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Abstract
Original data envelopment analysis models treat decision-making units as independent entities. This feature of data envel-
opment analysis results in significant diversity in input and output weights, which is irrelevant and problematic from the 
managerial point of view. In this regard, several methodologies have been developed to measure the efficiency scores based 
on common weights. Specifically, Ruiz and Sirvant (Omega 65:1–9, 2016) formulated an aggregated DEA model to minimize 
the gap between actual performances and best practices and identify a common best practice frontier. Their model is capable 
of determining target units for all units under evaluation, simultaneously, with the property that all of them are located on 
a common best practice frontier. However, in practice it is difficult for some units to achieve that specified target in a single 
step. Consequently, developing a methodology for assisting units to reach their corresponding targets, through a path of 
intermediate improving targets, is useful. This problem is investigated in this paper, and we propose a stepwise target setting 
approach which provides a path of intermediate targets for each unit. We study efficient and inefficient units separately and 
provide two distinct models for each category, although both of them are intrinsically similar. A simple numerical example 
and an application are also provided to illustrate our approach.

Keywords DEA · Target setting · Common benchmarking · Reference hyperplane · Sequential targets

Introduction

Data envelopment analysis (DEA) is a nonparametric linear 
programming-based technique first developed by Charnes 
et al. (1978) for evaluating the performance of homogeneous 
decision-making units (DMUs) having multiple inputs and 
multiple outputs. Since then DEA has been implemented 
in various applications such as service quality evaluation 
(Najafi et al. 2015), evaluation of academic performance 
(Monfared and Safi 2013) and facility location problem 
(Razi 2018). In DEA, efficiency score of each unit is gener-
ally defined as the ratio of the weighted sum of outputs to the 
weighted sum of inputs. The corresponding input and output 
weights for each unit are then calculated by solving individ-
ual linear programming problems that maximize this ratio 
provided that the corresponding ratio for all the units does 
not exceed one. Units with efficiency score of one are sub-
mitted as efficient and lay on the efficient frontier of the tech-
nology, whereas a score less than one signals inefficiency. 

Zamani and Borzouei (2016) investigated the stability region 
for preserving this classification in the presence of variable 
returns to scale. On the other hand, one of the main functions 
of DEA is benchmarking. It means that for each inefficient 
unit, DEA determines a (virtual) target unit lying on the 
frontier that monitors the best levels of inputs and outputs 
for that unit to perform efficiently. The first research on this 
subject was developed by Frei and Harker (1999), who have 
investigated the issue of benchmarking based on projecting 
inefficient units onto the strongly efficient frontier of DEA, 
considering Euclidean distance. After that, some researchers 
generalized the idea of using Euclidean distance in order to 
define efficiency measure and also to project units onto the 
strongly efficient frontier, e.g., see Baek and Lee (2009), 
Amirteimoori and Kordrostami (2010), and Aparicio and 
Pastor (2014a, b). The issue of least distance to the frontier 
has been used in other applications of DEA, such as rank-
ing units (e.g., see Ziari 2016; Aghayi and Tavana 2018). 
The concept of benchmarking based on least distance has 
also been developed by Pastor and Aparicio (2010), Ando 
et al. (2012, 2017), Aparicio and Pastor (2013, 2014a, b) 
and Aparicio et al. (2014). On the other hand, some authors 
like Cherchye and Van Puyenbroeck (2001) and Silva 
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Portela et al. (2003) have developed some benchmarking 
approaches based in the issue of similarity and closeness. 
Their motivation was that a benchmark which is closer to 
the inefficient unit is easier to be reached. Other measures of 
efficiency, like the modified Russell measure and the slack-
based measure, have been also utilized for benchmarking, 
e.g., see Gonzalez and Alvarez (2001) and Aparicio et al. 
(2007). However, benchmarking is considered as an impor-
tant field of research in DEA and can be viewed from dif-
ferent perspectives such as neural network as discussed in 
Shokrollahpour et al. (2016), artificial units in Didehkhani 
et al. (2018) or Fuzzy De-Novo programming by Sarah and 
Khalili-Damghani (2018). For a complete review of other 
benchmarking models, the reader is referred to Aparicio 
(2016), Aparicio et al. (2017a, b).

An important feature of DEA in evaluating units is that 
it behaves naturally optimistic, in the sense that it primarily 
treats units as individual and independent entities, as the 
corresponding optimal weights for each unit are calculated 
by autonomous programs. Therefore, it would be likely to 
happen that the input and output weights differ considerably 
across all units, which is incompatible and irrelevant. Espe-
cially, flexibility in choosing each unit’s optimal weights 
will surely reduce the discrimination power of DEA in dis-
tinguishing efficient and inefficient units. This query usually 
causes critical arguments among researchers. In this regard, 
there are a variety of means to overcome the aforementioned 
difficulty. For an early review of methods on improving the 
power of discrimination in DEA see Angulo-Meza and Lins 
(2002). One basic approach suggested by Li and Reeves 
(1999) is the multiple criteria DEA (MCDEA) technique. 
They formulated DEA in the framework of multi-criteria 
decision making (MCDM) and tried to evaluate units apply-
ing MCDM techniques. Recently, Chaves et al. (2016) stud-
ied the main properties of the model proposed by Li and 
Reeves (1999). On the other hand, Bal and Orkcu (2007) 
formulated a goal programming problem for weight disper-
sion in DEA. Their approach was later improved by Bal 
et al. (2010). Furthermore, Ghasemi et al. (2014) suggested 
an approach for improving the discrimination power in 
MCDEA. This study was recently supplemented by Rubem 
et al. (2017) who introduced a weighted goal programming 
formulation to solve the MCDEA problem.

