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Abstract Tolerancing conducted by design engineers to

meet customers’ needs is a prerequisite for producing high-

quality products. Engineers use handbooks to conduct tol-

erancing. While use of statistical methods for tolerancing is

not something new, engineers often use known distribu-

tions, including the normal distribution. Yet, if the statis-

tical distribution of the given variable is unknown, a new

statistical method will be employed to design tolerance. In

this paper, we use generalized lambda distribution for

design and analyses component tolerance. We use per-

centile method (PM) to estimate the distribution parame-

ters. The findings indicated that, when the distribution of

the component data is unknown, the proposed method can

be used to expedite the design of component tolerance.

Moreover, in the case of assembled sets, more extensive

tolerance for each component with the same target per-

formance can be utilized.

Keywords Nonlinear programming � Generalized lambda

distribution (GLD) � Tolerancing � Percentile matching

estimates

Introduction

In mass production, products are assembled using compo-

nents processed or manufactured by different machines or

processes. This requires all the components to be replaced

at the time of assembling. In addition, given the changes

applied in machines, tools, human resources, raw materials,

and production methods, the quality characteristics (e.g.

length, diameter, tensile strength) will always be subject to

change as well. Given the inevitability of changes as well

as the necessity of being replaceable, the permissible lim-

its, called tolerance, need to be determined according to the

changes in quality characteristics. Customers and product

designers are the factors that determine the tolerance of

quality characteristics of the assembled product based on

the operational requirements provided by the customers.

Then, this tolerance should be allocated to the quality

characteristics of the assembled components.

Tolerance can be defined as the physical or chemical

properties (e.g. size, weight, strength and the combination

of components) or geometric characteristics (e.g. dimen-

sions, position, shape and surface finish of some part fea-

tures). As one cannot manufacture many components with

the same nominal value, the deviation from nominal value

will be inevitable. That is why tolerance is allowed. If a

component has a high deviation from the nominal value, its

quality will suffer. Consequently, the design engineers

define the maximal permissible specification limits, called

tolerance, with the purpose of hampering the degradation in

the performance of the product (Devor et al. 2007).

Specification limits, or conformance boundary specified

for a characteristic, have been defined in Standard ISO as

those limits of technical or design characteristics within

which limits are specified for products or services. These

limits usually match customer requirements and can be
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either two way with upper and lower limits or one way with

either upper or lower limit. Sometimes, the limits of tech-

nical characteristics are determined based on the distribu-

tion of quality characteristics. For example, some statistics

derived from individual units can be used. Standard toler-

ance limits will accelerate the process of design (Wads-

worth et al. 2002). Therefore, this study will consider the

limits of technical characteristics, as defined above.

Standard tolerance limits can be obtained through con-

ducting statistical calculations based on one or more sam-

ples of an assumed quality characteristic. As a result, this

can differ from the specification limits, which are the

requirements for individual components. If the design

consideration is not enough to determine the technical

specifications of each component, some criteria for process

capability will be potentially used on that purpose. Toler-

ance determination plays a significant role in improvement

of Six Sigma as well as the validation of the process

capability calculation.

Tolerance is the difference between the upper and lower

limits of the technical characteristics of a product. Let the

tolerance of Xi be Ti; i ¼ 1; 2; . . .; k, and let the tolerance

of the assembly characteristic X be T; then in general, for

any linear function of X, if

X ¼ X1 � X2 � X3 � � � � � Xk; ð1Þ

it can be

T ¼ T1 þ T2 þ � � � þ Tk: ð2Þ

This equation is called additive relationship, which can

be used by a design engineer to allocate the tolerances

T1; . . .; Tk for an assumed technical characteristic T.

Considering that relations depend on the characteristic

of components as well as the assembled set of character-

istics, the following relational assumptions should be put

forward for tolerance determination (Chandra 2001).

(1) Xis are mutually independent.

(2) The components are selected and assembled

randomly.

(3) Xi �Nðli; r2
i Þ:

(4) The process of Xi is under control, and the mean of

Xi distribution, that is, li, is equal to the best value of

Xi and is the midpoint of the valid range of Xi. Then,

li ¼ ðUi � LiÞ
2

: ð3Þ

(5) The standard deviation of Xi characteristic is

produced by the process in such a way that

99.73 % of the Xi characteristic will fall within the

range of its characteristics.

