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Abstract Many studies focus on inventory systems to

analyze different real-world situations. This paper consid-

ers a two-echelon supply chain that includes one ware-

house and one retailer with stochastic demand and an up-

to-level policy. The retailer’s lead time includes the

transportation time from the warehouse to the retailer that

is unknown to the retailer. On the other hand, the ware-

house is unaware of retailer’s service level. The relation-

ship between the retailer and the warehouse is modeled

based on the Stackelberg game with incomplete informa-

tion. Moreover, their relationship is presented when the

warehouse and the retailer reveal their private information

using the incentive strategies. The optimal inventory and

pricing policies are obtained using an algorithm based on

bi-level programming. Numerical examples, including

sensitivity analysis of some key parameters, will compare

the results between the Stackelberg models. The results

show that information sharing is more beneficial to the

warehouse rather than the retailer.

Keywords Two-echelon supply chain � Incomplete

information � Lead time � Transportation cost � Service

level

Introduction and literature review

Two-echelon supply chain consists of one or more manu-

factures or warehouses who wholesale their products to

lower echelon (retailers) who retail them to end customers

(Lau and Lau 2005). To maximize their profits, each ech-

elon should make decisions about pricing and appropriate

replenishment policy, including order quantity (Q) and

reorder point (R) (Heydari 2014). The related literature on

optimal pricing and (R, Q) in the supply chain regarding

lead time and service level can be categorized into two

groups: up-to-level policy (R, Q) and game theoretic

pricing and ordering decisions. These models are briefly

summarized to be compared with the proposed model.

The first group focuses on (R, Q) inventory when an

order for Q is placed and the inventory level falls to R (Li

et al. 2011). In optimization cost and profit of supply chain,

it is common to assume that retailers and warehouses and

even plant follow (R, Q) policy for replenishment. The

interruption demand of lower level in a supply chain does

not violate the assumption of (R, Q) replenishment policy

(Forsberg 1997) and (Ganeshan 1999). Considering

stochastic demand is the common assumption in this group

(Tan and Weng 2013) (Alkhedher and Darwish 2013). For

instance, Taleizadeh et al. (2011) proposed a multi-buyer

multi-vendor supply chain and determined ordering policy,

including reorder point and number of shipments as well as

safety stock to minimize the total cost. Strijbosch and

Moors (2006) considered single-stage supply chain with

(R, Q) policy. By considering the demand with truncated

normal distribution and taking into account the non-nega-

tive values, they derive ordering policy. While lead time

demand has normal distribution, Chung et al. (2009) pre-

sented an accurate algorithm to determine the order

quantity and the reorder point. Thangam and Uthayakumar
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(2008) derived optimal reorder points in two-echelon

supply chain, while the number of backorders which are

allowed during the lead time is limited. Isotupa and

Samanta (2013) developed a cost function for (R, Q) and a

lost sales inventory system with stochastic lead time and

two types of customers with different priorities. Al-Rifai

and Rossetti (2007) proposed a two-echelon inventory

system with non-reparable spare parts and utilized a

heuristic algorithm to drive ordering decisions. Although

the proposed models considered different real-world situ-

ations on (R, Q) inventory systems, the interaction between

each echelon of the supply chain, such as coordination,

cooperation, or competition, has been ignored. Moreover,

some researchers have applied metaheuristic methods for

optimizing supply chain. Taleizadeh et al. (2010a) applied

genetic algorithm to optimize multiproduct multiconstraint

inventory control systems with stochastic replenishment

intervals and discount. Taleizadeh et al. (2010b) used A

particle swarm optimization approach for constraint joint

single buyer-single vendor inventory problem with

changeable lead time and (R, Q) policy in supply chain.

The second group of literature has been dedicated to the

pricing and ordering decisions. These decisions in the

supply chain would be also practical and efficient, because

emphasis is placed the dynamic behavior of members by

the game theory approach. Most papers present the non-

cooperative game in the supply chain as the Stackelberg

game. Taleizadeh and Noori-daryan (2016) optimized the

total cost of the supply chain network by coordinating

decision-making policy using Stackelberg–Nash equilib-

rium. The decision variables of their model were the sup-

plier’s price, the producer’s price, and the number of

shipments received by the supplier and producer. Taleiza-

deh et al. (2015) used Stackelberg game for optimizing

prices and ordering decisions in a supply chain with

imperfect quality items and inspection under the buyback

of defective items. Heydari (2014) considered the coordi-

nation between a supplier and a retailer in the supply chain

with respect to fixed amount of demand, and also the

variation of lead time with complete information structure.