Another basic approach to improve the discrimination 
power of DEA is to determine a common set of weights for 
all units under assessment. This approach was first proposed 
by Roll et al. (1991). Actually, a common set of weights 
(CSWs) are basically considered as coefficients of a sup-
porting hyperplane of the DEA technology at some efficient 
units. However, the question of how to determine such a 
hyperplane has been seen in different perspectives. One 
approach is to minimize the difference between the DEA 
efficiency scores and those obtained from the associated 

CSWs. This method was investigated by Despotis (2002) 
and Kao and Hung (2005). Other formulations have been 
also proposed, such as maximizing the sum of the effi-
ciency ratios of all the units by Ganley and Cubbin (1992), 
maximizing the minimum of the efficiency ratios by Troutt 
(1997), or introducing ideal and anti-ideal virtual units by 
Khalili-Damghani and Fadaei (2018).

Additionally, Ruiz and Sirvant (2016) formulated a model 
of CSW in the framework of benchmarking, i.e., they formu-
lated a program to globally minimize a weighted L1-distance 
of all the units to their corresponding benchmarks which are 
located on a common hyperplane of the DEA technology. 
In this regard, they suggested that only a facet of the DEA 
technology should be considered as the best practice frontier. 
Then, the coefficients of this hyperplane are implemented 
to calculate efficiency scores. Therefore, it is reasonable to 
establish benchmarks on this frontier. However, it should 
be noted that applying this method for target setting may 
involve deterioration of some of the observed input and out-
put levels. In other words, in the common benchmarking 
approach the dominance criteria do not prevail necessarily. 
Moreover, this approach provides benchmark activities for 
all units under evaluation, simultaneously. Even for efficient 
units which are not located on the common best practice 
frontier, a different benchmark unit may be assigned, located 
on the underlying hyperplane. The inquiry that is highlighted 
here is that as all the benchmarks lay on a common support-
ing hyperplane of the technology, it is likely happen that the 
determined best practice efficient target may be very far from 
the corresponding unit. Therefore, it would be quite impos-
sible for that unit to achieve its (final) target in one single 
step, because large-scale input and output adjustments are 
quite problematic and very demanding for an inefficient unit. 
This issue is also of great importance even if the final tar-
get is obtained via conventional DEA model for individual 
units separately. In this regard, some researchers investigated 
the problem of stepwise target setting. This issue includes 
developing a set of intermediate targets which constitute a 
path toward the strongly efficient frontier on which the final 
target is located. The methods of stepwise target setting can 
be categorized into two types. The first category involves the 
approaches in which all intermediate targets and final target 
are chosen from among the set of observed (or existing) 
units. In contrast, all the approaches that allow all virtual 
units to be selected as intermediate and final target belong to 
the second category. In this regard, Seiford and Zhu (2003) 
were the first who developed a model for type one stepwise 
benchmarking. Their model has been formulated based on 
context dependent DEA and layering units into successive 
layers. After that, most of the existing models in this cat-
egory adapted the idea of this idea, e.g., Lim et al. (2011) 
established a path of intermediate benchmarks by cluster-
ing units and layering them. Lozano and Villa (2005a, b) 



697Journal of Industrial Engineering International (2019) 15:695–707 

1 3

investigated the concept of efficiency improvement in DEA, 
which leads to a stepwise target setting model. Lozano and 
Villa (2005a) proposed a model which is based on bounded 
adjustments of inputs and outputs, such that only a limited 
portion of the corresponding input and output levels is 
allowed for reduction and expansion at each step, respec-
tively. Also, their model guarantees that each of intermediate 
targets dominates the previous one. Finally, the algorithm 
terminates when an efficient target is reached. Also, Suzuki 
and Nijkamp (2011) developed a stepwise projection DEA 
model for public transportation in Japan. Khodakarami 
et al. (2014) formulated a two-stage DEA model which has 
been applied on industrial Parks. Additionally, Fang (2015) 
developed a centralized resource allocation based on gradual 
efficiency improvement. For a complete review on the step-
wise target setting models see Lozano and Calzada-Infante 
(2017). Moreover, Nasrabadi et al. (2018) investigated the 
concept of stepwise benchmarking in the presence of inter-
val scale data in DEA.

The above discussion clarifies that the enquiry to inves-
tigate the problem of sequential benchmarking in case that 
all final benchmarks are located on a common hyperplane, is 
of great importance in DEA. In this study, we aim to inves-
tigate this subject in the framework of the CSW proposed 
by Ruiz and Sirvant (2016). Also, we incorporate the idea 
of bounded adjustments of Lozano and Villa (2005a, b) in 
our proposed method. Recalling that in the approach of Ruiz 
and Sirvant (2016) even efficient units that do not lay on 
the common best practice frontier are also assigned with a 
benchmark, a qualified model for determining a sequence 
of benchmarks should be applicable for both efficient and 
inefficient units. Therefore, we enquire about these two cases 
separately and establish different formulations for each one, 
although both models are basically similar.

This paper unfolds as follows. In “A common benchmark-
ing model in DEA” section, we present some preliminary 
considerations of DEA and review the common benchmark-
ing model developed by Ruiz and Sirvant (2016). Our pro-
posed approach for sequential benchmarking is illustrated 
in “Developing a benchmark path toward the common best 
practice frontier” section, followed by a simple numerical 
example in “Numerical example” section. Then, “Applica-
tion” section includes an empirical application and finally 
“Conclusion” section provides discussion and concluding 
remarks.

