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Abstract Endpoint detection is very important undertak-

ing on the side of getting a good understanding and figuring

out if a plasma etching process is done in the right way,

especially if the etched area is very small (0.1%). It truly is

a crucial part of supplying repeatable effects in every single

wafer. When the film being etched has been completely

cleared, the endpoint is reached. To ensure the desired

device performance on the produced integrated circuit, the

high optical emission spectroscopy (OES) sensor is

employed. The huge number of gathered wavelengths

(profiles) is then analyzed and pre-processed using a new

proposed simple algorithm named Spectra peak selection

(SPS) to select the important wavelengths, then we employ

wavelet analysis (WA) to enhance the performance of

detection by suppressing noise and redundant information.

The selected and treated OES wavelengths are then used in

modified multivariate control charts (MEWMA and

Hotelling) for three statistics (mean, SD and CV) and

windowed polynomial regression for mean. The employ of

three aforementioned statistics is motivated by controlling

mean shift, variance shift and their ratio (CV) if both mean

and SD are not stable. The control charts show their per-

formance in detecting endpoint especially W-mean

Hotelling chart and the worst result is given by CV

statistic. As the best detection of endpoint is given by the

W-Hotelling mean statistic, this statistic will be used to

construct a windowed wavelet Hotelling polynomial

regression. This latter can only identify the window con-

taining endpoint phenomenon.

Keywords Plasma etch process � Endpoint detection �
Multivariate control charts � Monitoring profiles �
Windowed regression.

Introduction

The Plasma is partially ionized gas. Therefore, it contains

electron energy which excites the atoms and molecules

then de-energize in emitting photons. Under those cir-

cumstances, the plasma thus emits light. The etch process

is employed in patterning of thin films to form significant

features in chips such as gates and interconnect lines, and

contact holes. With the industry moving toward greater

circuit integration and multilevel metalization, the suc-

cessful formation of these features with the necessity of

achieving etch goals puts up Etch process as a critical

challenge. Endpoint detection is employed to identify when

the etched film has cleared the underlying film, at this

moment, the process can be stopped, or modified to a more

selective etch. The Optical spectra (profiles) will be mon-

itored to detect the endpoint. As the traditional statistical

process control (SPC) employs a single (or multiple)

measurement(s) of a single unit to monitor any change in

mean (or mean vector) or in variance (or covariance

matrix), Monitoring profiles will gather a set of values over

a range (sampling stage) having the shape of curve to

detect the variation between successive curves. Monitoring

profile is based on monitoring the prescribed functional

relationship between a dependent (explicative) variable and

one or more independent (explanatory) variables. In this

paper, we have investigated and proposed several methods
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to enhance the endpoint detection especially when the open

area to be etched is very small (0.1%) compared to the

whole surface of wafer. In the first section, monitoring

profile will be presented with previous works. The second

section will be dedicated for the most used multivariate

control charts (Hotelling and MEWMA charts). The third

section exposes our proposed methodology, at the first time

we start with the proposed algorithm named spectra peak

selection (SPS) then we employ wavelet analysis to

improve the quality of selected wavelengths (profiles) by

de-correlating and suppressing noise from Optical spectra.

We will use also three statistics (mean, standard deviation

(SD) and coefficient of variation (CV)) to construct mod-

ified W-Hotelling and W-MEWA control charts using

Chebyshevs inequality. Finally, we propose windowed

wavelet polynomial regression based on the best statistic

performance to be able to identify the convergence of

endpoint event. Then results and discussion will be

exposed and the final one presents the concluding remarks.

Monitoring profiles

Nowadays, monitoring process is simply to ensure about

preserving the steadiness of the relationship between the

main variable of interest (output) and one or more envi-

ronmental variables or control variables (inputs) over the

time, hence the application of classical SPC is not conve-

nient. It should be noted that in some literature, the profile

data are also referred as waveform signal, Jin and Shi

(2001) and Zhou et al. (2006) or signature, Moroni and

Pacella (2008). The mathematical expression of profile is

given as follows:

Yi ¼ f ðXiÞ þ ei; i ¼ 1; 2; . . .; n: ð1Þ

where X represents one (or more) fixed independent vari-

able(s), �i is random noise following independent and

identically normal distribution with mean zero and com-

mon variance r2, i the index the ith profile and f(.) is a

linear or nonlinear function. In some cases, profile can be

described effectively using linear regression model and in

some others it would be suitable to use nonlinear regression

model especially elastic and stretchable configuration of

profiles.