Nevertheless, the optimal ordering and pricing policies are

obtained in a seller–buyer supply chain with partial lost

sale and stochastic demands as the seller-Stackelberg game

(Cai et al. 2011). Ye and Xu (2010) presented a vendor–

buyer model under buyer-Stackelberg and cooperative

games. Taleizadeh et al. (2016) determined price and

ordering decisions for two competing supply chains using a

Stackelberg game approach. The heuristic algorithms have

been used to obtain the optimal order quantity, length of

lead time, the safety factor, and the number of products

which are delivered to the buyer to minimize their costs.

Moreover, many researchers have to make decisions in the

supply chain using incomplete information. A supply chain

model is proposed to obtain optimal order quantity and

selling price, while the seller’s setup, purchase costs, and

the demand are unknown (Esmaeili and Zeephongsekul

2010). Uncertain market demand is also considered in a

duopoly market, where two separate firms offer comple-

mentary goods regarding the Stackelberg model

(Mukhopadhyay et al. 2011). In addition, to obtain the

optimal pricing policy in a supply chain, including a multi-

channel manufacturer, a retailer uncertain demand is con-

sidered (Yan and Pei 2011). The model is analyzed with

information sharing and non-information sharing. Later,

the optimal pricing and collection policies for a manufac-

turer–retailer are obtained in a closed-loop supply chain

with complete and incomplete information about cus-

tomer’s demand (Wei et al. 2015). Hu et al. (2014)

obtained optimal ordering and production policy in a two-

echelon supply chain to maximize expected profit. They

considered stochastic demand and production yield, while

these factors, as well as price, are proposed to be common

knowledge.

The features of this paper are classified in terms of

decision policies, the main assumptions, and solution

methods in comparison with those of the literature

(Table 1). To the best of our knowledge, ordering size,

safety factor, and pricing policies in a supply chain have

not been studied regarding incomplete information of lead

time and retailer’s service level in the literature. This paper

considers a two-echelon supply chain that includes one

warehouse and one retailer under incomplete information.

Both the warehouse and the retailer apply (R, Q) replen-

ishment policy with a continuous-review backorder

inventory model and truncated normal demand. The

warehouse’s order quantity is integer multiples of the

retailer’s order quantity. The warehouse uses two trans-

portation modes via a logistic service provider (LSP), the

traditional, and the emergency ones, to deliver batches to

the retailer. Whenever the warehouse is out of stock, orders

are delivered with delay. The warehouse uses emergency

transportation, such as air transportation, to keep high

service level. Practical examples would be observed in the

delivery of large-sized transactions in a supply chain for

each industry, such as car, tire, and computer companies.

For example, in Customs Administration or when there is a

distance between the upstream (vendors) or downstream

(sellers), there are some silos and warehouses at the Cus-

toms Administration. The existence of such silos and

warehouses is required for exchanging, sending, and

receiving cargo, shipment, products with, to, and from their

retailers or buyers. Regarding the strategic location of

warehouse or silos, a warehouse could be considered as a

monopolist by different retailers or sellers. Therefore, the

relationship between the retailer and the warehouse is

investigated based on the warehouse–Stackelberg game

44 J Ind Eng Int (2018) 14:43–53

123



with incomplete information. Moreover, the warehouse

offers a fraction of its profit to the retailer, while the retailer

offers more order quantities to reveal their private infor-

mation. The optimal inventory and pricing policies are

obtained using the algorithm based on BLPP. Numerical

examples, including sensitivity analysis on the probability

distribution of transportation mode (proposed by the

retailer) and the retailer’s service-level mean and variance

(estimated by the warehouse), will compare the results

between the Stackelberg models. The results show that

information sharing is more beneficial to the warehouse

rather than the retailer.