Then based on the above-mentioned assumptions, the

tolerance of the component Xi can be calculated as follows;

Ui � Li ¼ Ti ¼ 6ri ; i ¼ 1; 2; . . .; k: ð4Þ

Supposing l and r2 are the mean and variance of X,

respectively, and X ¼ X1 � � � � � Xk; then

l ¼ l1 � l2 � l3 � � � � � lk; ð5Þ

as Xis are mutually independent; then,

r2 ¼ r2
1 þ r2

2 þ r2
3 þ � � � þ r2

k : ð6Þ

Taking into consideration the second assumption, the

assembled characteristic set X has a normal distribution. If

99.73 % of all assembled characteristic set X falls between

the characteristic range U and L, Eq. (4) will be derived as

follows:

ðU � LÞ ¼ T ¼ 6r: ð7Þ

Given the Eqs. (4) and (7), we will have

r2
i ¼ Ti

6

� �2

; i ¼ 1; 2; . . .; k ð8Þ

and

r2 ¼ T

6

� �2

: ð9Þ

The combination of Eqs. (6), (8), and (9) will yield

T

6

� �2

¼ T1

6

� �2

þ T2

6

� �2

þ � � � þ Tk

6

� �2

ð10Þ

or

T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2

1 þ T2
2 þ � � � þ T2

k

q
: ð11Þ

Equation (11), called a probable relation, provides

another concept for allocating tolerance to the components

of an assembled set for the assumed tolerance. It can be

seen that the tolerance of each component can arise, if we

use the probability relation (Chandra 2001).

In this study, we will use generalized lambda distribu-

tion (GLD) to determine the tolerance of the components

whose probability distribution function is unknown.

Literature review and background are presented below,

followed by the introduction of generalized lambda distri-

bution and its parameter estimation method. Then, the use

of this method will be illustrated by an example.

Literature review and background

The manufacturing and production costs reduce as the

tolerance of quality characteristics increase. On the other

hand, as mentioned in the introduction, all things being

equal, a higher tolerance can be defined using a probability

method.
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Ginsberg (2013) presents an optical design method and

flowchart that emphasize considering component toler-

ances early in the design process. The paper discusses the

proposed process by using it for designing two different

optical systems. The author demonstrates the process of

developing sensitivity tables and how to apply them to

develop a tolerance budget.

Zhang and Hook (1992) argue that the main problem is

the control of sequential tolerance, which is appropriate for

those components moving in a series of consequential

processes and using real-time criteria for consecutive

manufacturing. They choose the target point of machine

operation to maximize the output quality.

Wheeler et al. (1999) have developed a probability

method to select an optimal sub-set of technology-based

processes required for implementing a process design

under the control strategy of traditional tolerance. They

present an implicit enumeration approach to the selection

of an optimum subset of technological processes required

to execute a process plan under a conventional tolerance

control strategy. They present a probabilistic approach to

the problem and use the first-order second moment method

(FOSMM) to estimate the yield for an interdependent

system of functional requirements.

Chandra (2001) uses uniform, normal, and beta distri-

butions to determine the tolerance. He also utilizes linear

planning as well as nonlinear relations. Finally, he has

proposed the use of dynamic planning for such a purpose,

and reviewing the tolerance determination techniques.

Devor et al. (2007) use loss function to determine the

tolerance. Through quantifying the loss function, they

assert that tolerance should be determined to minimize the

loss function and contend that the first attempt to reduce the

quality costs (including the costs associated with defective

components, re-working and other costs) focuses on

decreasing the costs related to defective components. They

have also applied different statistical distributions to

determine the component tolerance.

Sampath Kumar et al. (2009) strived to investigate the

optimal tolerance allocation by considering both tolerances

and manufacturing cost, so that the total assembly cost is

minimized. A new global nonlinear optimization technique

called Pattern search algorithm has been executed to fig-

ure the optimal tolerance allocation and asymmetric total

cost to overcome the defects in the traditional tolerance

allocation problem.

Macko et al. (2012) describe a negative effect of size

tolerance on the trigger characteristic. The trigger charac-

teristic is defined as the dependence of trigger force and

trigger angle. Their study indicates an example of trigger

mechanism that is designed as a Glock type of mechanism.

The authors proposed the use of software MW as the

solution for designers of small arms.