A common benchmarking model in DEA

In this section, we briefly present the common bench-
marking model developed by Ruiz and Sirvant (2016). 
Consider a set of n decision-making units (DMUs), each 
consuming m inputs to produce s outputs. For j = 1,… , n , 

we denote unit j by the activity vector (Xj, Yj) , where Xj 
and Yj are input and output vectors of unit j, respectively. 
It is assumed that Xj = (x1j,… , xmj)

t ∈ m
≥0

 , Xj ≠ 0 and 
Yj = (y1j,… , ysj)

t ∈ s
≥0

 , Yj ≠ 0.
The production possibility set consisting all feasi-

ble input–output vectors (X,  Y) is generally defined as 
T = {(X, Y)|X can produce Y} . Each member of T is 
called a (virtual) activity. We call each unit j an observed 
activity or an observed unit, for j = 1,… , n.1 An activity 
(X̄, Ȳ) ∈ T is said to be non-dominated or efficient in set T iff 
there exists no other (X, Y) ∈ T  such that X ≤ X̄ and Y ≥ Ȳ  . 
The set of all observed extreme efficient units is denoted 
by E.

If we assume a variable returns to scale (VRS) technol-
ogy, the set T in DEA is characterized as:

All models here are formulated for a VRS technology. How-
ever, the set T for constant returns to scale (CRS) technology 
can be easily formulated by dropping the affine constraint ∑n

j=1
�j = 1 from the above formulation.

The CSW model of Ruiz and Sirvant (2016)

Based on above notations, the common benchmarking model 
which provides the closest targets on a common efficient 
frontier of the technology for all units simultaneously, is 
formulated as (see Ruiz and Sirvant 2016):

(1)

Tv =

{
(X, Y) | X ≥

n∑

j=1

�jXj, Y ≤

n∑

j=1

�jYj,

n∑

j=1

�j = 1, �j ≥ 0, j = 1,… , n

}

(2)

min
n∑
j=1

‖(Xj, Yj) − (X∗
j
, Y∗

j
)‖�

1

s.t. X∗
j
=

∑
k∈E

�
j

k
Xk j = 1,… , n

Y∗
j
=

∑
k∈E

�
j

k
Yk j = 1,… , n

∑
k∈E

�
j

k
= 1 j = 1,… , n

�
j

k
≥ 0 j = 1,… , n, k ∈ E

X∗
j
≥ 0, Y∗

j
≥ 0 j = 1,… , n

− UYk + VXk + � − dk = 0 k ∈ E

U ≥ ��,V ≥ ��, � free

dk ≤ Mbk k ∈ E
n∑
j=1

�
j

k
≤ M(1 − bk) k ∈ E

bk ∈ {0, 1}, dk ≥ 0 k ∈ E,

1 In this paper, we use the terms “unit” and “activity” interchange-
ably.
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w h e r e  ‖(Xj, Yj) − (X∗
j
, Y∗

j
)‖�

1
=
∑m

i=1
wx
i
�xij − x∗

ij
�

+
∑s

r=1
w
y
r�yrj − y∗

rj
� is the weighted L1-distance in m+s 

space ,  wi th  the  nonnegat ive  weight  vec tor 
� = (��,��) ∈ m+s . Also, M is assumed to be a suffi-
ciently large positive quantity. Solving model (2), we have:

1. H∗ = {(X, Y) | − U∗Y + V∗X + �∗ = 0} is the common 
best practice frontier of the technology which is used as 
the reference hyperplane in target setting.2

2. The set RG = {k | 𝜆j∗
k
> 0 for some j, 1 ≤ j ≤ n} pro-

vides the reference group of units which lay on the refer-
ence hyperplane H∗.

3. For unit j which is not in the reference group, the coor-
dinates of the corresponding target on H∗ is given by 

Note that model (2) can be easily transformed to 
a zero–one linear program by using transformations 
|x| = x+ + x− and x = x+ − x− for x ∈ .

Difficulties in common benchmarking

Although model (2) determines benchmark activities for all 
units in the sense of closest targets, but the corresponding 
targets may be very far from the original units with actual 
input and output levels in practice. The main reason is that 
all targets are supposed to lay on a common supporting 
hyperplane of the underlying technology. Therefore, this 
makes it roughly impossible for some units to achieve the 
reference hyperplane in a single action, as it predictably 
requires significant adjustments of inputs and/or outputs. 
This issue is also of great importance even for efficient units 
which do not belong to RG. Here, we illustrate this point by 
a simple numerical example including 15 units with a single 
input and a single output. The original data set is provided 
by the first two columns of Table 1.

In order to determine the CSWs, target activi-
ties and the common best practice frontier, we 
run model (2) with (��,��) = (�m, �s) and obtain 
H∗ = {(x, y) | − 2y + x + 11 = 0} as the reference hyper-
plane. Also, the set RG = {�,�,�} is determined as the 
index set of the reference group. Moreover, the correspond-
ing targets are found out and given in the last two columns 
of Table 1. The corresponding technology in input–output 
space is represented in Fig. 1, and the common reference 
hyperplane is shown by bold line.

(3)(X∗
j
, Y∗

j
) =

∑

k∈E

�
j∗

k
(Xk, Yk).

It is clear that all units in RG, i.e., units � , � and � coin-
cide their corresponding targets. This also happens for the 
efficient non-extreme unit � which is located on H∗ . Moreo-
ver, the common benchmark for efficient units � , � and � is 
unit � and for unit � is unit � . Additionally, the correspond-
ing benchmark for the other inefficient units is a virtual (or 
observed) activity located on the intersection of H∗ and Tv.

Now, consider unit � . We observe that although it is effi-
cient, but it has a different benchmark, i.e., unit � , which 
is approximately far from it. Therefore, it might be disap-
pointing for unit � to just consider such a far unit as its 
benchmark, since it is roughly impossible to reach it in a 
single move. Moreover, there exists a similar story for, e.g., 
the inefficient unit �.