Phase I and Phase II in monitoring profiles

To build statistical process control (SPC) chart, Woodall

(2000) proposes two phases (the construction of Phase I is

based on fixed historical profiles while the construction of

Phase II is based on online data). A detailed distinction

between tasks and aims of phase I and II are presented by

Montgomery (2009), Kim et al. (2003), Zhu and Lin

(2010), Zhang et al. (2013), Keramatpoura et al. (2014).

Kang and Albin (2000) presented an efficient and extensive

use of phase I and phase II. In phase I and after collecting

waveform signals, one should study them to: first, under-

stand the type of variation in a process over time to dis-

tinguish between the common variation within a profile and

the variation between profiles. Second, evaluate the steady-

state process by separating the in-control profiles from out-

of-control profile (assignable causes) and remove samples

associated with special causes; finally, to model the in-

control (stable) process performance by estimating the

steady profile (f(x0)) or/and unknown parameters of this

model. In Phase II, the parameters of the constructed chart,

are known (or estimated) from in-control process in Phase

I, are used as the target profile. The main goal of this phase

is to detect any change (shift) in the new process outcomes

(profiles). The performance of a Phase II is given by the

average run length (ARL). Remember that the run length is

the number of samples taken before an out-of-control sig-

nal is given and the ARL represents the average number of

time points needed for the procedure to signal a change in

profiles. There are two Average run lengths (In and out).

For in-control, ARL (ARL0) is often controlled at a given

level. If the out-of-control (OC) ARL (ARL1) is shorter in

detecting a specific profile change, the process will perform

better. Huwang et al. (2015) exposed a new method for

monitoring profiles if the response variable is both cate-

gorical and ordinal by exploring a proportional odds model

and EWMA chart. Qi et al. (2016) proposed to monitor

profiles using generalized linear models during Phase II in

which the explanatory variables can be fixed design or

random arbitrary design. They presented a new control

chart based on the weighted likelihood ratio test.

Linear and nonlinear profiles

From the generated data, the endpoint is reached through

the use of the signal trace (at the endpoint). The analysis of

the OES measurements remains a challenge. This is due to

the emitted light by the plasma containing rich emissions

from many different species constructing the full spectral.

To fill the void of controlling unique variable, the employ

of monitoring profiles method is unavoidable. While, a

specific reactant or product species is determined for a

special process, the species concentration is tending to

change over the time and more significantly at onset of the

endpoint. Hence, the intensity of this OES wavelength light

allied to this species is also presumed to vary at endpoint.

Linear profiles

Kang and Albin (2000) put forward two control charts for

Phase II to monitor linear profiles. The first one,
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multivariate Hotelling T2 control chart to identify the

change in intercept or slope parameters; they had shown

that the univariate EWMA chart for monitoring the resid-

uals is more sensitive than their proposed chart. The second

chart, based on the regression residuals using an EWMA

chart combined with an R chart, named EWMA / R is

employed to detect the possibility of extreme residuals shift

undetected in any of the regression parameters (intercept,

slope and error variance). The EWMA chart is put in use of

controlling the average of the profile residuals, and the R

chart identifies the largest and smallest residuals from each

profile to detect any change in the noise behavior. Stover

and Brill (1998) employed the Phase I Hotelling T2

chart to detect change based on vector containing the slope

and the intercept specifications, in each profile. A next

approach is made known by those authors combining the

reduction dimension technique through the use of principal

component analysis (PCA) to the coefficient vector, and the

univariate SPC method only for the first retained compo-

nent. The second technique was reviewed by Kim et al.

