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Abstract In this paper, the classical economic production

quantity (EPQ) model is developed for non-instantaneous

deteriorating items by considering a relationship between

the holding cost and the ordering cycle length. Two models

are developed. First, the proposed model is considered

when backorders are not permitted and this condition is

waived for the second case. The cost functions associated

with these models are proved to be convex and an algo-

rithm is designed to find the optimum solutions of the

proposed model. Results show that the relationship be-

tween holding cost and ordering cycle length has a sig-

nificant impact on the optimal lot size and total cost in the

EPQ model. Numerical examples are presented to

demonstrate the utility of the models.

Keywords Inventory � EPQ � Non-instantaneous
deterioration � Holding cost

Introduction

In recent years, inventory problems for deteriorating items

have been widely studied. In general, deterioration is de-

fined as the damage, spoilage, dryness, vaporization, etc.,

which decrease of usefulness of the commodity. One of the

important problems in inventory management is how to

control and maintain the inventories of deteriorating items

such as food items, pharmaceuticals, chemicals, and blood.

Analysis of inventory system is usually carried out without

considering the effects of deterioration; however, there are

items such as highly volatile substances, radioactive ma-

terials, etc., in which the rate of deterioration should not be

ignored (Valliathal and Uthayakumar 2011). Some re-

searchers assume that the deterioration of the items in in-

ventory starts from the instant of their arrival; however,

many goods maintain freshness or original condition for a

period of time. During this period deterioration would not

take place. This phenomenon is defined as non-instanta-

neous deterioration.

Furthermore, in classical EPQ models the parameters

like setup cost, holding cost and also the rate of demand are

fixed. This is why the results of classical models have some

differences compared with real-world conditions. There-

fore, some practitioners and researchers have questioned

practical applications of classical EPQ models due to

several unrealistic assumptions (Jaber et al. 2004). This

deficiency has motivated many researchers to modify the

EPQ model to match real-life situations and this paper

represents some real-life situations in which the holding

cost can be taken into account for increasing the function of

ordering cycle length. This is particularly true in the stor-

age of non-instantaneous deteriorating and perishable items

such as food products. The longer these food products are

kept in storage, the more sophisticated the storage facilities

and services needed and, therefore, the higher the holding

cost. Deterioration is defined as decay, spoilage, loss of

utility of the product and this process is observed in volatile

liquids, beverages, medicines, blood components, food

stuffs, dairy items, etc. Therefore, it is reasonable and re-

alistic to consider holding cost as time dependent for de-

teriorating and non-instantaneous deteriorating items.

In this paper, EPQ models for non-instantaneous dete-

riorating items in which holding cost is an increasing func-

tion of the ordering run length are developed. The classical
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EPQ model is extended by considering a relationship be-

tween holding cost and the ordering cycle length. In practical

real-life situations, most of the goods would have a period of

maintaining quality or preserving original condition, during

which (e.g., electronic goods, blood banks, fresh fruits, and

so on) no deterioration occurs. Since deterioration does not

occur, it is assumed that holding cost is constant. However,

when deterioration starts, extra effort and more capital in-

vestment in storehouse equipment is needed to overcome it,

therefore, here, it is considered that holding cost is increasing

as function of the ordering cycle length. The economic

ordering cycle length and the economic ordering quantity are

obtained. Two models are developed that consider the cases

of with and without shortages in which shortage occurs and

in the other one it does not happen. Optimal solutions are

derived and convexity of the cost functions is established.

Besides, numerical examples are given to test and verify the

theoretical results.

The rest of the paper is organized as follows: In

Sect. ‘‘Literature review’’, a brief literature review has

been presented. In Sect. ‘‘Assumptions and notation’’, the

assumptions and notations which are used throughout the

paper are presented. In Sect. ‘‘Models development’’,

mathematical models are formulated, an algorithm to find

the optimal solution is carried out and numerical examples

are provided to illustrate the theory. Finally, conclusions

and future research topics are presented in Sect. ‘‘Con-

clusions and suggestions’’.

Literature review

Since the economic production quantity (EPQ) model was

introduced, some researchers have investigated and ques-

tioned the practical usages of this model due to the unre-

alistic assumptions regarding model input parameters,

which are the setup cost, holding cost and demand rate

(Jaber et al. 2004). The classical EPQ model has been in-

vestigated in many ways, for example Huang (2004) in-

vestigated the optimal replenishment policy under

conditions of permissible delay in payments within an EPQ

framework. Salameh and Jaber (2000) extended the tradi-

tional EPQ/EOQ model by accounting for imperfect qual-

ity items when using the EPQ/EOQ formulae. They also

considered the issue that poor-quality items are sold as a

single batch by the end of the 100 % screening process.