This setting motivates us to address the above mentioned 
problem, i.e., to help each unit to achieve the common best 
practice frontier gradually. We follow a procedure to set up a 
path of intermediate benchmarks for each unit until we reach 
H∗ . The procedure is developed in next section.

Developing a benchmark path 
toward the common best practice frontier

In order to develop a procedure for establishing a benchmark 
path, efficient and inefficient units are investigated sepa-
rately. Recalling that H∗ is the reference hyperplane char-
acterized by model (2) and assuming that unit “o” is under 
assessment, with o ∉ RG , we aim to establish a sequence 
of (improving) intermediate benchmarks for this unit that 
originates from it and converges to H∗ in sequential steps. 
Let (Target − t) be the model which calculates the tth (inter-
mediate) target from the preceding one. Then, we present 

Table 1  Data set of the 
numerical example

Unit x y �∗ �∗

A 1 2 4 7.5
B 2 5 4 7.5
C 4 7.5 4 7.5
D 7 9 7 9
E 12 10 7 9
F 1.5 2.5 4 7.5
G 3.5 5.5 4 7.5
H 6.5 8 6.5 8.75
I 11 9.5 7 9
J 4 4 4 7.5
K 5.5 4.5 5.5 8.25
L 8.5 6.5 7 9
M 10 8 7 9
N 1.5 3.5 4 7.5
P 5 8 5 8

2 In Ruiz and Sirvant (2016) this hyperplane has also been used for 
ranking units.
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the general scheme of our benchmarking algorithm as the 
following 3-step procedure:

Sequential Target Setting Algorithm for unit “o”

Step 1 Set t = 0 , (Xt
o
, Yt

o
) = (Xo, Yo).

Step 2 Set t = t + 1 and solve (Target − t) for unit “o” to 
obtain 

Step 3 If (Xt
o
, Yt

o
) ∈ H∗ , stop. Otherwise go to Step 2.

Now, the main question is that how to formulate 
(Target − t) for each unit. The answer is that the structure 
of (Target − t) depends on the efficiency status of unit “o” 
under consideration. We first try to formulate (Target − t) 
for an efficient unit, and then, we go to the case of an inef-
ficient one.

A sequence of targets for an efficient unit

Assuming that unit “o” is efficient, we develop a model 
which settles intermediate benchmarks through a path 
toward H∗ . We acknowledge that the following remarks 
should be embedded in the proposed model:

1. As unit “o” is efficient, all intermediate benchmarks are 
expected to be efficient, too. This means that the bench-

(
Xt
o
, Yt

o

)
=
(
Xt−1
o

− S−t∗, Yt−1
o

+ S+t∗
)
.

mark path must go through the efficient frontier until 
it reaches H∗ , which is an especial part of the efficient 
frontier. This implies that the efficiency status of all 
intermediate benchmarks is not allowed to be deterio-
rated along the path. Nevertheless, the benchmark path 
would inevitably involve deterioration in some of the 
observed input and/or output levels in return to improv-
ing the others.

2. The path is monotonically convergent to H∗ , i.e., the 
direction of the path is toward the common best practice 
frontier. This means that each intermediate benchmark 
is closer to the final target than the previous one. We 
verify this property in our approach by checking whether 
each individual input/output of unit “o” has improve-
ment in its final target or not. If an individual input (out-
put) has been improved (deteriorated) in the final target, 
we imply that this property should be satisfied for all 
intermediate benchmarks. Therefore, the sign of each 
input/output slack in intermediate targets is determined 
according to the sign of the corresponding slack in the 
final target.

3. As the path is expected to move toward H∗ gradually, it 
is rational to approve bounded adjustments in input and 
output levels at each step. Hence, like Lozano and Villa 
(2005a, b) we set upper and lower bounds for input and 
output adjustments. These bounds are defined as a pre-
determined portion of their current levels. Note that the 
corresponding bounds are determined by the decision 

Fig. 1  The production possibil-
ity set and the reference hyper-
plane for illustrative example
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maker, based on some managerial limitations and they 
may differ for individual inputs and outputs at each step.

All in all, the proposed benchmark model (Target − t) 
associated with unit “o”, for t = 1, 2,… is formulated as:

Note that, similar to the CSW model of Ruiz and Sir-
vant (2016), we use weighted L1-norm in the objective 
function of the above model. To illustrate the model, 
note that constraints (b)–(j) guarantee that the tth target 
(Xt−1

o
− S−t, Yt−1

o
− S+t) lies on the efficient frontier (see 

model (2)). The next two constraints (k) and (l) determine 
the sign of slacks s−t

i
 and s+t

r
 , respectively, depending on 

that input i and output r has improvement in the final target 
or not. This will ensure us that the constructed path moves 
uniformly toward the final target (X∗

o
, Y∗

o
) . In addition, two 

constraints (m) and (n) impose bounds on the value of slacks 
as adjustment values, where �x and �y are quantities between 
zero and one and denote relative amount of each input and 
output that is allowed for adjustment, respectively. Note that 
these values may vary in different steps. Finally, the last two 
constraints (o) and (p) are added to guarantee the conver-
gence of the obtained path in the sense of L1-distance. This 
fact is verified in the following theorem.