George (2012) further contributed to the research by

concentrating on the kind of tolerances that are broadly

applied in industry and reverse engineering. To the best of

their knowledge, the authors argue that their approach is an

initial attempt to solve this type of RE problems that can be

directly implemented within a CAD environment.

Hasenauer (2013) and Shannon (2013) have used an

optical technique instead of a mechanical one to determine

the tolerance. The optical technique that is a more complex

one generally takes into account dimensional changes of

the components. However, the permissible changes are

determined, using the effects of a complete set of waves

passing through the lens.

Nili Ahmadabadi et al. (2012) proposed a five-parameter

generalized lambda distribution for process control. To

estimate the parameters of distribution, they use the

moment-matching method proposed by Ramberg and

Schmeiser (1974).

Armillotta (2015) proposes a method for tolerance

analysis on planar structures and mechanisms. The funda-

mental deficit of the actual tolerancing and specification

systems is illustrated by Weckenmann and Hartmann

(2015). For tolerancing of a component, Yu and Lub

(2016) use quality-oriented statistical tolerancing (ST)

technique, which helped to overcome the challenges of

modern manufacturing. Jean-Marc (2016) show that sta-

tistical tolerancing becomes risky when idealized centering

assumptions are not perfectly achieved. Alain Van Hoecke

(2016) introduced risk tool in statistical tolerancing and its

verification management to optimize customers’ and sup-

pliers’ risks. He shows that tolerancing–verification cou-

pling increases benefits by enlarging tolerances through

risk control.

Generalized lambda distribution (GLD)

Generalized lambda distribution was initially proposed by

Tukey (1962) and developed by Joiner and Rosenblatt

(1971). This distribution can fit the common distributions

such as normal, lognormal, Weibull, etc. with high accu-

racy. It is also able to fit in with continuous distributions;

the flexibility of this type of distribution is compatible with

data histograms and the estimation of the kind of their

distribution. As a result, GLD can be used as a powerful

instrument for conducting research in various areas

including the estimation of parameter, adapting distribu-

tions with the data as well as the simulation research which

is based on data production. For example, it can be applied

in meteorology (Ozturk and Dale 1982), queue systems

(Dengiz 1988), psychology (Delaney and Vargha 2000),

operation research (Ganeshan 2001), corrosion (Najjar

et al. 2003), equipment defect and fatigue (Bigerelle et al.
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2006), statistical quality control (Fournier et al. 2006),

engineering (Rochan et al. 2008), and reliability (Movahedi

et al. 2013).

Tukey’s (1962) lambda family of distributions is defined

by the quantile function Q(p):

QðpÞ ¼

pk � ð1 � pÞk

k
; k 6¼ 0

logðpÞ
1 � p

; k ¼ 0

8>><
>>:

; ð12Þ

where p denotes the probabilities, p 2 ½0; 1�. Ramberg and

Schmeiser (1974) developed four-parameter quantile

function lambda distribution as below:

F�1ðp; kÞ ¼ F�1ðp; k1; k2; k3; k4Þ

¼ k1 þ pk3 � ð1 � pÞk4

k2

; ð13Þ

where p denotes the probabilities, p 2 ½0; 1�, k1 and k2

indicate the location and scale parameters, and k3 and k4

denote the shape parameters jointly associated with the

strengths of the lower and upper tails, respectively. In the

limiting case k1 ¼ 0 and k2 ¼ k3 ¼ k4 ¼ k; Tukey’s

(1962) lambda distribution will be obtained.

Ramberg et al. (1979) note that the proposed distribution

(Eq. 13) is not defined for certain combinations of the

parameters.

In this section, we will describe the properties of a five-

parameter generalization of the lambda distribution to

obtain smoothed analytic representations for grouped data

(Tarsitano 2005). The GLD is determined by the quantile

function

Xðp; kÞ ¼ k1 þ k2p
k4 � k3ð1 � pÞk5 ; 0� p� 1; ð14Þ

where k1 denotes a location parameter k2 and k3 shows

linear parameters prevalently concerning the scale of the

variable, and k4 and k5 are exponential parameters deter-

mining the shape of the quantile function.