(2003), who showed its failure to detect shift raised from

other component except the first one. Kim et al. (2003)

presented a Phase II method in monitoring the intercept,

the slope, and the variance individually. Their main idea is

to center the variable(s) (X or Y or both) to make least

square estimators for intercept and slope independent of

each other (remove the covariance between intercept and

slope), and apply EWMA chart for each parameter noted

EWMA3 chart, subscript three refers to the three monitored

parameters, the first two constructed based on the estima-

tion of the least squares of the slope and the intercept,

while the last one is based on the MSE of the residuals

from each profile. They had proven, based on the simula-

tion study, that the ARL of their chart performs better than

the multivariate T2 chart and the EWMA / R. Kang and

Albin (2000) advised that their Phase II methods could be

used in Phase I with estimated values of parameter sub-

stituted by the values of unknown parameters themselves.

Mahmoud and Woodall (2004) presented and compared

several control charts showing that the successive values of

the Phase I T2 statistic by Kang and Albin (2000) are

dependent and they have proposed the use of a global

F-statistic based on setting indicator variables in a multiple

regression model to compare two or more regression lines.

Another paper is presented by Mahmoud et al. (2007) in

which they suggest a change-point method for monitoring

linear profile data. Woodall et al. (2004) present an over-

view of monitoring profiles. Many models have also been

used to represent profiles, such as simple linear regression

(Aly et al. 2015; Noorossana et al. 2010; Zhang et al.

2009) and more complex model such as that presented by

Abbas et al. (2016) exposed three newest univariate

Bayesian EWMA control charts for the Y-intercepts, the

slopes and the error variance during phase II using non-

conjugate and conjugate priors. These control charts are

used to monitor the Y-intercepts, the slope coefficients and

increase in process standard deviations, respectively. They

have found that the Bayesian control with conjugate prior

charts gives a high performance in monitoring the Y-in-

tercepts and slopes than the one with non-conjugate priors,

while both priors perform almost equivalently in case of

error variance.

Nonlinear profiles

Williams et al. 2003 studied Phase I on monitoring non-

linear profiles using nonlinear regression. They proposed

using multivariate T2 control charts to monitor all coeffi-

cients in the nonlinear model and compared several

approaches in choosing the variance–covariance matrix.

Williams et al. 2007 extended this methodology to non-

linear profiles with a non-immovable variance at set points

to take apart a set of differences between variance of

profiles. Shiau and Weng 2004 extended the linear profile

to general forms of profiles using non-parametric regres-

sion. Hence, there is no assumption for the form of the

profiles except the smoothness. They proposed an EWMA

chart for detecting mean shifts, an R chart for variation

changes, and an SD (standard deviation) chart for variation

increases. Ding et al. 2006 indicated two main challenges

in Phase I analysis of nonlinear profiles: (1) the high

dimensionality of the data, and (2) how to separate in-

control profiles from the out-of-control profiles. They

proposed an independent component analysis (ICA)

method for the dimension reduction and a change point-

based method for the effective separation of in-control and

out-of-control profiles. Shiau et al. 2009 propose for Phase

I profile monitoring, using the usual Hotelling T2 chart, a

run of the mail accustomed to control chart designed for

multivariate process data, by treating the principal com-

ponent (PC) scores of a side-view obtained from PCA as

the multivariate data. For Phase II process monitoring, they

propose PC-score charts and a T2 chart (different from the

T2 chart of Phase I). Some other non-wavelet papers are

proposed to monitor nonlinear profiles, such as modified T2

Hotelling chart based on spatial autoregressive regression

models proposed by Colosimo et al. 2008; Williams et al.

2007 proposed spline-fitting to estimate profile. Qiu 2008

proposed a distribution-free technique to detect fluctuation

in multivariate processes through the employ of a log-lin-

ear model to estimate the in-control distribution, and the

use of a multivariate CUSUM chart to detect shifts. They

proposed also in another paper Qiu et al. 2010 a non-

parametric control chart when within profile is correlated to
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monitor profiles behavior. Some other authors proposed

statistical methods based on the introduction of wavelet

analysis, which will be presented shortly. The simple

nonlinear regression is also studied by Chang and Yadama

(2010), Paynabar et al. (2013).