Jaber et al. (2004) applied first and second laws of ther-

modynamics on inventory management problem. They

showed that their approach yields higher profit than that of

the classical EPQ model. Khouja (2005) extended the

classical economic production lot size (EPL) model to

cases where production rate is a decision variable. Unit

production cost became a function of production rate. He

solved the proposed model for special unit production cost

functions and illustrated the results with a numerical ex-

ample (Khouja 2005). Hou (2007) considered an EPQ

model with imperfect production processes, in which the

setup cost and process quality are functions of capital ex-

penditure. Hariga (1996) developed optimal inventory lot-

sizing models for deteriorating items with general con-

tinuous time-varying demand over a finite planning horizon

and under three replenishment policies. Darwish (2008)

extended the classical EPQ model by considering a rela-

tionship between setup cost and the production run length.

The results show that the relationship between the cost

function and the production time can have a signification

effect on the economical production quantity and the av-

erage amount of the total cost in EPQ classic model.

Vishkaei et al. (2014) extended Hsu and Hsu (2012) aiming

to determine the optimal order quantity of product batches

that contain defective items with percentage nonconform-

ing following a known probability density function. The

orders are subject to 100 % screening process at a rate

higher than the demand rate. Shortage is backordered, and

defective items in each ordering cycle are stored in a

warehouse to be returned to the supplier when a new order

is received. Seyedhoseini et al. (2015) have considered an

inventory system with two substitute products with ignor-

able lead time and stochastic demand and by means of

queuing theory a mathematical model has been proposed.

The holding cost is explicitly assumed to be varying

over time in only few inventory models. Giri et al. (1996)

considered a generalized EOQ model for deteriorating

items here in which the demand rate, deterioration rate,

holding cost and ordering cost are all assumed to be con-

tinuous functions of time. Ferguson et al. (2007) considered

a variation of the economic order quantity (EOQ) model

where cumulative holding cost is a nonlinear function of

time. They showed how it is an approximation of the op-

timal order quantity for perishable goods, such as milk, and

produce, sold in small to medium size grocery stores where

there are delivery surcharges due to infrequent ordering,

and managers frequently utilize markdowns to stabilize

demand as the product’s expiration date nears (Ferguson

et al. 2007). Also, they showed how the holding cost curve

parameters can be estimated via a regression approach

from the product’s usual holding cost (storage plus capital

costs), lifetime, and markdown policy (Ferguson et al.

2007). Alfares (2007) considered the inventory policy for

an item with a stock level-dependent demand rate and a

storage time-dependent holding cost. The holding cost per

unit of the item per unit time is assumed to be an increasing

function of the time spent in storage. Two time-dependent

holding cost step functions are considered: retroactive

holding cost increase, and incremental holding cost in-

crease. Procedures are developed for determining the
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optimal order quantity and the optimal cycle time for both

cost structures. Ray and Chaudhuri (1997) took the time

value of money into account in analyzing an inventory

system with stock-dependent demand rate and shortages.

Two types of inflation rates are considered: internal

(company) inflation, and external (general economy) in-

flation. Shao et al. (2000) determined the optimum quality

target for a manufacturing process where several grades of

customer specifications may be sold. Since rejected goods

could be stored and sold later to another customer, variable

holding costs are considered in the model. Beltran and

krass (2002) analyzed a version of the dynamic lot size

(DLS) model where demands can be positive and negative

and disposals of excess inventory are allowed. Assuming

deterministic time-varying demands and concave holding

costs, an efficient dynamic programming algorithm is de-

veloped for this finite time horizon problem. Goh (1992)

apparently provides the only existing inventory model in

which the demand is stock dependent and the holding cost

is time dependent. Actually, he considered two types of

holding cost variation: (1) a nonlinear function of storage

time and (2) a nonlinear function of storage level (Goh

1992).

The first attempts to determine the optimal ordering

policies for deteriorating items were made in (Ghare and

Schrader 1963). They presented an EOQ model for an

exponentially decaying inventory. Philip (1974) developed

an inventory model with a three parameter Weibull dis-

tribution rate without considering shortages. Deb and

Chaudhuri (1986) derived inventory model with time-de-

pendent deterioration rate. Mishra et al. (2013) developed a

deterministic inventory model with time-dependent de-

mand and time-varying holding cost where deterioration is

time proportional. A detailed review of deteriorating in-

ventory literatures is given in Goyal and Giri (2001). Wu

et al. (2006) developed an inventory model for non-in-

stantaneous deteriorating items with partial backlogging

where demand is assumed to be stock dependent. In Geetha

and Uthayakumar (2010) EOQ-based model for non-in-

stantaneous deteriorating items with permissible delay in

payments is proposed. This model aids in minimizing the

total inventory cost by finding an optimal replenishment

policy. Valliathal and Uthayakumar (2011) discussed the

optimal pricing and replenishment policies of an EOQ

model for non-instantaneous deteriorating items with par-

tial backlogging over an infinite time horizon. The model

was studied under the replenishment policy starting with no

shortages.

