.025

R2 to R5 0 0.041 0.043 0.054 0.054

R2 to R6 0 0.126 0.242 0.307 0.342

Table 3 Matrix P3

1 2 3 4 5

P3 = R3 to R1 0 0.021 0.025 0.03 0.033

R3 to R2 0.17 0.14 0.137 0.133 0.13

R3 to R3 0.494 0.345 0.33 0.35 0.29

R3 to R4 0 0.021 0.018 0.017 0.017

R3 to R5 0 0.018 0.056 0.073 0.155

R3 to R6 0.336 0.455 0.434 0.397 0.375

Table 4 Matrix P4

1 2 3 4 5
Forecasting

P4 = R4 to R1 0 0.125 0.089 0.1 0.06

R4 to R2 1 0.375 0.329 0.24 0.193

R4 to R3 0 0.375 0.368 0.334 0.356

R4 to R4 0 0.125 0.047 0.041 0.03

R4 to R5 0 0 0.041 0.043 0.054

R4 to R6 0 0 0.126 0.242 0.307

Table 5 Matrix P5

1 2 3 4 5

P5 = R5 to R1 0 0.031 0.274 0.114 0.111

R5 to R2 0.25 0.109 0.119 0.11 0.144

R5 to R3 0 0.121 0.168 0.281 0.264

R5 to R4 0 0.031 0.014 0.015 0.014

R5 to R5 0.5 0.264 0.052 0.15 0.107

R5 to R6 0.25 0.444 0.373 0.33 0.36
In this section, time and magnitude of earthquake occur-
rence are forecasted for each region in the next 3 years.
Note that some forecasting methods based on probability
approaches don't have sufficient accuracy, and others are
more accurate. Matrices P1 through P6 show region-to-re-
gion transition probabilities by time of occurrence without
considering the dimension of magnitude. In other words,
the sum of each column is equal to 1 (see Tables 1, 2,
3, 4, 5, and 6). For example, the ijth element of matrix P1
shows the probability of earthquake occurrence in region Ri

during year j if the last earthquake has occurred in region
R1. Similarly, matrices P7 through P9 show magnitude-to-
magnitude transition probabilities by time of occur-
rence without considering the spatial dimension (see
Tables 7, 8, 9). In these matrices, the sum of each column
is also equal to 1.
Here, a semi-Markov model for considering the time

of earthquake occurrence is applied. This method
requires time, place, and magnitude of previous



Table 6 Matrix P6

1 2 3 4 5

P6 = R6 to R1 0 0.008 0.014 0.035 0.051

R6 to R2 0.06 0.088 0.117 0.129 0.132

R6 to R3 0.11 0.193 0.262 0.274 0.288

R6 to R4 0 0.008 0.011 0.015 0.016

R6 to R5 0.055 0.113 0.112 0.096 0.086

R6 to R6 0.775 0.59 0.484 0.451 0.427

Table 7 Matrix P7

1 2 3 4 5

P7 = M1 to M1 0.55 0.365 0.326 0.347 0.347

M1 to M2 0.3 0.435 0.51 0.507 0.51

M1 to M3 0.15 0.2 0.164 0.146 0.143

Table 8 Matrix P8

1 2 3 4 5

P8 = M2 to M1 0.302 0.322 0.38 0.336 0.328

M2 to M2 0.698 0.633 0.486 0.514 0.526

M2 to M3 0 0.045 0.134 0.15 0.146

Table 9 Matrix P9

1 2 3 4 5

P9 = M3 to M1 0 0.318 0.359 0.37 0.346

M3 to M2 0.5 0.515 0.538 0.495 0.507

M3 to M3 0.5 0.167 0.103 0.135 0.147
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earthquakes. If the previous earthquake is within re-
gion r0 and its magnitude is m0, then the probability of
occurrence of the next earthquake within region r1 and
magnitude m1 after d time periods is a conditional
probability defined as follows:
P R ¼ r1;M ¼ m1ð jr0;m0; d Þ ¼ P r1;m1ð jr0;m0; dÞ

¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼region�to�region transition probabilities are independent from

magnitude�to�magnitude transition probabilities

P r1ð jr0; dÞ:P m1ð jm0; dÞ ¼ FRr0 r1
dð Þ:FMm0 m1

dð Þ
Using the above equations and the list of data, the
last earthquake in Tehran province occurred at 28
May 2004 within region R1 with a magnitude of 6.3
(MB). Consider the current time as November 2006;
in this way, the proposed model forecasts that the
most probable occurrence of an earthquake within
Tehran province within region R3 (northeast of Tehran
province) with a magnitude of M2 (4:5≤MB≤5) from May
2006 to May 2007 is 0.2636 (26.36%).
Conclusion
This article attempts to forecast the likelihood of all
earthquakes within Tehran province in the next
years by a semi-Markov model. The proposed model
forecasts that the most probable occurrence of an
earthquake within Tehran province within region R3

(northeast of Tehran province) with a magnitude of
M2 ( 4:5≤MB≤5 ) from May 2006 to May 2007 is
0.2636 (26.36%). According to our forecasting, an
earthquake occurred in Roudehen (northeast of
Tehran province) with a magnitude of 4.2 MB on
20 December 2006. This can be considered as the
evaluation of the proposed model.
The average magnitude of earthquake occurrence

in Tehran province is 3.1 MB yearly. The most num-
ber of earthquake occurrences have occurred in
intervals 4 < MB≤4:5ð Þ . It includes 32% all of the
events. Here, in this paper, the spatial, temporal, and
magnitude dimensions are considered, while in past
researches, these three dimensions were considered
less.
As a conclusion, the amount of forecast errors shows

that MAPE (Haj Shirmohammadi 2003) in this model is
equal to 4.45%, while in other models, it is more than
10% (Papazachos 1992; Karakaisis 1994).
The obtained results during the next 50 days show that

in other models, 42% of earthquakes have been correctly
forecasted. The places of 16% of earthquake occurrences
have been correctly forecasted, but not their magnitudes.
Sixteen percent of the forecasted earthquakes occurred in
places adjacent to the forecasted ones, but their magni-
tudes were true, and 26% of earthquakes could not have
been forecasted at all.
In this model, 56% of earthquakes have been correctly

forecasted in all the three dimensions. The places of 19% of
earthquake occurrences have been correctly forecasted, but
not their magnitudes. Nineteen percent of the forecasted
earthquakes occurred in places adjacent to the forecasted
ones, but their magnitudes were true, and 6% of earthquakes
could not have been forecasted at all.
The mentioned statistics above show that this

model in comparison to others can be applied in a
more accurate forecasting.
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