Theorem 1 Assume that (Xt
o
, Yt

o
) = (Xt−1

o
− S−t∗, Yt−1

o
− S+t∗) 

is the tth benchmark for unit “o” determined by model 
(Target − t) , and (X∗

o
, Y∗

o
) is the final target obtained from 

model (2). Then:

(4)

max ‖(S−t, S+t)‖�
1

(a)

s.t. Xt−1
o

− S−t =
∑
k∈E

�kXk (b)

Yt−1
o

+ S+t =
∑
k∈E

�kYk (c)

∑
k∈E

�k = 1 (d)

�k ≥ 0 k ∈ E (e)

− UYk + VXk + � − dk = 0 k ∈ E (f )

U ≥ ��,V ≥ ��, � free (g)

dk ≤ Mbk k ∈ E (h)

�k ≤ M(1 − bk) k ∈ E (i)

bk ∈ {0, 1}, dk ≥ 0 k ∈ E (j)

(xt−1
io

− x∗
io
)s−t

i
≥ 0 i = 1,… ,m (k)

(y∗
ro
− yt−1

ro
)s+t

r
≥ 0 r = 1,… , s (l)

�s−t
i
� ≤ �xx

t−1
io

i = 1,… ,m (m)

�s+t
r
� ≤ �yy

t−1
ro

r = 1,… , s (n)

�s−t
i
� ≤ �xt−1

io
− x∗

io
� i = 1,… ,m (o)

�s+t
r
� ≤ �yt−1

ro
− y∗

ro
� r = 1,… , s. (p)

(5)‖(Xt
o
, Yt

o
) − (X∗

o
, Y∗

o
)‖�

1
≤ ‖(Xt−1

o
, Yt−1

o
) − (X∗

o
, Y∗

o
)‖�

1
.

Proof We have

Now, recalling that the weight vectors �� and �� 
are both nonnegative, it is sufficient to prove that 
|xt−1

io
− x∗

io
− s−t

i
| ≤ |xt−1

io
− x∗

io
| fo r  i = 1,… ,m  ,  a n d 

|y∗
ro
− yt−1

ro
− s+t

r
| ≤ |y∗

ro
− yt−1

ro
| for r = 1,… , s . Toward this 

end, we consider three cases as:

Case 1: xt−1
io

− x∗
io
> 0 . In this case, constraint (k) implies 

that s−t
i

≥ 0 . On the other hand, by constraint (o), we have 
s−t
i

≤ xt−1
io

− x∗
io

 . Therefore, we have:

Case 2: xt−1
io

− x∗
io
< 0 . First, by constraint (k), we 

have s−t
i

≤ 0 . Meanwhile, constraint (o) implies that 
s−t
i

≥ xt−1
io

− x∗
io

 . Therefore, we have:

Case 3: xt−1
io

− x∗
io
= 0 . In this case, constraint (o) implies 

that s−t
i

= 0 . Therefore, the inequality clearly holds by 
equality.

The above three cases prove the first aforementioned 
statement. By a similar discussion on outputs, one can prove 
the second inequality, easily.   □

As we wish to establish a benchmark path converg-
ing to the common best practice frontier, we run model 
(4) until we reach the common frontier H∗ , i.e., we have 
−U∗Yt

o
+ V∗Xt

o
+ �∗ = 0 , where (U∗,V∗, �∗) is an optimal 

solution of model (2).

A sequence of targets for an inefficient unit

Now, we assume that unit “o” is inefficient. In order to 
develop a mathematical formulation to establish intermedi-
ate benchmarks for this unit, we embed the following con-
siderations in our model:

1. As unit “o” is inefficient, we aim to find its sequential 
benchmarks such that each intermediate benchmark 
is better that the previous one. Although in common 
benchmarking model (2) the domination criteria does 
not necessarily prevail, it is possible to determine inter-
mediate benchmarks at each step in a way that each 
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target is better than the previous one, in the sense of 
its weighted L1-distance to the efficient frontier. Hence, 
we consider the following weighed additive model 
of Cooper et  al. (2011) evaluating (virtual) activity 
(X̄, Ȳ) ∈ T  , which minimizes the weighted L1-distance 
of this unit to the efficient frontier, as follows: 

where (��,��) ∈ m+s is a nonnegative weight vector. 
Our aim is to determine (Xt

o
, Yt

o
) from the previous (inter-

mediate) benchmark (Xt−1
o

, Yt−1
o

) with the property that 

 In other words, we wish to move along an improving 
direction in our benchmarking procedure. The follow-
ing theorem provides us to find a sufficient condition for 
such a direction.

Theorem 2 Assume that (U∗
o
,V∗

o
, �∗

o
) is an optimal solution 

of the weighted additive model (6) evaluating unit “o”. Then 
for each vector (S−, S+) ∈ m+s such that U∗

o
S+ + V∗

o
S− ≥ 0 , 

we have ADD(Xo − S−, Yo + S+) ≤ ADD(Xo, Yo).

Proof The proof is straightforward if we apply the additive 
model (6) for evaluating (Xo − S−, Yo + S+) . By assumption, 
it can be verified that (U∗

o
,V∗

o
, �∗

o
) is a feasible solution for 

model (6) evaluating (Xo − S−, Yo + S+) , which implies that 
ADD(Xo − S−, Yo + S+) ≤ ADD(Xo, Yo) , and the proof is 
complete.   □

The above theorem verifies that if we add the constraint 
U∗

o
S+ + V∗

o
S− ≥ 0 to our benchmarking model, we can guar-

antee that the resulting path is an improving one w.r.t. the 
weighted additive model (6).

2. It should be kept in mind that a desirable benchmark 
path should go monotonically toward the best practice 
frontier. So, as before, the sign of input and output slacks 
is determined according to improvement or deterioration 
in the corresponding input and outputs of the final target. 
This will be observed in the proposed model similar to 
model (4).

3. The final consideration deals with bounded adjustments 
for inputs and outputs at each step. This issue can be 
observed in the proposed model similar to model (4).