Monitoring profile using wavelet transform

As mentioned previously, the application of wavelet

method in detecting the change in functional data has been

first used in the semiconductor production and in other

industrial processes. Jin and Shi (1999) explored tonnage

signals to identify shortcomings in a sheet-metal stamping

process. Jin and Shi (2001) detected the variation between

profiles and within profiles, by observing the change in the

magnitudes of the coefficients of DWT’s profile. Lada

et al. (2002) scrutinized quadruple mass spectrometry

(QMS) samples of a expeditious thermal chemical vapor

deposition (RTCVD) process to detect significant devia-

tions from the nominal process. Ganesan et al. (2003) used

acoustic emission signals to monitor de-lamination defect

in nano-machining process. Jeong et al. (2006) expanded a

wavelet-based statistical process control (SPC) procedure

for dig-up out-of-control events that signal course of action

abnormalities for monitoring complicated data. Chicken

et al. (2009) used the change-point model based on wavelet

analysis to monitor the change between the sequences of

profiles. There is a good literature review of wavelet

analysis in statistical process monitoring introduced by

Ganesan et al. (2004).

Each collected profile is expressed as follows:

Yi ¼ f ðxiÞ þ �i ð2Þ

If this profile is conforming to the target profile (a steady-

state process), it will be defined as:

Yi ¼ f0ðxiÞ þ �i ð3Þ

where i index of the ith observation from n, the total

number of observations; f0 is the known standard signal,

taken from in control process and established in Phase I; �i
are independent and identically distributed normal (i.i.d.)

random variables with mean zero and variance r2.
To reduce the controlled coefficients with keeping the

profile information, discrete wavelet analysis will be

applied for each selected wavelength. Hence, the discrete

wavelet transform (DWT) of y is given by:

d ¼ Wy ð4Þ

where W ¼ ½hij� is the orthonormal wavelet transform

matrix with dimension n � n with element hij representing

the linear filter, for i; j ¼ 1; 2; . . .; n. The matrix W is dif-

ferent according to the wavelet type, decomposition level

and number of sample points n. The property of

orthonormality of W allows us to get the original data Y

from the inverse of DWT (Y ¼ W�1d) This obtained

matrix d is composed by approximations (CL) and details

(dL). Each wavelength is contaminated with noise (�) and

expressed as follows:

d ¼ h0 þ g ð5Þ

where h0 ¼ Wf0 and g ¼ W� with g�Nnð0; r2InÞ and In is

the identity matrix with dimension n � n, presented by

Vidakovic (1999).

d ¼ ðcL; dL; dLþ1; . . .; dJÞT ¼ ððcL;0; . . .; cL;2L�1ÞT ;
ðdL;0; . . .; dL;2L�1ÞT ; . . .; ðdJ;0; . . .; dJ;2J�1ÞTÞ

ð6Þ

All these coefficients ðcL;0; . . .; dJ;2J�1Þ are wavelet coeffi-

cients at various scales. The most useful wavelets in dis-

crete wavelet analysis are the Daubechies family. The

orthonormal basis function for Haar wavelet Daubechies

(first-order Daubechies wavelet transform) in L2ðRÞ is as

following:

WðtÞ ¼
1; 0� t� 0:5

�1; 0:5� t� 1

0; otherwise

8
><

>:
ð7Þ

Wj;kðtÞ ¼
2

�j
2 ; 2 jk� t� 2 jðk þ 0:5Þ

�2
�j
2 ; 2 jðk þ 0:5Þ� t� 2 jðk þ 1Þ

0; otherwise

8
><

>:
ð8Þ

The most useful wavelets in discrete wavelet analysis are

the Daubechies family. It should be noticed that in semi-

conductor process especially Plasma etch process, wavelets

are often employed as data pre-processing tool to de-cor-

relate, de-noise, reduce the original data. A new paper

combining wavelet and SPC to monitor process is pre-

sented by Cohen et al. (2015) in which they demonstrated

that the Discrete Wavelet Transform (Haar wavelet) is

equivalent to the X-bar-R chart and they have introduced a

new control chart, named DeWave, to control the process

variability.