Expression (14) readily produces Xðp; kÞ in terms of a

uniform random variable p on the interval ½0; 1�. This fact

is particularly relevant not only for the simulation experi-

ment, but also for order statistics, optimal grouping,

inequality measures, heavy tail behavior analysis, loss

distributions, oscillatory interpolation, and Q–Q plotting.

Analytic expression for the cumulative distribution

function Fðx; kÞ of a GLD model is in general not avail-

able. However, the fact that the GLD is not invertible is not

a serious drawback, because the same is true for many

popular models such as normal, lognormal, generalized

gamma, and generalized beta. The GLD is observed to fit,

by suitable choice of k, to various theoretical and practical

distributions (Karian and Dudewicz 1999, 2000).

There are several parameterizations of the asymmetric

lambda distribution and all the versions can be obtained as

special cases of (14) (Shapiro and Wilk (1965), Joiner and

Rosenblatt (1971), Ramberg and Schmeiser (1974), Fil-

liben (1975), Hoaglin (1975), Lam et al. (1980), Freimer

et al. (1988), Sarabia (1996), Devroye (1996), Gilchrist

(2000)).

Parameter estimation

In the review of literature, various methods for estimating

generalized lambda distribution parameters have been

introduced, for instance, moment-matching method, least

squares method, Starship method and Downhill simplex

method. Similarly, the percentile matching (PM) estimates,

moment matching (MM) estimates, probability-weighted

moment (PWM) estimates, minimum Cramér–Von Mises

(MCM) estimates, maximum likelihood (ML) estimates

and pseudo least squares (PLS) estimates have been

employed by Tarsitano (2005) to estimate the parameters

of five-parameter lambda distribution. In addition, Nasser

and Aljazar (2005) estimate the parameters of four-pa-

rameter lambda distribution using the moments of the GLD

and the least square method. Fournier et al. (2007) used the

percentile method to estimate the parameters of four-pa-

rameter lambda distribution.

Tarsitano (2005) pointed out that the percentile match-

ing (PM) estimation method is advantageous over other

methods. First and foremost, less weight is assigned to the

outliers in this method than in the moment estimates, and

the PM estimators can still be calculated when moments do

not exist. Second, the validity of this method is seriously

restricted because of the lack of a theoretical justification in

the selection of a specific set of percentiles. Third, the

sextiles utilized in our experiments have brought about

adequate results for symmetric distributions.

In this article, we have used PM estimates introduced by

Tarsitano (2005) adapted from the methods developed by

Schmeiser and Deutsch (1977), Harrell and Davis (1982),

and Korn et al. (1997). In the rest of the paper, this method

will be briefly introduced (see Tarsitano, 2005).

For this method, it is presumed that all n observations

are from the same parametric distribution. Supposing that a

sample of size n from a GLD is grouped into k intervals,

then

ðXi�1; Xi�; ni; Ni ¼
Xi

j¼1

nj; fj ¼
nj

n
; pi ¼

Xi

j¼1

fj; i

¼ 1; 2; . . .; k:

ð15Þ
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The values fXi; i ¼ 0; 1; 2; . . .; k; Xi�1\Xig indicate

the limits of k exhaustive and non-overlapping classes and

k� 3 is limited in effect. We can write the probability mass

attributed to the ith class as

FðXi; kÞ � FðXi�1; kÞ ¼ piðkÞ[ 0; i

¼ 1; 2; . . .; k;
Xk
i¼1

piðkÞ ¼ 1:

ð16Þ

It is assumed that k 2 K 	 R5 and we consider k 2 K as

the true, but unknown value of k. percentile matching (PM)

estimates method, which consists of equating a selection of

five empirical Xi and five theoretical percentiles Xðpi; kÞ. If

Xi is a good approximation of the unknown empirical order

statistic corresponding to pi, then

Xij ¼ k1 þ k2p
k4

ij
� k3ð1 � pijÞ

k5 ; j ¼ 1; . . .; 5; ð17Þ

where ij 2 ð1; 2; . . .; k0Þ and k0 ¼ k if the upper limit of the

variable is known and finite otherwise k0 ¼ k � 1.