Chang et al. (2014) considered an inventory system with

non-instantaneously deteriorating items under order size-

dependent delay in payments. Soni and Patel (2013)

developed an inventory model for non-instantaneous dete-

riorating items with imprecise deterioration free time and

credibility constraint. That model assumes price-sensitive

demand when the product has no deterioration and price and

time-dependent demand when the product has deterioration.

Shah et al. (2013) considered an inventory system with non-

instantaneous deteriorating item in which demand rate was

a function of advertisement of an item and selling price.

Maihami and Karimi (2014) developed one model for de-

termining the optimal pricing and replenishment policy for

non-instantaneous deterioration items with promotional

efforts. The demand was stochastic and dependent on price.

Maihami and Kamalabadi (2012) developed a joint pricing

and inventory control for non-instantaneous deteriorating

items. They adopted a price- and time-dependent demand

function. Tat et al. (2013) developed an EOQ model for

non-instantaneous deteriorating items with and without

shortages to investigate the performance of the vendor-

managed inventory (VMI) system.

To the author’s knowledge, none of the above models

considered the holding cost as a function of the ordering

run length, but holding cost may not always be constant.

This is particularly true in the storage of deteriorating and

perishable items such as food products. Therefore, based on

above discussion, this paper considers an inventory system

with non-instantaneous deteriorating item in which holding

cost is a function of the ordering run length.

Assumptions and notation

Consider a process with the following assumptions: the rate

of demand is fixed, there is no discount, the delivery of the

product is wholesale, all parameters are fixed and deter-

ministic. The following notation will be used in developing

the proposed models:

D Demand rate

Q Order quantity (decision variable)

P Production rate ðP[DÞ
T Inventory cycle length

TP Production run length

K The cost of ordering or setup in the period of main

orders

h0 Holding cost per unit per time unit

B The quantity of backorder (decision variable)

p Shortage cost per item per unit time

TC Annual total cost

TOC Annual setup cost

THC Annual holding cost

TSC Annual backorder cost
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Models development

In this section, EPQ models for non-instantaneous dete-

riorating items are developed by considering a relationship

between the holding cost and the ordering cycle length in two

cases. First, the proposed model is considered when back-

orders are not permitted and for the second case this condition

is waived. The behavior of inventory level for non-instanta-

neous deteriorating items is shown inFig. 1. It is assumed that

the holding cost will be fixed till a definite time ðT 0 Þ and then
will be increased as a function of ordering cycle length. This

is because there is no deterioration in the inventory item until

that point of time; after the time point T
0
, deterioration

commences and more effort and sophisticated storage fa-

cilities and services are needed, consequently increasing the

holding cost. To determine this relation, the following

equation is modified from that of Darwish (2008) and Jaber

and Bonney (2003).

hðTÞ ¼ h0T
e T [ T

0

hmin T � T
0

�
0� e� 1 ð1Þ

where T
0
is a time moment before which the holding cost is

constant. Therefore, before T
0
the holding activity requires a

cost equal to hmin. However, after the time duration T
0
, the

holding process requires extra effort and holding cost esca-

lates with the inventory cycle length. The factor e is the shape
factor of holding cost. The parameter h0 is a positive constant

that can be interpreted as holding cost associated with the

classical EPQmodel (e ¼ 0). h0 is actually equal to hmin. It is

clear that in Eq. (1) if e ¼ 0, the presented model will reflect

the results of classical models. The parameter hmin serves as a

lower limit on the holding cost. The behavior of hðTÞ for
different values of e� 0 is shown in Fig. 2. In this study, it is

required that e� 0; however, one cannot ignore the

possibility of having e\0, when the holding cost decreases

gradually. This situation may be valid when the learning

effect overcomes the effects of deterioration.

Model 1: proposed EPQ model without backorders

In this model, it is assumed that the total amount of the

ordered products is delivered gradually with rate of P and

backorders are not allowed, as is shown in Fig. 3. Here, it

is assumed that extra effort in period T [ T
0
overcomes

deterioration and causes to decrease of inventory level due

to demand only. To find the optimal solution, we divide TC

into two components, one for T � T
0
and the other for

T [ T
0
. In the earlier case, the model becomes the classical

EPQ model with a holding cost of hmin. But, for T [ T
0
the

optimal solution can be set out as follows.