The traditional multivariate control chart

One of most challenging tasks in semiconductor industry is

to monitor several variables. The use of univariate method

can offer the possibility to monitor unique variable. If the

process is more sophisticated, one should control several

key variables using multivariate control chart. In fact, it is

impossible in practice to monitor SPC charts for every

variable separately, and if one opts to construct many

control charts for each variable to detect shifts in one of
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them, it will be a time consuming and will generate many

false detection errors. The error type I for multivariate

control chart can be expressed as follows:

an ¼ 1� ð1� aÞn ð9Þ

where an is the probability of type I error for n univariate

charts, and a is the probability of type I error for each

univariate chart computed from the control limits.

For the multivariate control chart, each run will be

considered as a variable, two variables should be monitored

and the last two other runs will be used as online data. In

addition, it should be pointed out that to study the

robustness of the result many variable arrangements are

checked and the total run is 200.

Hotelling control chart

Introduction to T2 chart

The Hotelling T2 statistic is the multivariate extension of t

values calculated for univariate data. The t value for an

individual sample (x) is calculated as follows:

t ¼ x� �x

s
ð10Þ

where t is the normalized range from specific sample

(x) away from a given mean and given variance. The mean

and the variance are usually unknown values and should be

estimated based on some accumulated samples. If the

sample size is very high, it goes to the characteristic

z value. This latter is always computed from population

distributions, and expressed as shown below:

z ¼ x� l
s

ð11Þ

The t values follow t distribution while the z values are

normally distributed. The t and z values are employed in

the X-bar chart and it is an extension of the aforementioned

chart. The name of multivariate X-bar chart is the Hotelling

T2 control chart. Hotelling T2 statistic based on individual

samples of x only is calculated as:

T2
i ¼ ðxi: � �xi:ÞTS�1ðxi: � �xi:Þ ð12Þ

where S is the sample covariance matrix. T2 is the value for

each unit time produced in the statistical range between

point and the mean and this statistic T2 is computed based

on multivariate data set. The T2 statistic is following an

F distribution, so that the control limits for the T2 control

chart are:

UCL ¼ðm� 1Þðmþ 1Þ
mðm� nÞ Fð1�a;n;m�nÞ ð13Þ

LCL ¼ 0 ð14Þ

where m is the number of samples in the ME interval from

which the mean and covariance are calculated, the size of

monitored variables is referred by n, and UCL and LCL are

the upper and lower control limits, respectively. With large

m, the control limits can be come closer to a Chi-squared

distribution as:

UCL ¼ v2a;n ð15Þ

LCL ¼ 0 ð16Þ

Practically, the T2 control chart, under the normal condi-

tion, is able to identify the mean shift in an arbitrary

direction away.

Application of Hotelling T2 to detect endpoint in plasma

etch process

As noted previously, the T2 is the multivariate extension of

the X-bar chart used to detect shifts from the target mean.

For endpoint detection in Plasma etch process, the steady

state of process is defined during the main etch and after

the end initial transient interval. Then, the endpoint data

(wavelength channels or time channels) are presented by

the matrix X notation composed by four components: ini-

tial transient (IT), main etch (ME), endpoint (EP), and over

etch (OE) and it is expressed as follows:

ðPartitioning of Endpoint DataÞX ¼

XðITÞ

XðMEÞ

XðEPÞ

XðOEÞ

2

6
6
6
4

3

7
7
7
5

ð17Þ

where the columns of X represent the trace of a specific

wavelength and the rows of X represent the time sample

spectra. Then, the T2 statistic is computed for each time

sample point, i, using the following formula:

T2
i ¼ðxi: � �xi:ÞTS�1ðxi: � �xi:Þ ð18Þ

S ¼
XT
ðMEÞXðMEÞ

m� 1
ð19Þ

where S is the sample covariance matrix accounted from

the main etch data only, and m is the number of samples in

the main etch data. T2 is equal to a scalar value for each

time sample showing the distance away the main etch.