To sustain the computation at a reasonable level, the PM

estimates were obtained by applying system (14) to the five

sextiles w1; w2; w3; w4; w5 computed by

ws ¼ ð1 � bsÞXj�1 þ bsXj; bs ¼
ps � pj�1

fj
; ps ¼

s

6
; j

¼ Min
1� i� k

fpi � psg; s ¼ 1; 2; . . .; 5:

ð18Þ

Because (18) is a nonlinear system of equations in k, an

iterative procedure needs to be employed for solving k. We

have applied the downhill simplex minimization to the

following criterion to calculate the PM estimates:

SQMðkÞ ¼ Max
1� s� 5

ws � Xðps; kÞj jf g ð19Þ

under the constraint that min ðk4; k5Þ[ � 1, because

Tarsitano (2005) indicates that the ith moment of the GLD

holds true if and only if min ðk4; k5Þ[ � 1.

Finally, having determined the five parameters of the

distribution, we can demonstrate that the mean and vari-

ance of GLD can be calculated as follows:

l ¼ k1 þ k2

ðk4 þ 1Þ � k3

ðk5 þ 1Þ ; ð20Þ

r2 ¼
Z 1

0

ðk1 þ k2p
k4 � k3ð1 � pÞk5Þdp� ðk1 þ

k2

ðk4 þ 1Þ �
k3

ðk5 þ 1ÞÞ
2;

ð21Þ

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ 1

0

ðk1 þ k2pk4 � k3ð1 � pÞk5Þdp� k1 þ
k2

ðk4 þ 1Þ �
k3

ðk5 þ 1Þ

� �2
s

:

ð22Þ

Using this method, we can take enough random samples

from the production line and then measure the generalized

lambda parameters. Finally, the tolerance of the compo-

nents is designed through the calculation of distribution

variance and mean.

Data collection and results

In this section, we assume an assembled set containing two

target values: 14 and 16, respectively. Then, two random

100-digit series representing the thickness of each com-

ponent is produced, using MATLAB software. The fre-

quency distribution table is drawn up, using Eq. 15. Then,

the distribution parameters are estimated, using Eqs. 16–

19.

v2 test can be used to make sure that the answers are

correct. Further, the mean, variance, and standard deviation

are measured using Eqs. 20 and 21. Finally, the tolerances

of the component are determined.

Tables 1 and 2 display the results of the characteristics

of 1000 random samples for two components with target

values 14 and 16 based on Eq. 15.

Now, the relations can be based on Eqs. (17), (18), and

(19). Equation 19 can be solved for the first and second

Table 1 Random data for the first component with target value

14 mm

Ranges ni Ni fi pi

13.95–13.97 185 185 0.185 0.185

13.97–13.99 235 420 0.235 0.420

13.99–14.01 195 615 0.195 0.615

14.01–14.03 180 795 0.180 0.795

14.03–14.05 190 985 0.190 0.985

14.05 and more 15 1000 0.015 1.000

Total 1000 – 1.000 –

Table 2 Random data for the second component with target value

16 mm

Ranges ni Ni fi pi

15.95–15.97 170 170 0.170 0.170

15.97–15.99 205 375 0.205 0.375

15.99–16.01 265 640 0.265 0.640

16.01–16.03 180 820 0.180 0.820

16.03–16.05 170 990 0.170 0.990

16.05 and more 10 1000 0.010 1.000

Total 1000 – 1.000 –
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components, using MATLAB. Solving the problem

through MATLAB leads to the following solutions.

First component: the values of the GLD parameters for

the first component are as follows:

k1 ¼ 12:7436; k2 ¼ 4:0029; k3 ¼ 2:1856; k4

¼ 2:0851; k5 ¼ 52:1962:

As a result, the quantile function of the first component

is as follows:

Xðp; kÞ ¼ 12:7436 þ 4:0029p2:0851 � 2:1856ð1
� pÞ52:1962; 0� p� 1:

Second component: the values of the GLD parameters

for the second component are as follows:

k1 ¼ 9:2427; k2 ¼ 6:7886; k3 ¼ �4:3945; k4

¼ 0:2331; k5 ¼ 2:5099:

As a result, the quantile function of the first component

is as follows:

Xðp,kÞ ¼ 9:2427 þ 6:7886p0:2331 þ 4:3945ð1
� pÞ2:5099; 0� p� 1:

Goodness of fitness test: the second rank equations has

more than one acceptable solution. Thus, it is necessary to

run the goodness-of-fit test to make sure that the answers

are correct. To this end, the Chi-square technique is used.

v2
o ¼

Xk
i¼1

ðOi � EiÞ2

Ei

:

H0 and H1 are set forward as follows:

H0: GLD where the obtained parameters fit the data.