The annual total cost is summation of setup and holding

costs and is calculated based on the following procedures.

TC ¼ TOCþ THC ð2Þ

TC ¼ DK

Q
þ hQ

2
1� D

P

� �
ð3Þ

Replacing Eq. (1) in Eq. (3) yields

Fig. 1 Behavior of inventory level

 ( ) 

Fig. 3 EPQ model without backorders

Fig. 2 Holding cost against ordering cycle length for different values

of e
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TC ¼

DK

Q
þ h0T

eQ

2
1� D

P

� �
T [ T

0

DK

Q
þ hminQ

2
1� D

P

� �
T � T

0

8>><
>>:

ð4Þ

The total cost function in terms of T can be set out as

TC ¼

K

T
þ h0DT

eþ1

2
1� D

P

� �
T [ T

0

K

T
þ hminDT

2
1� D

P

� �
T � T

0

8>><
>>:

ð5Þ

Theorem 1 If e� 0 and T [ T
0
then

1. TC is strictly convex.

2. The optimal value of T is given by

T� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2KP

eþ 1ð Þ P� Dð Þh0D
eþ2

s
ð6Þ

3. The resulting optimal order quantity, Q�, production run
length, T�

P, and annual total cost, TC�, are as follows:

Q� ¼ D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2KP

eþ 1ð Þ P� Dð Þh0D
eþ2

s
ð7Þ

T�
P ¼ D

P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2KP

eþ 1ð Þ P� Dð Þh0D
eþ2

s
ð8Þ

TC� ¼ K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eþ 1ð Þ P� Dð Þh0D

2KP

eþ2

r

þ h0D

2

2KP

eþ 1ð Þ P� Dð Þh0D

� �eþ1
eþ2

1� D

P

� �
ð9Þ

Proof Taking the first derivative of total cost function TC

given by Eq. (5) with respect to T yields

dTC

dT
¼ �K

T2
þ eþ 1ð Þ h0D

2
1� D

P

� �
T e ð10Þ

To minimize TCðTÞ; we set dTC
dT

¼ 0 and obtain the

optimal value of T as Eq. (6).

The second derivative of total cost function TCðTÞ is:
d2TC

dT2
¼ 2K

T3
þ e eþ 1ð ÞT e�1 h0D

2
1� D

P

� �
ð11Þ

Since 0� e� 1; the Eq. (11) is always positive and

consequently the function TCðTÞ is convex, therefore, T� is
global minimum.

The part (3) will be resulted from replacing T� in

appropriate formula, namely Q� ¼ DT�, T�
P ¼ Q�

P
¼ DT�

P
and

Eq. (5).

Therefore, the optimal solution can be set out as follows:

T� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2KP

eþ 1ð Þ P� Dð Þh0D
eþ2

r
T [ T

0

2K

hminD
T � T

0

8>>><
>>>:

ð12Þ

However, Eq. (6) may give rise to a case where the run

length is not feasible ðT � T
0 Þ. In this case we compare

TCðT 0 Þ with
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DKhmin

p
, where the optimal solution

corresponds to the least cost. The following algorithm is

devised to find the optimal solution:

Step 1 Compute T by Eq. (6).

Step 2 If T[ T
0
, then T� ¼ T and set

TC� ¼K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eþ1ð Þ P�Dð Þh0D

2KP

eþ2

q
þ h0D

2
2KP

eþ1ð Þ P�Dð Þh0D

� �eþ1
eþ2

1�D
P

� 	
,

go to step 6.

Step 3 If T � T
0
determine

TC1 ¼
K

T 0 þ
h0DT

0eþ1

2
1� D

P

� �

TC2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DKhmin

p
Step 4 If TC1\TC2 then T� ¼ T

0
and TC� ¼ TC1 and

go to step 6.

Step 5 If TC1 �TC2 then we use the classical EPQ

models formulas, in that case we have hmin ¼ h0, so

T� ¼
ffiffiffiffiffiffiffiffiffi
2K

hminD

q
and TC� ¼ TC2 and go to step 6.

Step 6 Stop.

TC� ¼ K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eþ 1ð Þ P� Dð Þh0D

2KP

eþ2

r
þ h0D

2

2KP

eþ 1ð Þ P� Dð Þh0D

� �eþ1
eþ2

1� D

P

� �
T [ T

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DKhmin

p
T � T

0

8><
>: ð13Þ
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Numerical example 1

This section demonstrates the utility of the model and

studies the effect of the shape parameter of holding cost on

the optimal solution. To assess the difference from using

the classical EPQ model, its performance is compared with

that of the proposed model. Let TC�
EPQ denote the optimal

total expected cost using the classical EPQ model (e ¼ 0).