The rest of this paper is organized as follows. In

Sect. 2, the notations and assumptions of the proposed

model under complete information are presented. In

Sect. 3, a model regarding incomplete information is

provided. The warehouse–Stackelberg game with incom-

plete information and incentive strategies to reveal the

information is presented in Sect. 4. Computational results

include the numerical example and sensitive analyses are

considered to analyze the effect of parameters on the

model in Sect. 5. Finally, conclusion and future sugges-

tions are presented in Sect. 6.

Notation and problem formulation

This section introduces the notation, all decision variables,

input parameters, assumptions, and details of the models

which will be stated here:

Table 1 Features of the study

Articles Decision policies Main assumptions Game theory Solution methods

Order

size

Safety

factor

profit

fraction

exchanged

price Replenishment

policy

Stochastic

demands

incomplete

information

information

sharing

Viswanathan

and Piplani

(2001)

4 4 (T, Q) 4 Exact method

Boyaci and

Gallego

(2004)

4 (R, Q) 4 4 Exact method

Kebing et al.

(2007)

4 4 (T, Q) 4 Exact method

Li and Wang

(2007)

4 (T, Q) 4 Heuristics algorithm

Esmaeili et al.

(2009)

4 4 4 (R, Q) 4 4 Exact method

Yu et al. (2009) 4 4 (T, Q) 4 Exact method

Taleizadeh et al.

(2010b)

4 4 (R, Q) 4 4 Metaheuristic algorithm

Yu and Huang

(2010)

4 4 (T, Q) 4 4 Metaheuristic algorithm

Huang et al.

(2011)

(T, Q) 4 Heuristics algorithm

Eruguz et al.

(2014)

4 (T, Q) 4 No game approach Sequential optimization

procedure (SOP) for

NLIP

Yin et al. (2015) 4 4 (T, Q) 4 4 Heuristics algorithm

Taleizadeh and

Noori-daryan

(2016)

4 (R, Q) 4 4 Exact method

Taleizadeh et al.

(2016)

4 4 (R, Q) 4 Exact method

This study 4 4 4 (T, Q) 4 4 4 Game theory

(Stackelberg) and Bi-

level programming
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Input parameters

h0 The warehouse’s holding cost

hr The retailer’s holding cost

hc The retailer’s fixed holding cost

Lo The warehouse’s lead time

Lr The retailer’s lead time

D0 Total demand from the warehouse (l�0, r�2
0 )

Dr Customers’ potential demand from the retailer (l�r , r�2
r )

R0 The reorder point of the warehouse

Rr The reorder point of the retailer

SS0 Safety stock of the warehouse

SSr Safety stock of the retailer

S0 Backorder level of the warehouse

Sr Backorder level of the retailer

w Whole sale price charged by the warehouse

p0 The warehouse’s selling price, including transportation cost

pi0 The warehouse’s selling price

pr The retailer’s selling price

C0 The warehouse’s ordering cost

Cr The retailer’s ordering cost

c0 The warehouse’s shortage cost

cr The retailer’s shortage cost

CT1 Transportation cost (Type 1)

CT2 Transportation cost (Type 2)

dr The retailer’s service level

hr The retailer’s service level proposed by the warehouse

lhr
The retailer’s service-level mean estimated by the warehouse

r2
hr

The retailer’s service-level variance estimated by the warehouse

f yð Þ The warehouse’s lead time demand probability density function

ðy� Truncated normal distribution ðl�0Lo;r�2
0 LoÞÞ

g xð Þ The retailer’s lead time demand probability density function

ðx� truncated normal distribution ðl�r Lr; r�2
r LrÞÞ

e0 The warehouse’s minimum service level

er The retailer’s minimum service level

p0 The warehouse’s profit function

pr The retailer’s profit function

ta The time that there is not backorder

tb The time that there is backorder

i Annual interest rate

Decision variables

Qr The retailer’s lot size

N The integer multiples of the retailer’s lot size

(Q0 as the warehouse’s lot size,Q0 ¼ NQr)

k0 The warehouse‘s safety factor

kr The retailer’s safety factor

d0 A fraction of profit charged by the warehouse to the retailer

Assumptions

The following assumptions are considered for the ware-

house and retailer’s models (Fig. 1):

1. The planning horizon is infinite.

2. The warehouse and the retailer follow (R, Q)

replenishment policy. An order for Q is placed when

the inventory level falls to R. In optimization cost

and profit of supply chain, it is common to assume

that retailers and warehouses and even plant follow

(R, Q) policy for replenishment (Forsberg 1997) and

(Ganeshan 1999).