H1: GLD where the obtained parameters do not fit the

data.

If v2
o [ v2

a; k�i�1 where a is the level of significance of

the test, k the number of sets, and i the number of distri-

bution parameters, H0 is rejected.

To conduct goodness-of-fit test for each part of the

component, we should first obtain the expected values (Ei).

As for each set ith, the cumulative amount of relative

frequency is placed in the distribution relationship; thus,

we calculate the value of the mean of the given set, i.e., Ei.

In the same way, the mean of the data set is in fact the

observed mean. The Chi-square technique can test with K-6

degrees of freedom, where K is the number of class inter-

vals. Tables 3 and 4 shows the hypothesis testing of the

research data.

The relationship for the first component can be expres-

sed as v2
oð1:0491Þ\ v2

oð3:84Þ, and for the second compo-

nent as v2
oð0:4509Þ\ v2

oð3:84Þ. Hence, we can conclude

that for both components the derived generalized lambda

distribution fits the data.

Design of the tolerance

In this section, to design tolerance we must first determine

the mean and standard deviation for both components.

Table 3 Chi-square test for the

first component
Class

interval

Observation

value (Oi)

Cumulative relative

frequency (Yi)

Expected observation

value (Ei)
ðOi � EiÞ2 ðOi�EiÞ2

Ei

1 13.96 0.185 12.86 1.210 0.0941

2 13.98 0.420 13.40 0.336 0.0251

3 14.00 0.615 14.20 0.040 0.0028

4 14.02 0.795 15.22 1.440 0.0946

5 14.04 0.985 16.62 6.656 0.4005

6 14.06 1.000 16.75 7.236 0.4320

Total 1.0491

Table 4 Chi-square test for the

second component
Class

interval

Observation

value (Oi)

Cumulative relative

frequency (Yi)

Expected observation

value (Ei)
ðOi � EiÞ2 ðOi�EiÞ2

Ei

1 15.96 0.170 16.49 0.54 0.2916

2 15.98 0.375 16.00 0.02 0.0004

3 16.00 0.640 15.70 0.30 0.0900

4 16.02 0.820 15.78 0.26 0.0676

5 16.04 0.990 16.02 0.02 0.0004

6 16.06 1.000 16.03 0.03 0.0009

Total 0.4509
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Thus, we receive them from Eqs. 20, 21, and 22. For the

first component they will be:

l1 ¼ 14; r2
1 ¼ 0:00049 and r1 ¼ 0:022;

and for the second component:

l2 ¼ 16; r2
2 ¼ 0:000441 and r2 ¼ 0:021:

Further, using Eq. (7), we will have

T ¼ 6r

As a result, for the first component, we will have

T1 ¼ 6 
 0:022 ¼ 0:132:

For the second component, we will have:

T2 ¼ 6 
 0:021 ¼ 0:126:

Based on these tolerances, the tolerance and the tech-

nical characteristics of each component can be measured.

Accordingly, the technical characteristics of the first

component and those of the second one are 14 � 0:066 and

16 � 0:063, respectively. Now, the tolerance of the

assembled set can be calculated as follows:

T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2

1 þ T2
2

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:132Þ2 þ ð0:126Þ2

q
¼ 0:182:

If we use additive relationship, and the tolerance of a

component is equal, the tolerance of each component of the

assembled set is expected to be 0.182 mm, that is, more

than the previous tolerance that was 0.129. Consequently, it

is obvious that more tolerance will be allocated to each

component, using the probability relation and the central

limit theorem. As a result, the allocation of more tolerance

will facilitate the production of each component.

Conclusion

This study used the statistical method to design the toler-

ance of components. The results show that the use of this

method will allow the allocation of more tolerance to each

component in the process of assembling several compo-

nents. Meanwhile, the assembled set can have the required

performance. Designing tolerance by applying GLD for

unknown distributions is the innovative contribution of this

study. Due to its high flexibility, this type of distribution

can be used both for estimation of parameters and design of

tolerance. In addition to PM, there are many other methods

used to estimate the GLD parameters. We can make sure

that there is not a significant difference between the esti-

mated values and the real values of parameters, using v2.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://crea

tivecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.
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