Assuming the statistic xi1; . . .; xip follows a multivariate

normal distribution, the upper control limit (UCL) can be

calculated from the F-statistic as:

UCL ¼ ðm� 1Þðmþ 1Þ
mðm� nÞ Fð1�a;m�nÞ ð20Þ

J Ind Eng Int (2017) 13:307–322 311

123



where n is the number of spectral channels. With a large

number of spectra (n) gathered from the historical data, the

F distribution will be tended by a Chi-squared distribution

and expressed as below:

UCL ¼ v2ða;nÞ ð21Þ

The multivariate exponentially weighted moving

average (MEWMA) control chart

The extension of EWMA chart in several variables is called

multivariate EWMA chart and noted MEWMA control

chart, it was proposed by Lowry et al. (1992) and the

EWMA vector Zi is defined as follows:

Zi ¼ rXi þ ð1� rÞZi�1 ð22Þ

where Xi; i ¼ 1; 2. . .; n represents the ith observation on X,

the r is the smoothing constant, 0\r� 1 and Z0 is the zero

vector. The statistic Ti of MEWMA control chart is given

by:

T2
i ¼ Z

0

iR
�1
Zi
Zi ð23Þ

An out-of-control is detected on the ith sample if the

plotted statistic Ti exceeds the control limit L and the two

main parameters of the MEWMA chart (L and r) are set to

acquire a looked-for in-control ARL0 value. The control

limits are defined as follows:

T-squared control limit with known covariances:

UCL ¼ X2
a;p ð24Þ

T-squared control limit with covariances are estimated

from k previous samples:

UCL ¼ Pðk þ 1Þðk � 1Þ
kðk � pÞ Fa;p;k�p ð25Þ

New proposed algorithm to select important
spectra: spectra peak selection (SPS)

The sophisticated sensors and the development IC make

the endpoint detection a hard task. As the optical emission

spectroscopy (OES) is one of the ultimate known plasma

etching sensors, it is unavoidable to use it. However, the

OES data are typically high and rich with information,

huge number of intensities for each run. To analyze and to

understand them, the request to select important spectra is

crucial and basic. As a result, selecting important OES data

contributes to significant gains in terms of detecting end-

point. In this section, a new proposed algorithm, named

Spectra Peak selection will be exposed; this algorithm is

constructed to detect significant reactant or product species

change and expressed as follows

For all runs Plasma etch step

For each wavelength

For endpoint range.

Determine peaks

ENDFOR

Determine the highest peak in absolute values.

ENDFOR

Rank peak in decreasing way.

Selecting the first fifty important peaks.

ENDFOR

As a result, the application of this algorithm is done on

wavelength channels (profiles). To illustrate for each run,

the only first fifty wavelengths, and between 250, 999s and

252, 499 s, the fifty significant wavelengths for each

variable will be used on constructing control chart. In

Fig. 1, the full spectra are plotted to have an insight about

the process. Figure 2 shows the extreme points (maximum

in red and minimum in green) from 250.999 to 252.499 s

(endpoint interval), in red color the points having highest

peaks and in green color the lowest peak.

Proposed W-Hotelling and W-MEWMA charts

The modified W-Hotelling

The statistic W-Hotelling is expressed as follows:

For wavelet-mean approximation:

T2
i ¼ ðxi: � �xi:ÞTS�1ðxi: � �xi:Þ ð26Þ

where xi: is the mean of notable wavelengths for each

variable. The (.) in this study is two (2 variables), the

constructed control chart are coming from two historical

statistics. For each variable, i is index of observations, �xi:
the mean of mean this statistic in main etch. S�1 is the

inverse matrix of covariance between two variables and it

Fig. 1 Full spectra from the start of process to the end
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is square matrix with order two. The control limit noted CL

is equal to the mean of the mean of notable wavelengths.

This type of chart is employed to monitor the mean shift.