3. The warehouse’s lead time Lo is constant.

4. The unsatisfied demand is backordered.

5. The warehouse’s lot size is Q0 ¼ NQr when N is

integer multiples of retailer’s lot size.

6. The retailer’s demand from the warehouse, D0, is a

function of final customers’ potential demand, Dr,

Warehouse’s
inventory 

level

t

0

0

0

0

0

Retailer’s
inventory 
level

t

Fig. 1 Warehouse and the retailer’s inventory levels
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and the retailer’s service level, hr [Eq. (1)].

Therefore,

D0 ¼ Drhr ð1Þ

7. Retailer and the warehouse are unaware of Lr and hr,

respectively.

8. Retailer’s holding cost is proportional to the unit

price of hr ¼ hc þ ipr.

9. According to the strategic location of warehouse, a

warehouse would be interacted by different retailers

or sellers; therefore, the warehouse has greater

power than the retailer or the seller.

10. Since negative demands are meaningless, the trun-

cated normal distribution is considered for the

customers’ and retailer’s demand.

Model description

In this section, the warehouse and the retailer’s models are

introduced regarding complete information.

The warehouse model

The warehouse’s profit function is described as follows:

p0 N; k0ð Þ ¼ Total revenue � Total purchasing cost

� Total ordering cost

� Total holding cost � Total stock out cost:

Or, expressed as Eq. (2):

p0 N; k0ð Þ ¼ p0 � wð ÞD0 � C0

D0

Q0

� h0

ðQ0 � S0Þ2

2Q0

þ SS0

 !
� c0

D0S0

Q0

; ð2Þ

where

SS0 ¼ R0 � l�0L0 ¼ k0r
�
0

ffiffiffiffiffi
L0

p
; ð3Þ

S0 ¼ r
1

R0

y� R0ð Þf yð Þdy ¼ r�0
ffiffiffiffiffi
L0

p
r
1

k0

z� k0ð Þf zð Þdz

¼ r�0
ffiffiffiffiffi
L0

p
ð/ k0ð Þ � k0½1 � /ðk0Þ�Þ;

ð4Þ

p0 ¼ Q0 � S0

Q0

� �
CT1 þ

S0

Q0

� �
CT2 þ pi0; ð5Þ

S0

Q0

� e0; ð6Þ

Q0 ¼ NQr; ð7Þ
Q0 � 0: ð8Þ

Equation (3) describes the warehouse’s safety stock. S0

in Eq. (4) represents the warehouse’s stock out.

Equation (5) indicates the expected selling price, including

the price of goods and the expected transportation cost. The

first term of Eq. (5) indicates the traditional transportation

cost which is calculated as follows (Fig. 2):

Traditional transportation cost¼ð1�Prðstock outÞÞ�CT1

¼ ta

taþ tb
�CT1 ¼

Q0 �S0

Q0

� �
CT1:

In addition, the second term explains the emergency

transportation cost:

Emergency transportation cost¼ Prðstock outÞ�CT2

¼ tb

taþ tb
�CT2 ¼

S0

Q0

� �
CT2:

Equation (6) determines a lower bound for the ware-

house’s service level. Equation (7) is written with respect

to assumption (5).

According to assumption (10), total retailer’s demand

from the warehouse has truncated normal distribution

(modified normal distribution) with the following

parameters:

l�0 ¼ l�r hr; ð9Þ

r�2
0 ¼ r�2

r � h2
r : ð10Þ

While

l�0 ¼ r0G � 1

v

� �
U

1

v

� �
; ð11Þ

r�2
0 ¼

r2
0 U 1

v

� �
H � 1

v

� �
� G2 � 1

v

� �
U 1

v

� �� �
U 1

v

� � ; ð12Þ

where

Fig. 2 Warehouse inventory and stock out graph
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G � 1

v

� �
¼ u � 1

v

� �
� 1

v
U

1

v

� �
; ð13Þ

H � 1

v

� �
¼ � 1

v

� �
u � 1

v

� �
þ 1

v2
þ 1

� �
U

1

v

� �
: ð14Þ

In the above equations, v ¼ r0

l0
, and uð�Þ and Uð�Þ are

probability density and cumulative distribution functions of

the standard normal distribution for safety factor (k0),

respectively. Moreover, the retailer’s service level proposed

by the warehouse is considered to have a probability distri-

bution over its value (hrðlhr
; r2

hr
Þ) regarding assumption (8).