Now define the percent loss due to using the classical EPQ

model instead of the proposed model as

%loss ¼ TC��TC�
EPQ

TC
�
EPQ

� 100. Then, we use following data for

numerical example. The parameters of the numerical ex-

amples are borrowed from Darwish (2008). However, some

of the parameters were altered to reflect h0, hmin, e. The
following data are used:

The annual demand of a material is 20,000, its setup cost

is 100, its holding cost is 10 annually and the rate of pro-

duction is 25,000. Table 1 gives the optimal solutions for

selected values of e ranging from 0 to 1 with an increment

of 0.1. It is worth noting that the value of e, which depends

on the production process, defines the type of the produc-

tion system under consideration. For values of e closer to
zero, the proposed model gives results closer to the EPQ

model with relatively lower lot size, shorter production run

and shorter ordering cycle length. The results show that the

production run length and ordering cycle length increase as

e increases. Furthermore, total cost decreases as e increases.
The results also indicate that the lot size is inflating as e
increases, which leads to a lower expected total cost. Im-

portant observation is that the difference brought about

using the classical EPQ model increases with e. This is

because for high values of e; the holding cost in the clas-

sical EPQ deviates from the actual situation. Figure 4

shows total cost versus cycle length for e ¼ 0:1; here

minimum value of total cost is 2490.4 for T = 0.0767.

Model 2: proposed EPQ model with backorders

In this model, we assume that the total amount of the

ordered materials will be delivered gradually and back-

orders are allowed. Figure 5 shows this model.

To find the optimal solution, we use the approach in

Sect. 3.1 by considering two cases of ðT � T
0 Þ and

ðT � T
0 Þ. The first case represents the classical EPQ model

with backorders. However, the optimal solution for

ðT � T
0 Þ is established in the following theorem.

Theorem 2 If 0� e� 1 and T [ T
0
then

1. The optimal value of T is gained by solving Eq. (14).

2. The optimal value of B is given by Eq. (15).

Table 1 Optimal solution for different values of e when backorders

are not allowed

e T� T�
p Q� TC� Loss (%)

0 0.0707 0.0566 1414.2 2828.4 0

0.1 0.0767 0.0613 1533.2 2490.4 11.9502

0.2 0.0828 0.0662 1656.2 2213.9 21.7261

0.3 0.0891 0.0713 1782.5 1985.1 29.8154

0.4 0.0956 0.0765 1911.5 1793.6 36.5861

0.5 0.1021 0.0817 2042.6 1631.9 42.3031

0.6 0.1088 0.087 2175.3 1494.1 47.1751

0.7 0.1155 0.0924 2309.1 1375.6 51.3647

0.8 0.1222 0.0978 2443.8 1273.1 54.9887

0.9 0.1289 0.1032 2579 1183.7 58.1495

1 0.1357 0.1086 2714.4 1105.2 60.9249

Fig. 4 Total cost vs. cycle length for e ¼ 0:1 (Sect. ‘‘Numerical

example 1’’)

Net 
stock

Fig. 5 EPQ model with backorders
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� 2KP h0PT
e þ pPð Þ2þ eþ 1ð Þh0D P�Dð ÞTeþ2 h0PT

e þ pPð Þ2

� 2eh20PD P�Dð ÞT2eþ2 h0PT
e þ pPð Þ

þ e� 1ð Þh30P2D P�Dð ÞT3eþ2 � ph20P
2D P�Dð ÞT2eþ2 ¼ 0

ð14Þ

B� ¼ h0 P� Dð ÞT�eþ1

h0PT�e þ pP
ð15Þ

3. The resulting optimal order quantity,Q�, production run
length, T�

p , annual total cost time, TC
�, are as follows:

T�
P ¼ Q�

P
;Q� ¼ DT�

TC� ¼ K

T� þ
h0D

2P
P� Dð ÞT�eþ1 � h0B

�T�e

þ h0PB
�2T�e�1

2D P� Dð Þ þ
pPB�2

2D P� Dð ÞT� ð16Þ

Proof See Appendix.

The proof of the convexity of TC is provided in Ap-

pendix. The overall convexity of total cost is not guaran-

teed; however, in special cases, convexity can be approved.

These cases are considered in Appendix, too. Furthermore,

the convexity of the cost function is shown graphically in

the Numerical example 2. An algorithm similar to that of

Sect. ‘‘Model 1: proposed EPQ model without backorders’’

is utilized to determine the optimal solution.