Finally, model (Target − t) associated with inefficient unit 
“o” is formulated as:

(6)

ADD(X̄, Ȳ) =

min −UȲ + VX̄ + 𝛾

s.t. −UYj + VXj + 𝛾 ≥ 0, j ∈ E

U ≥ ��, V ≥ ��, 𝛾 free,

(7)ADD(Xt
o
, Yt

o
) ≤ ADD(Xt−1

o
, Yt−1

o
).

To illustrate the model, note that constraints (b)–(e) guaran-
tee that the tth benchmark is feasible. Constraint (f) ensures 
that the obtained benchmark is better than the previous one, 
w.r.t. the weighted additive model (6). Moreover, constraints 
(g) and (h) determine the direction of the path that should 
go toward the final target (X∗

o
, Y∗

o
) . Finally, the remaining 

constraints (g)–(l) are interpreted similar to what we have 
in model (4).

Computational complexity
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sequential target setting, are nonlinear due to existence of 
absolute value in their constraints, as well as their objec-
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tational complexity of the models, which is not of interest 
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cal. Without loss of generality, we illustrate this technique 
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A similar technique can be used for output indices, easily. 
Now, according to (10), and by imposing suitable constraints 
for both inputs and outputs, one can easily ignore the abso-
lute value notation in the corresponding models. Therefore, 
both models (4) and (8) are transformed to equivalent linear 
programs, accordingly.

Numerical example

Recall data set presented in Table  1. We have already 
obtained the final targets for all units by solving model 
(2). Now, we aim to set up a benchmark path for each indi-
vidual unit, except for the RG ones. Based on our theory, 
we analyze efficient and inefficient units, by running mod-
els (4) and (8), respectively. Note that in both models we 
assume (��,��) = (�m, �s) , and �x = �y = 0.3 . The results 
are reported in Table 2.

Table 2  Sequential target 
setting in the numerical example

Step 0 1 2 3 4 5 6 7

A (1,2) (1.2,2.6) (1.46,3.38) (1.80,4.40) (2.33,5.42) (3.04,6.30) (3.95,7.44) (4,7.5)
B (2,5) (2.6,5.75) (3.38,6.725) (4,7.5)
C (4,7.5) Itself
D (7,9) Itself
E (12,10) (8.4,9.28) (7,9)
F (1.5,2.5) (1.75,3.25) (2.08,4.23) (2.70,5.49) (3.51,6.88) (4,7.5)
G (3.5,5.5) (4,7.15) (4,7.5)
H (6.5,8) (6.5,8.75)
I (11,9.5) (7.7,9) (7,9)
J (4,4) (4,5.2) (4,6.76) (4,7.5)
K (5.5,4.5) (5.5,5.85) (5.5,7.61) (5.5,8.25)
L (8.5,6.5) (7,8.45) (7,9)
M (10,8) (7,9)
N (1.5,3.5) (1.85,4.55) (2.41,5.51) (3.13,6.41) (4,7.5)
P (5,8) (5,8)

Fig. 2  Target path for efficient and inefficient units
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From the results presented in Table 2, we observe that the 
three units � , � and � which belong to RG coincide their 
corresponding targets. Furthermore, the longest path is for 
unit � , which reaches its benchmarks in seven steps. On the 
other hand, unit � has the shortest path to its benchmark, 
as it needs only one step to reach the reference hyperplane. 
Finally, we notice that the final destination of the benchmark 
path for all units is exactly the unit obtained from model (2). 
The benchmark path for all efficient and inefficient units, 
except for those belonging to RG, is shown in Fig. 2.

Application

To illustrate the proposed approach, consider the data 
taken from Coelli et  al. (2002), which consists of 28 
international airlines during year 1990. This data set 
has already been used in other DEA papers in order to 
illustrate different concepts (see Ray 2004, 2008; Ruiz 
2013; Aparicio et al. 2007). Especially in Ruiz and Sir-
vant (2016), this data set has been applied to illustrate the 

concept of CSW and also ranking of units. Here, we apply 
our stepwise target setting model on this data set. Note that 
for each airline, four inputs and two outputs are considered 
which are provided in Table 3. For further details on the 
data set, one may refer to Ruiz and Sirvant (2016).

First, a conventional DEA model under the assumption of 
CRS shows that E = {4, 6, 7, 8, 11, 13, 15, 16, 18} . Then, we 
apply model (2) in the framework of CRS and with weights 
defined as:

where x̄i , i = 1,… ,m and ȳr , r = 1,… , s are the averages of 
the corresponding inputs and outputs of all units. Note that 
this specification of the L1-distance has already been used 
in the DEA literature (see Thrall 1996). Moreover, by using 
the weighted L1-distance with Eqs. (11), model (2) becomes 
unit invariant.