The retailer’s model

To satisfy the final customers’ demand, the retailer places

orders from the warehouse. Due to the competitive conditions,

the retailer has no bargaining power and charges p0 per each

item. The retailer’s profit function is described as follows:

pr Qr; krð Þ ¼ Total revenue � Total purchasing cost

� Total ordering cost � Total holding cost

� Total stock out cost:

Or mentioned as follows (Eq. (15)):

pr Qr; krð Þ ¼ pr � p0ð ÞDr � Cr

Dr

Qr

� hr

Qr � Srð Þ2

2Qr

þ SSr

 !

� cr

DrSr

Qr

;

ð15Þ

where

SSr ¼ Rr � l�r drLr ¼ krr
�
r dr

ffiffiffiffiffi
Lr

p
; ð16Þ

Sr ¼ ½u krð Þ � kr 1 � U krð Þð �r�r dr

ffiffiffiffiffi
Lr

p
; ð17Þ

Sr

Qr

� er; ð18Þ

Qr � 0: ð19Þ

In Eq. (15), pr is the retailer’s selling price when pr ¼
ap0 (a� 1) and hr ¼ hc þ ip0. Equation (16) describes

retailer’s safety stock. In Eq. (17), Sr indicates the retailer’s

stock out. Equation (18) determines a lower bound for the

retailer’s service level.

According to assumption (10), customer’s demand from

the retailer has truncated normal distribution with the fol-

lowing parameters per unit time:

l�r ¼ rrG � 1

v

� �
U

1

v

� �
; ð20Þ

r�2
r ¼

r2
r U 1

v

� �
H � 1

v

� �
� G2 � 1

v

� �
U 1

v

� �� �
U 1

v

� � : ð21Þ

In the above equations, v ¼ rr

lr
, G � 1

v

� �
, and H � 1

v

� �
are

calculated based on Eqs. (13) and (14).

The models regarding incomplete information

According to the uncertainty of transportations time and

demand in the real world, the transportation time from the

warehouse to the retailer and the retailer’s service level is

considered unknown to the retailer and the warehouse.

Therefore, the warehouse and the retailer’s models are

presented under incomplete information.

The warehouse model

The warehouse is unaware of the retailer’s service level;

therefore, the uncertainty of service level (hr) is expressed

by probability density function (pdf), gðhrÞ. The expected

profit function of the warehouse, E p0 Q0; k0ð Þð Þ, is maxi-

mized with respect to order quantity, Q0, and safety factor

k0, such that

Eðp0ðQ0; k0ÞÞ

� h0

ðQ0 � S0ðhrÞÞ2

2Q0

þ SS0ðhrÞ
 !

� c0

l�0 hrð ÞS0 hrð Þ
Q0

f hrð Þdhr:

ð22Þ

Given that A0 ¼ r�0
ffiffiffiffiffi
L0

p
ð/ k0ð Þ � k0½1 � Uðk0Þ�Þ, we

have

E p0 N; k0ð Þð Þ

¼
Q0E hrð Þ � A0E h2

r

� �
Q0

 !
CT1 þ

A0E h2
r

� �
Q0

 !
CT2

 

þðPi0 � wÞE hrð Þ � C0

E hrð Þ
Q0

� c0

A0E h2
r

� �
Q0

!
l�r

� h0

Q2
0 þ A2

0E h2
r

� �
� 2A0Q0E hrð Þ

2Q0

þ k0r
�
0

ffiffiffiffiffi
L0

p
E hrð Þ

 !
;

ð23Þ

where

A0E hrð Þ
Q0

� e0; ð24Þ

Q0 ¼ NQr; ð25Þ
Q0 � 0: ð26Þ

The retailer’s model

The transportation mode is shown with n with two types:

traditional and emergency ones that are different. Since the
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retailer is unaware of the transportation time (lead time),

therefore, the uncertainty of, Lr, is expressed by probability

distribution over its value Lrða; 1 � aÞ. Therefore, the

expected annual profit function of the retailer,

E pr Qr; krð Þð Þ, is maximized with respect to order quan-

tity,Qr, and safety factor kr, such that

E pr Qr; krð Þð Þ ¼ r pr � p0ð Þl�r dr � Cr

l�r dr

Qr

� hr

Qr � Sr nð Þð Þ2

2Qr

þ SSr nð Þ
 !