For wavelet-SD approximation:

T2
i ¼ ðxi: � �xi:ÞTS�1ðxi: � �xi:Þ ð27Þ

where xi: is the SD of notable wavelengths for each vari-

able, two variables are studied. The i is index of observa-

tions for each variable, �xi: the mean of this statistic SD in

main etch. S�1 is the inverse matrix of covariance between

two variables and it is square matrix with order two. The

control limit noted CL is equal to the mean of SD of

notable wavelengths. This type of chart is employed to

monitor the variation in the variance shift.

For wavelet-CV approximation:

T2
i ¼ ðxi: � �xi:ÞTS�1ðxi: � �xi:Þ ð28Þ

where xi: the CV of notable wavelengths from each vari-

able, two variables are studied. i is index of observations

for each variable, �xi: the mean of this statistic CV in main

etch. S�1 is the inverse matrix of covariance between two

variables and it is square matrix with order two. The

control limit noted CL is equal to the mean of CV of

notable wavelengths. This type of chart is employed to

monitor the stable ratio (SD=l) if both l and SD are not

steady.

The modified W-MEWMA

The statistic W-MEWMA is expressed as follows:

For wavelet-mean approximation:

T2
i ¼ Z

0

iR
�1
Zi
Zi ð29Þ

where Zi is the statistic of EWMA chart expressed by:

Zi ¼ kXi þ ð1� kÞZi�1 ð30Þ

where smoothing parameter is noted by k. For the first

observation, X1 is 0 (starting value) and Z0 is mean of

mean of Xi in steady state (Main etch). The xi: is the

mean of notable wavelengths from each variable. The

control chart limits are constructed based on two vari-

ables. i is the number of observations in each variable, �xi:
the mean of mean this statistic in main etch. S�1 is the

inverse matrix of covariance between two variables times

(k=2� k) and it is square matrix with order two. The

control limit noted CL is equal to the mean of the mean

of notable wavelengths. This type of chart is employed to

monitor the mean shift.

Fig. 2 The intensities of wavelengths from t ¼250.999 to 252.499
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For wavelet-SD approximation:

T2
i ¼ Z

0

iR
�1
Zi
Zi ð31Þ

where Zi is the statistic of EWMA chart expressed by:

Zi ¼ kXi þ ð1� kÞZi�1 ð32Þ

where smoothing parameter is noted by k. For the first

observation, X1 is 0 (starting value) and Z0 is mean of SD

of Xi in steady state (Main etch). The xi: is the SD of

notable wavelengths from each variable. The control

chart limits are constructed based on two variables. i is the

number of observations in each variable; �xi: the mean of SD

this statistic in main etch. S�1 is the inverse matrix of

covariance between two variables times (k=2� k) and it is

square matrix with order two. The control limit noted CL is

equal to the mean of the SD of notable wavelengths. This

type of chart is employed to monitor the variation in

variance shift.

For wavelet-CV approximation:

T2
i sub ¼ Z

0

iR
�1
Zi
Zi ð33Þ

where Zi is the statistic of EWMA chart expressed by:

Zi ¼ kXi þ ð1� kÞZi�1 ð34Þ

where smoothing parameter is noted by k. For the first

observation, X1 is 0 (starting value) and Z0 is the mean of

CV of Xi in steady state (Main etch). The xi: is the CV of

notable wavelengths from each variable. The control

chart limits are constructed based on two variables: i is the

number of observations in each variable, �xi: the mean of SD

this statistic in main etch. S�1 is the inverse matrix of

covariance between two variable times (k=2� k) and it is

square matrix with order two. The control limit noted CL is

equal to the mean of the CV of notable wavelengths. This

type of chart is employed to monitor the stable ratio (SD=l)
if both l and SD are not steady.

Construction chart procedure

The Daubechies family will be used since it has the easiest

and advantageous properties. The Haar wavelet type is the

most simplest and the oldest one, it is not the best wavelet

in many monitoring industrial processes due to its property

of discontinuity but it is ideal for step change detection.