(11)
wx
i
=

1

x̄i
, i = 1,… ,m,

wy
r
=

1

ȳr
, r = 1,… , s,

Table 3  Data set of 28 
international airlines

Airline Input1 Input2 Input3 Input4 Output1 Output2

1 NIPPON 12,222 860 2008 6074 35,261 614
2 CATHAY 12,214 456 1492 4174 23,388 1580
3 GARUDA 10,428 304 3171 3305 14,074 539
4 JAL 21,430 1351 2536 17,932 57,290 3781
5 MALAYSIA 15,156 279 1246 2258 12,891 599
6 QANTAS 17,997 393 1474 4784 28,991 1330
7 SAUDIA 24,708 235 806 6819 18,969 760
8 SINGAPORE 10,864 523 1512 4479 32,404 1902
9 AUSTRIA 4067 62 241 587 2943 65
10 BRITISH 51,802 1294 4276 12,161 67,364 2618
11 FINNAIR 8630 185 303 1482 9925 157
12 IBERIA 30,140 499 1238 3771 23,312 845
13 LUFTHANSA 45,514 1078 3314 9004 50,989 5346
14 SAS 22,180 377 1234 3119 20,799 619
15 SWISSAIR 19,985 392 964 2929 20,092 1375
16 PORTUGAL 10,520 121 831 1117 8961 234
17 AIR CANADA 22,766 626 1197 4829 27,676 998
18 AM. WEST 11,914 309 611 2124 18,378 169
19 AMERICAN 80,627 2381 5149 18,624 133,796 1838
20 CANADIAN 16,613 513 1051 3358 24,372 625
21 CONTINENTAL 35,661 1285 2835 9960 69,050 1090
22 DELTA 61,675 1997 3972 14,063 96,540 1300
23 EASTERN 21,350 580 1498 4459 29,050 245
24 NORTHWEST 42,989 1762 3678 13,698 85,744 2513
25 PANAM 28,638 991 2193 7131 54,054 1382
26 TWA 35,783 1118 2389 8704 62,345 1119
27 UNITED 73,902 2246 5678 18,204 131,905 2326
28 USAIR 53,557 1252 3030 8952 59,001 392
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By running the model (2), we obtain RG = {4, 8, 11, 18} . 
Then, in order to find the target path for each unit, which 
does not belong to RG, we run models (4) and (8), for effi-
cient and inefficient units, respectively. Note that in both 
models we set �x = �y = 0.3 . The obtained sequential targets 
for efficient and inefficient units are reported in Tables 4 and 
5, respectively.

We first observe that Table 4 does not provide target 
path airlines in RG, because for these units targets and 
actual inputs/outputs coincide. However, for the efficient 
units not in RG, a path of sequential targets toward the 
reference hyperplane is reported. We observe that all effi-
cient units reach their corresponding final target in two 
or three steps. For QANTAS and SAUDIA, the targets 
are less demanding, but the other efficient airlines, i.e., 
LUFTHANSA, SWISSAIR and PORTUGAL, need con-
siderable adjustments to reach their corresponding tar-
get. The maximum adjustment for these three is due to 
their first input which needs approximately 50% decrease 
from their actual levels. Also, note that there would be 
no change in the third input of LUFTHANSA, the second 
input and second output of SWISSAIR and the second 
output of PORTUGAL. On the other hand, as the results 
show the efficiency status of the efficient units do not 

deteriorate along the path, i.e., for efficient airlines, all 
intermediate (and final) targets have an optimal value of 
zero in model (6).

On the other hand, turning to inefficient airlines in 
Table 5, we observe different behaviors. Among these air-
lines, CATHAY has the longest path including 5 bench-
marks toward its final target. This is due to the level of 
its third input which needs a decrement of approximately 
84% from its actual level (3171 to 549.8). Meanwhile, 
the level of its first input and second output remains 
unchanged along the path. Then, the second longest path 
among the inefficient airlines is of length 3 and belong 
to EASTERN and USAIR, both consisting of an adjust-
ment of nearly twice in the second output. Although, 
three inefficient airlines reach their corresponding final 
target in two steps, the majority of ten inefficient airlines 
achieve the reference hyperplane in just one step. Moreo-
ver, the last column in Table 5 presents the optimal value 
of the weighted additive model (6) for each (virtual) unit. 
Observing these values, which constitute a descending 
sequence for each inefficient unit with a final value of 
zero, the improving characteristic of the obtained sequen-
tial benchmarks is confirmed.

Table 4  Sequential 
benchmarking for efficient 
units: actual inputs/outputs and 
target path

Airline Input1 Input2 Input3 Input4 Output1 Output2 ADD

4 JAL 21,430 1351 2536 17,932 57,290 3781 0
6 QANTAS 17,997 393 1474 4784 28,991 1330 0

17,997 510.9 1288.9 4784 30,926.1 1330 0
17,997 561.9 1288.9 4784 32,289.3 1330 0

7 SAUDIA 24,708 235 806 6819 18,969 760 0
17,295.6 305.5 806 4773.3 19,854.9 760 0
15,906.3 397.2 806 4709.4 21,445.6 760 0
15,906.3 464.7 806 4709.4 22,823.6 760 0

8 SINGAPORE 10,864 523 1512 4479 32,404 1902 0
11 FINNAIR 8630 185 303 1482 9925 157 0
13 LUFTHANSA 45,514 1078 3314 9004 50,989 5346 0

31,859.8 1143.5 3314 9817.1 66,285.7 4168.8 0
23,821.3 1146.2 3314 9817.1 71,016.6 4168.8 0
23,811.7 1146.3 3314 9817.1 71,023.1 4168.8 0

15 SWISSAIR 19,985 392 964 2929 20,092 1375 0
13,989.5 392 1110.5 3347.1 23,229.5 1375 0

9792.7 392 1110.5 3347.1 23,959.0 1375 0
8612.3 392 1110.5 3347.1 24,136.7 1375 0

16 PORTUGAL 10,520 121 831 1117 8961 234 0
7669.0 134.6 581.7 1117 8961 234 0
6642.4 157.7 407.2 1314.2 8961 234 0
6642.4 161.7 308.3 1314.2 8961 234 0

18 AM. WEST 11,914 309 611 2124 18,378 169 0
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Table 5  Sequential 
benchmarking for inefficient 
units: actual inputs/outputs and 
target path

Airline Input1 Input2 Input3 Input4 Output1 Output2 ADD

1 NIPPON 12,222 860 2008 6074 35,261 614 1.821
15,888.6 661.4 1464.9 6074 35,261 798.2 0.598
20,082.7 661.4 1283.9 6074 35,261 899.3 0