� cr

l�r Sr nð Þ
Qr

f nð Þdn:

ð27Þ

Given that Ar ¼ ½u krð Þ � krð1 � UðkrÞ�r�r dr, we achieve

E pr Qr; krð Þð Þ ¼ ða� 1Þp0l
�
r dr � Cr

l�r dr

Qr

� hr

Q2
r þ A2

rE Lr nð Þð Þ � 2ArQrE
ffiffiffiffiffiffiffiffiffiffiffi
Lr nð Þ

p� �
2Qr

 

þ krr
�
r drE

ffiffiffiffiffiffiffiffiffiffiffi
Lr nð Þ

p	 



� cr
l�r drArEð

ffiffiffiffiffiffiffiffiffiffiffi
LrðnÞ

p
Þ

Qr

;

ð28Þ

where

EðSrÞ
Qr

� er; ð29Þ

Qr � 0: ð30Þ

Warehouse–Stackelberg game

In Sects. 2 and 3, the warehouse and the retailer’s models

under complete and incomplete information were con-

sidered separately. The warehouse–Stackelberg model

with incomplete information and under information shar-

ing regarding incentive strategy will be represented as

follows:

The warehouse–Stackelberg game with incomplete

information

According to assumption (9), considering the warehouse

selling price, p0, the retailer (follower) obtains ordering

policy, Qr and Rr, to maximize the profit. Then, the

warehouse as a leader determines the optimal p0 and Q0 by

maximizing the profit. The solutions to the retailers’

problem (follower) are exhibited by ðQ�
r ;R

�
r Þ. Given that

A0 ¼ r�0
ffiffiffiffiffi
L0

p
ð/ k0ð Þ � k0½1 � Uðk0Þ�Þ and Ar ¼ ½u krð Þ �

krð1� UðkrÞ�r�r dr, the following model is presented for the

warehouse (leader):

MaxEðp0ðN; k0;Q
�
r ; k

�
r ÞÞ

s:t :

A0EðhrÞ
NQr

� e0;

ð31Þ

N� 0; ð32Þ

MaxE pr Qr; krð Þð Þ
s:t :

ArEð
ffiffiffiffiffiffiffiffiffiffiffi
LrðnÞ

p
Þ

Qr

� er;

ð33Þ

Qr � 0: ð34Þ

Due to the complexity of the model, the optimal solution

could not be obtained as a closed-form solution. Therefore,

the warehouse–Stackelberg is applied as a bi-level pro-

gramming (BLPP). The retailer and the warehouse’s

models are presented as the inner and outer levels,

respectively. The optimal inventory and pricing policies

are obtained using the algorithm based on BLPP (Gümüş

and Floudas 2001) that guarantees the global optimality of

solution. Their algorithm is as follows:

Step 1 Set the lower and upper bound of the outer level

objective function (leader), LB ¼ �1 and UB ¼ 1.

Step 2 Use KKT optimality conditions instead of the

inner level optimization problem (follower), and consider

them as the constraints of the outer level problem.

Step 3 Use the current problem from the second step to

calculate the lower bound of the outer level objective

function.

Step 4 Substitute the nonlinear equality constraints of

the outer problem with two inequality constraints (greater

than or smaller than).

Step 5 Determine the lower and upper bounds of the

variables.

Step 6 To calculate the upper bound of the outer level

objective function, first convert the inner level objective

function problem to a convex shape and then use the KKT

optimality conditions instead of the inner level problem.

Step 7 Substitute the complementarily conditions with

their equivalent linear constraints to calculate the upper

bound of outer level objective function.

Step 8 If the upper and the lower bounds of the outer

level objective function converge, then stop, otherwise

divide the interval of one of the variables into two or more

sub-intervals, and then go back to step 2.

Revealing information regarding incentive strategies

In this case, both the warehouse and the retailer reveal their

private information according to an incentive strategy. The

warehouse shares transportation information, while the
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retailer promises to buy more rather than an incomplete

pattern. On the other hand, the retailer shares an accurate

service level and demand, while the warehouse offers the

retailer a fraction of its profit by d0 percent. However, both

the warehouse and the retailer’s objective functions should

be at least the optimal value in the case of incomplete

information.