Numerical example 2

The data presented in Sect. ‘‘Numerical example 1’’ are

used to investigate the effect of e on the optimal solution. It

should be noted that, here, shortage cost per item per unit

time is 15. When the shape parameter, e, decreases, the

holding cost in the proposed model is close to that in the

classical EPQ model. As a result, the optimal values of

T�;B�, Q�, T�
P and TC� are closer to the classical EPQ

model when e is low; this observation is shown in Table 2.

The results indicate that when e increases, the optimal

backorder level B� decreases because the production sys-

tem is set up more frequently for high values of e. More-

over, for high values of e, the optimal production quantity

decreases.

Table 2 also shows that significant losses happen when

the classical EPQ model is used instead of the proposed

model; for example, a change of 31.28 % of the total cost is

observed if the classical EPQ model is employed when

e ¼ 0:5. The results also show that the optimal production

run length, cycle time, lot size and expected total cost per

unit time are very sensitive to e. For example, Fig. 6 shows

total cost versus cycle length and backorder for e ¼ 0:5;

here minimum value of total cost is 1505.6 for T = 0.1136,

B = 83.4.

Conclusions and suggestions

In this paper, the classical EPQ models have been de-

veloped for non-instantaneous deteriorating items by

considering holding cost as an increasing continuous

function of ordering cycle length. It was assumed that

the holding cost would stay fixed till a definite time and

then would increase as a function of ordering cycle

length. Two models were developed. The first for the

case when backorders were not allowed and other one

permitted backorders. The optimization algorithm has

been developed, and numerical examples have been

solved. Economic ordering quantity, EPQ, the optimum

cycle length and the optimum total cost all were

Fig. 6 Total cost versus cycle length and backorder for e ¼ 0:5

Table 2 Optimal solution for different values of e when backorders

are allowed

e T� B� T�
p Q� TC� Loss (%)

0 0.0913 146 0.073 1826 2190.9 0

0.1 0.0952 131.4 0.0762 1904 2036 7.07

0.2 0.0994 117.6 0.0795 1988 1888.2 13.81

0.3 0.1038 104.9 0.083 2076 1749.8 20.13

0.5 0.1136 83.4 0.0909 2272 1505.6 31.28

0.6 0.1189 74.5 0.0951 2378 1399.9 36.1

0.7 0.1244 66.8 0.0995 2488 1304.6 40.45

0.9 0.1359 54.1 0.1087 2718 1141.9 47.88

1 0.1419 49.1 0.1135 2838 1072.6 51.04
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determined. From the numerical results, we could

clearly see variation due to use of the classical EPQ

model. Based on the formulas developed, it can be

concluded that both the optimal order quantity and the

cycle time increase when the holding cost increases. As

the shape parameter e increases, the total cost decreases

while the optimal order quantity and the cycle time

increase. Moreover, the optimal order quantity and the

EPQ are equal when e ¼ 0. The model presented in this

study provides a basis for several possible extensions.

For future research, this model can be extended to ac-

commodate variable ordering costs. The case of the

increasing holding cost that was considered in this pa-

per, applies to company-owned storage facilities, and

particularly to perishable items that require extra care if

stored for longer periods. Another extension possibility

would be to consider holding cost as a kind of de-

creasing function of the ordering cycle length. Since a

decreasing holding cost is applicable to rented storage

facilities, lower rent rates are obtained for longer term

leases.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://

creativecommons.org/licenses/by/4.0/), which permits unrestricted

use, distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

Appendix

The annual total cost is sum of setup, holding and shortage

costs and it is calculated based on the following

procedures.

TCðT ;BÞ ¼ TOC þ THC þ TSC ð17Þ

TCðT ;BÞ ¼ DK

Q
þ
h Q 1� D

P

� 	
� B

� 	2
2Q 1� D

P

� 	 þ pB2

2Q 1� D
P

� 	 ð18Þ

Replacing h from Eq. (1) in Eq. (18) yields:

TCðT ;BÞ ¼

DK

Q
þ
h0T

e Q 1� D
P

� 	
� B

� 	2
2Q 1� D

P

� 	 þ pB2

2Q 1� D
P

� 	 T [ T
0

DK

Q
þ
hmin Q 1� D

P

� 	
� B

� 	2
2Q 1� D

P

� 	 þ pB2

2Q 1� D
P

� 	 T � T
0

8>>>><
>>>>:

ð19Þ

For T[ T
0
we have

TCðT ;BÞ ¼ K

T
þ
h0T

e DT 1� D
P

� 	
� B

� 	2
2DT 1� D

P

� 	 þ pB2

2DT 1� D
P

� 	 ð20Þ

TCðT ;BÞ ¼ K

T
þ
h0PT

e�1 D
P

P� Dð ÞT � B
� 	2
2D P� Dð Þ

þ pPB2

2DT P� Dð Þ ð21Þ

TCðT ;BÞ ¼ K

T
þ h0D

2P
P� Dð ÞT eþ1 � h0BT

e þ h0PB
2Te�1

2D P� Dð Þ

þ pPB2

2DT P� Dð Þ
ð22Þ

The gradient of TCðT;BÞ function will be as follows

rTCðT ;BÞ ¼ oTC T ;Bð Þ
oT

;
oTC T;Bð Þ

oB

� �
ð23Þ

oTCðT;BÞ
oT

¼ � K

T2
þ eþ 1ð Þh0DðP� DÞTe

2P
� eh0BT

e�1

þ e� 1ð Þh0PB2T e�2

2DðP� DÞ � pPB2

2D P� Dð ÞT2

ð24Þ

oTCðT ;BÞ
oB

¼ �h0T
e þ h0PBT

e�1

DðP� DÞ �
pPB

DT P� Dð Þ ð25Þ

The Hessian matrix of TCðT ;BÞ function is given by

H ¼

o2TCðT;BÞ
oT2

o2TCðT;BÞ
oBoT

o2TCðT ;BÞ
oToB

o2TCðT ;BÞ
oB2

2
664

3
775

where

o2TCðT ;BÞ
oT2

¼ 2K

T3
þ e eþ 1ð Þh0DðP� DÞTe�1

2P

� eðe� 1Þh0BT e�2 þ e� 1ð Þ e� 2ð Þh0PB2Te�3

2DðP� DÞ

þ pPB2

D P� Dð ÞTe

ð26Þ

o2TCðT ;BÞ
oB2

¼ h0PT
e�1

DðP� DÞ þ
pP

DTðP� DÞ ð27Þ

o2TCðT ;BÞ
oToB

¼ �eh0T
e�1 þ e� 1ð Þh0PBT e�2

DðP� DÞ
� pPB
D P� Dð ÞT2

ð28Þ

o2TCðT ;BÞ
oBoT

¼ �eh0T
e�1 þ e� 1ð Þh0PBT e�2

DðP� DÞ
� pPB
D P� Dð ÞT2

ð29Þ

Since 0� e� 1, then
d2TCðT ;BÞ

dT2 is always positive and the

determinant of the H provided from Eq. (30).
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Hj j ¼ o2TCðT ;BÞ
oT2

� �
o2TCðT ;BÞ

oB2

� �
� o2TCðT;BÞ

oToB

� �2

¼ 2Kh0PT
e�4

DðP� DÞ þ eðeþ 1Þh20T2e�2

2
� eðe� 1Þh20PBT2e�3

DðP� DÞ

þ ðe� 1Þðe� 2Þh20P2B2T2e�4

2D2ðP� DÞ2
þ h0pP2B2T e�4

D2ðP� DÞ2

þ 2KpPT�4

DðP� DÞ þ
eðeþ 1Þh0pTe�2

2
� eðe� 1Þh0pPBT e�3

DðP� DÞ

þ ðe� 1Þðe� 2Þh0pP2B2T e�4

2D2ðP� DÞ2
þ p2P2B2T�4

D2ðP� DÞ2

� e2h20T
2e�2 þ eðe� 1Þh20PBT2e�3

DðP� DÞ � eh0pPBT e�3

DðP� DÞ

þ eðe� 1Þh20PBT2e�3

DðP� DÞ � ðe� 1Þh20P2B2T2e�4

D2ðP� DÞ2

þ ðe� 1Þh0pP2B2T e�4

D2ðP� DÞ2
� eh0pPBT e�3

DðP� DÞ

þ ðe� 1Þh0pP2B2T e�4

D2ðP� DÞ2
� p2P2B2T�4

D2ðP� DÞ2

¼ 2Kh0PT
e�4

DðP� DÞ þ eðeþ 1Þh20T2e�2

2

þ ðe� 1Þðe� 2Þh20P2B2T2e�4

2D2ðP� DÞ2
þ h0pP2B2T e�4

D2ðP� DÞ2

þ 2KpPT�4

DðP� DÞ þ
eðeþ 1Þh0pTe�2

2
� eðe� 1Þh0pPBT e�3

DðP� DÞ

þ ðe� 1Þðe� 2Þh0pP2B2T e�4

2D2ðP� DÞ2
� e2h20T

2e�2

� 2eh0pPBT e�3

DðP� DÞ þ eðe� 1Þh20PBT2e�3

DðP� DÞ

� ðe� 1Þh20P2B2T2e�4

D2ðP� DÞ2
þ 2ðe� 1Þh0pP2B2T e�4

D2ðP� DÞ2

ð30Þ

Verification of the sign of Eq. (30) seems to be impos-

sible, as while e ¼ 1 we have

While e ¼ 1, if one of the following conditions

[Eqs. (32)–(36)] is realized, the determinant of H would

not be negative and TCðT ;BÞ will be convex. It should be

mentioned that this condition is not the most essential

condition but is an adequate one.