2 CATHAY 12,214 456 1492 4174 23,388 1580 0.392
12,176.2 492.3 1328.6 4174 29,872.7 1580 0

3 GARUDA 10,428 304 3171 3305 14,074 539 1.879
10,428 315.4 2219.7 3258.7 15,355.2 539 1.407
10,428 315.4 1553.8 3258.7 15,355.2 539 1.095
10,428 315.4 1087.7 3258.7 15,355.2 539 0.878
10,428 315.4 761.4 3258.7 15,355.2 539 0.725
10,428 315.4 549.8 3258.7 15,355.2 539 0

5 MALAYSIA 15,156 279 1246 2258 12,891 599 0.952
10,609.2 279 872.2 2306.9 16,047.5 599 0.540
9653.1 279 619.8 2306.9 16,047.5 599 0

9 AUSTRIA 4067 62 241 587 2943 65 0.282
3388.2 73.2 168.7 587 3825.9 65 0.184
3388.2 73.2 121.2 587 3935.9 65 0

10 BRITISH 51,802 1294 4276 12,161 67,364 2618 3.226
51,802 1419.9 2993.2 12,161 78,613.2 2618 0.438
51v802 1419.9 2894.4 12,161 78,613.2 2618 0

12 IBERIA 30,140 499 1238 3771 23,312 845 1.475
21,098 499 1006.7 4081 28,026.6 845 0.06
19,365.5 499 1006.7 4081 28,026.9 845 0

14 SAS 22,180 377 1234 3119 20,799 619 1.2
15,526 382 863.8 3119 21,374.8 619 0.384
15,086.1 382 758.3 3119 21,374.8 619 0

17 AIR CANADA 22,766 626 1197 4829 27,676 998 0.98
22,766 591.1 1197 4829 33,252.2 998 0

19 AMERICAN 80,627 2381 5149 18,624 133,796 1838 2.359
82,346.6 2357.9 4624.7 18,624 133,796 2139.7 0

20 CANADIAN 16,613 513 1051 3358 24,372 625 0.756
16,613 480.8 1051 3519 28,792.5 625 0

21 CONTINENTAL 35,661 1285 2835 9960 69,050 1090 1.635
42,013.8 1228.8 2406.2 9960 69,050 1204.5 0

22 DELTA 61,675 1997 3972 14,063 96,540 1300 3.158
61,675 1772.5 3475.3 14,063 100,405.2 1630.7 0

23 EASTERN 21,350 580 1498 4459 29,050 245 1.791
21,350 580 1142.4 4272.4 33,734.1 318.5 0.077
21,350 580 1142.4 4272.4 33,734.1 414.1 0.003
21,350 580 1142.4 4272.4 33,734.1 417.7 0

24 NORTHWEST 42,989 1762 3678 13,698 85,744 2513 2.026
46,167.4 1550.1 3241.5 13,698 85,744 2513 0

25 PANAM 28,638 991 2193 7131 54,054 1382 0.694
29,683.5 917.9 2024.7 7131 54,054 1382 0

26 TWA 35,783 1118 2389 8704 62,345 1119 0.813
37,585.1 1095.8 2188.8 8704 62,345 1119 0

27 UNITED 73,902 2246 5678 18,204 131,905 2326 3.684
79,686.9 2310.4 4624.5 18,204 131,905 2326 0
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Conclusion

One of the main features of DEA is that it can be used for 
benchmarking, which is an important issue in management 
and economics. In practice, in a production technology 
the decision maker (DM) usually aims to first evaluate 
the efficiency status of decision-making units and clas-
sify them into efficient and inefficient categories, and then 
to determine a benchmark feasible and efficient activity 
for each inefficient unit. Benchmarking can assist ineffi-
cient units to improve their performance in comparison to 
best practices of others. On the other hand, applying an 
aggregated DEA-based model which finds a common set 
of weights to evaluating the efficiency score of all units, 
simultaneously, it is possible to determine a common sup-
porting hyperplane of the technology as the best practice 
frontier. Thus, one could evaluate the units by means of 
the coefficients of this frontier and also to establish tar-
gets for all of them, on this common best practice frontier. 
However, in practice these targets may be difficult to reach 
in a single step, and therefore, it is required to propose a 
gradual improvement strategy to achieve the best prac-
tices. This research developed an approach of establishing 
a gradual improving path of targets for each unit which is 
not located on the best practice frontier. To apply the pro-
posed method, the common set of weights (CSW) model of 
Ruiz and Sirvant (2016) is solved in order to find the final 
target for all units, simultaneously. Then for each unit, a 
path of targets is found which originates from that unit and 
proceeds gradually to the final efficient target which has 
been already determined. The obtained path is an improv-
ing one, in the sense that if the underlying unit is an effi-
cient one, then all of the intermediate targets are efficient 
as well, and for inefficient units each of the intermediate 
targets is closer to the final target than the previous one, 
and also has a better performance than the previous one, in 
the framework of the weighted additive model of Cooper 
et al. (2011). Also, in the proposed model only a limited 
amount of adjustment is allowed. The portion of the cur-
rent levels of inputs and outputs that is allowed for adjust-
ment is determined by the DM based on his/her managerial 
points of view and practical limitations. Then, this feature 
guarantees that the path is roughly acceptable by the DM, 
as it is more practical and understandable.

This approach can be extended along different lines. One 
can investigate this issue for a free disposal hull (FDH) tech-
nology. Furthermore, the question of establishing a target 
path which in convergent to the final target in a predeter-
mined number of steps might be interesting. Another pos-
sibility is to develop a procedure of stepwise target setting 
in the framework of other common weight methodologies, 
such as models proposed in Despotis (2002) or Kao and 
Hung (2005).
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