Given that the warehouse’s selling price is (d0p0), the

retailer (follower) obtains an optimal ordering policy.

Proposing A0 ¼ r�0
ffiffiffiffiffi
L0

p
ð/ k0ð Þ � k0½1 � Uðk0Þ�Þ and

Ar ¼ ½u krð Þ � krð1 � UðkrÞ�r�r dr, the following model is

presented for the retailer as a follower:

Maxpr Qr; krð Þ ¼ pr � p0ð ÞDr � Cr

Dr

Qr

� hr

Qr � Srð Þ2

2Qr

þ SSr

 !
� cr

DrSr

Qr

þ d0p0

s:t :

ð35Þ

Ar

ffiffiffiffiffiffiffiffiffiffiffi
LrðnÞ

p
Qr

� er; ð36Þ

pr Qr; krð Þ� p�r ; ð37Þ

Qr [Q�
r ; ð38Þ

Qr � 0: ð39Þ

In addition, in the following model, the warehouse is

considered as a leader:

Maxp0 N; k0; d0ð Þ
s:t :

ð40Þ

A0hr

NQr

� e0; ð41Þ

p0 N; k0; d0ð Þ� p�0; ð42Þ

0	 d0 	 1; ð43Þ
N� 0: ð44Þ

Due to the complexity of the model, the optimal

solution could not be obtained as a closed-form solu-

tion. The optimal inventory and pricing policies are

obtained using the algorithm based on BLPP (Gümüş

and Floudas 2001) that guarantee the global optimality

of solution.

Computational results

In this section, a numerical example is presented to illus-

trate the proposed models and also a sensitivity analysis is

performed.

Numerical example

Suppose a supply chain consists of one central warehouse

and a retailer. The retailer pays p0 per each item and sells it

to the end customer by ð1 þ aÞp0; 0\a	 1. All parameters

are known to both the warehouse and the retailer except Lr

and hr. The parameters are presented in Table 2. The

optimal solution of the warehouse–Stackelberg problem

with incomplete information is shown in Table 3 using the

algorithm in Sect. 4. Moreover, the Stackelberg game

regarding information sharing as well as incomplete

information is considered to compare the results. In this

numerical problem, information sharing enables both the

warehouse and the retailer to gain more compared with the

incomplete structure.

It is necessary to note that the warehouse’s reorder point

can be obtained based on Eq. (45):

R0 ¼ l�0L0 þ k0r
�
0

ffiffiffiffiffi
L0

p
: ð45Þ

Similarly, the retailer’s reorder point can be calculated.

Sensitivity analysis

Sensitivity analysis is performed regarding the main

parameters, including the probability of common trans-

portation mode proposed by the retailer (a) and the retai-

ler’s service-level mean (lhr
) and variance (rhr

) estimated

by the warehouse.

As exhibited in Table 4 and Fig. 3, unlike the retailer,

the warehouse’s decisions have been affected by changing

the retailer’s service-level estimation (lhr
). When lhr

decreases, the warehouse’s payoff decreases as well. If the

warehouse underestimates the retailer’s service level, less

order quantity (Q0) will be placed to satisfy the retailer’s

demand. Therefore, the warehouse will keep fewer inven-

tories and faces more stock out.

Table 2 Warehouse–Stackelberg game numerical problem

Warehouse parameters

h0 Lo pi0 w C0 Lr

15 1 200 150 200 0.5

c0 CT1 CT2 e0 hr(l, r2)

50 10 40 0.8 (0.6, 0.1)

Retailer’s parameters

lr rr hc i Lr1 Lr2

200 25 15 0.15 0.7 0.2

a Cr cr er Lrða; 1 � aÞ dr

0.25 200 50 0.8 (0.7,0.3) 0.8
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As shown in Table 5 and Fig. 4, by increasing rhr , the

warehouse’s payoff (p0) decreases. However, the change in

the retailer’s payoff can almost be ignored. Therefore, infor-

mation sharing is more beneficial to the warehouse compared

to the retailer. Thus, the warehouse should provide motivating

options, such as price discount or service-level improvement

to develop its relationship with the retailer (Table 5).