2KpPDðP� DÞ þ h0pP
2B2T þ 2Kh0PTDðP� DÞ

� 2h0pPBT
2DðP� DÞ þ h0pT

3D2ðP� DÞ2 [ 0 ð32Þ

2KpPDðP� DÞ[ 2h0pPBT
2DðP� DÞ ) k[BT2 ð33Þ

h0pP
2B2T [ 2h0pPBT

2DðP� DÞ ) PB[ 2DðP� DÞT
ð34Þ

2Kh0PTDðP� DÞ[ 2h0pPBT
2DðP� DÞ ) K[ pBT

ð35Þ

h0pT
3D2ðP� DÞ2 [ 2h0pPBT

2DðP� DÞ
) DðP� DÞT [ 2P ð36Þ

To find the minimum points of TC, we survey its con-

dition as below.

The function TC is always positive and continuous for

T [ 0 and B[ 0. Also, there is a section for which func-

tion TC is convex (when T ! 0þ, TC ! þ1).

When T is positive the gradient vector is always available.
o2TCðT ;BÞ

oT2

� �
is always positive, therefore, the TC is not

concave and so the extremum points would be in types of

minimum points.

Consider the following:

The function TC does not have a local maximum point

or a total maximum point. When T ! 0þ, then

TC ! þ1; when B ! 0þ, then TC ! þ1; when

T ! þ1, then TC ! þ1. Therefore, these cases provide

just the following two conditions for function TCðT ;BÞ:

1. Function TCðT;BÞ has just a local minimum point that

will be considered as an optimal point which is

obtained from solving Eq. (37). In this case, the

Eq. (37) has only one real root.

2. Function TC(T, B) has some local minimum points

and some saddle points that the maximum number of

these points is 3eþ 2. One of these points will be the

Hj j ¼ 2Kh0PT
�3

DðP� DÞ þ h20 þ
h0pP2B2T�3

D2ðP� DÞ2
þ 2KpPT�4

DðP� DÞ þ h0pT
�1 � h20 �

2h0pPBT�2

DðP� DÞ

¼ 2KpPT�4

DðP� DÞ þ
h0pP2B2T�3

D2ðP� DÞ2
þ 2Kh0PT

�3

DðP� DÞ �
2h0pPBT�2

DðP� DÞ þ h0pT
�1

¼ 2KpPDðP� DÞ þ h0pP2B2T þ 2Kh0PTDðP� DÞ � 2h0pPBT2DðP� DÞ þ h0pT3D2ðP� DÞ2

D2ðP� DÞ2T4

ð31Þ
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optimal minimum point and the other points will be

the local minimum point or saddle points. In this case,

the Eq. (37) will have more than one real root. For

these points, if the determinant of Hessian matrix is

positive, then the point will be minimum, and if the

determinant of Hessian matrix is negative, then the

point will be saddle. Based on the aforementioned

conditions, the TCðT ;BÞ function will certainly have

an optimal minimum point. The optimal solution is

one of the minimum points which has the lowest

value of TC.

To find the optimal solution we have

rTCðT ;BÞ ¼ oTC T ;Bð Þ
oT

;
oTC T;Bð Þ

oB

� �
¼ 0 ð37Þ

oTC T ;Bð Þ
oT

¼ 0

) � K

T2
þ eþ 1ð Þh0DðP� DÞT e

2P
� eh0BT

e�1

þ e� 1ð Þh0PB2T e�2

2DðP� DÞ � pPB2

2D P� Dð ÞT2

¼ 0

ð38Þ

oTCðT ;BÞ
oB

¼ 0 ) �h0T
e þ h0PBT

e�1

DðP� DÞ �
pPB

DT P� Dð Þ ¼ 0

ð39Þ

From Eq. (39) we get Eq. (15) and then the Eq. (40) is

provided by replacing of B from Eq. (15) in Eq. (38); fi-

nally we obtain optimal solution for T by solving the

Eq. (40) respect to T.

� 2KP h0PT
e þ pPð Þ2þ eþ 1ð Þh0D P� Dð ÞT eþ2

� h0PT
e þ pPð Þ2�2eh20PD P� Dð ÞT2eþ2 h0PT

e þ pPð Þ
þ e� 1ð Þh30P2D P� Dð ÞT3eþ2 � ph20P

2D P� Dð ÞT2eþ2 ¼ 0

ð40Þ
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