By increasing the probability of common transportation

type (a), the lead time is overestimated by the retailer.

Therefore, more order quantities should be placed to prevent

stock out. Consequently, the warehouse places more order

quantities to satisfy the retailer’s demand and prevent stock

out. While keeping more inventory increases the ware-

house’s holding cost, it also reduces the shortage cost. When

the shortage cost is rather high, the warehouse’s profit

increases accordingly. Similarly, keeping more inventories

affects the retailer’s profit (Table 6; Fig. 5).

Table 3 Warehouse and the retailer’s optimal solutions and profit

Qo ko p0 p0 Qr kr pr

234 -5.00 219.6 6379 78 -1.21 6190

Table 4 Sensitivity analysis of the warehouse–Stackelberg model

with respect to lhr

lhr
Qo ko p0 p0 Qr kr pr

0.6 234 -5.00 219.6 6379 78 -1.21 6190

0.65 237 -4.46 219.2 6898 79 -1.18 6173

0.7 154 -4.11 224.0 7342 77 -1.24 6360

0.75 231 -4.95 222.1 8173 77 -1.24 6283

08 234 -4.01 220.3 8612 78 -1.63 6219

0.85 234 -3.83 220.4 9153 78 -1.63 6222

0.9 234 -3.62 220.5 9691 78 -1.63 6225

0.95 231 -4.22 223 10,316 77 -1.63 6321

1 234 -3.30 220.6 10,760 78 -1.63 6230

0
2000
4000
6000
8000

10000
12000

Warehouse

Retailer

Fig. 3 Warehouse and the retailer’s payoff function versus the

retailer’s service-level estimation

Table 5 Sensitivity analysis of the warehouse–Stackelberg model

with respect to rhr

rhr
Qo ko p0 p0 Qr kr pr

0.05 234 -5.00 219.6 6511 78 -1.21 6190

0.1 234 -5.00 219.6 6379 78 -1.20 6190

0.15 237 -4.68 218.9 6198 79 -1.18 6162

0.2 237 -4.67 218.9 6078 79 -1.18 6162

0.25 237 -4.68 218.9 5958 79 -1.18 6162

0.3 231 -5.67 221.1 5864 77 -1.24 6224

5400
5600
5800
6000
6200
6400
6600

0.
05 0.
1

0.
15 0.
2

0.
25 0.
3

Warehous
e
Retailer

Fig. 4 Warehouse and the retailer’s payoff function versus the

retailer’s service-level variance

Table 6 Sensitivity analysis of the warehouse–Stackelberg model

with respect to a

a Qo ko p0 p0 Qr kr pr

0.65 231 -4.24 218.3 6259 77 -1.12 6135

0.7 231 -5.67 221.1 6486 77 -1.24 6244

0.75 164 -3.67 220.1 6269 82 -1.20 6213

0.8 160 -7.32 220.5 6317 80 -1.36 6637

0.85 255 -7.24 222.8 6702 85 -1.33 6341

0.9 261 -8.08 223.9 6823 87 -1.37 6401

5800
6000
6200
6400
6600
6800
7000

0.7 0.75 0.8 0.85 0.9

Retailer
Warehous
e

Fig. 5 Warehouse and the retailer’s payoff function versus tradi-

tional transportation probability
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Conclusion

Inventory systems to analyze different real-world situa-

tions have received great interest in the literature. This

paper considers a two-echelon supply chain that includes

a warehouse and a retailer who are faced with the

stochastic demand. The retailer’s service level and the

transportation time from the warehouse to the retailer are

private information for the retailer and the warehouse,

respectively. Regarding incomplete information, the

interaction between the warehouse and the retailer is

considered by Stackelberg game. The optimal inventory

and pricing policies are obtained using the algorithm

based on BLPP. While the warehouse’s policy and profit

are very sensitive to the estimation of parameters, the

retailer’s decisions and profit change can almost be

ignored. In this case study, the warehouse has more

motivation to share information compared to the retailer

to gain more benefit.

There are more scopes in extending the present work.

For example, other types of inventory control policies

could be considered regarding incomplete information.

Moreover, other parameters of the model, such as the order

quantity or different costs, could be presented as private

information for both the warehouse and the retailer.
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