The different steps to construct control chart to monitor

Profiles (Fig. 3)

In phase I:

Step 1: Apply the proposed algorithm named Spectra Peak

selection to select the significant reactant and product

wavelengths, respectively.

Step 2: From the selected significant wavelengths, com-

pute the control limit in Main etch interval.

In phase II: At this stage, it is an online-monitoring

procedure

For etch run(s),

Step 1: Plot W-Hotelling (W-MEWMA) statistic in a chart.

Step 2: Detect endpoint when statistic crosses the control

limit.

The control limit is given as follows:

UCL ¼ CLþ 2 � stdðCLÞ ð35Þ

CL and std (CL) for Hotelling chart are mean and

standard deviation of Hotelling statistic based on intervals

ME. CL and std (CL) for MEWMA chart are mean and

standard deviation of MEWMA statistic based on intervals

ME.

It should be noted, for experts they have a previous

knowledge about the representative wavelengths in plasma

etch process. This work concentrated only on selected

wavelengths could be able to detect the important wave-

lengths without specifying its associated gas. As a result,

the main identified wavelengths (species) will be used in

the future to be monitored on the same Plasma etch process

operating in the same condition. The upper control limit is

used as thresholded value by which if the process data

cross this line in increasing or decreasing direction, then

endpoint is detected. The following Fig. 3 presents the

steps of constructing W-Hotelling and W-MEWMA.

Monitoring Hotelling regression

To detect the endpoint, the need to estimate a relation is

felt. The profile will be studied according to two relations:

1. Polynomial order 2 (curve, y ¼ ax2 þ b).

2. Polynomial order 1 (linear regression y ¼ axþ b).

where a and b refer to the slope and intercept, respec-

tively. The independent variable is unit time,

Fig. 3 Monitoring endpoint using W-Hotelling and W-MEWMA
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i ¼ 1; . . .; 872. The proposed dependent variable is

W-mean-Hotelling statistic intensities. This choice is

justified by first the power of Hotelling statistic to detect

mean shift more than SD and CV shifts and second

instead of monitoring each independently, the selection of

the fifty important wavelengths to construct Hotelling will

make the control of profile more easier and minimize the

wrong individual variable detection. To estimate of each

one of aforementioned relations, the decomposition level

will not be associated with the optimal level. This is

because the decomposed coefficient at optimal level could

really damage the relation.

The proposed procedure is given below:

1. Compute W-mean Hotelling statistic for the historical

data.

2. Keep only the W-mean Hotelling statistic values

presenting steady state.

3. Estimate the target regression (profile) using in-control

W-mean-Hotelling values.

4. Divide each online data onto window(s).

5. Estimate W-mean Hotelling relation for each window.

6. Identify the window to which the endpoint belongs.

It should be noted that the window size is equal to 100

intensities and it is the adequate size to estimate a reliable

regression, based on Green (1991), Harris (1985) and Wilson

Van Voorhis and Morgan (2007). The following Fig. 4

exposed the steps of constructing W-Hotelling profile for

linear target profile.

Results and discussion

Results and discussion for W-Hotelling and

W-MEWMA

To start for W-mean Hotelling and W-mean-MEMA the

data process and control limits are constructed based on

approximations. While for W-SD-Hotelling, W-SD-

MEWMA, W-CV-Hotelling and W-CV-MEWMA charts,

the monitored intensities and limits are computed based on

details. The screen shot shows the first twenty six important

wavelengths from one run after putting to use new pro-

posed algorithm, with their peaks. Hotelling and MEWMA

statistics for the selected wavelength will be calculated

during the interval 50–872, at different levels of decom-

position and with different wavelet types. The detection

is reached when data cross the Upper control limit.

Fig. 4 Monitoring endpoint using Linear W-Hotelling regression
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W-Hotelling Based on Figs. 5 and 6, the endpoint for

W-mean Hotelling is detected on the right time; there is no

time delay. The endpoint is reached when data cross

thresholded W-mean-Hotelling value (UCL). There is no

significant incidence on the result using db1 or db8. While,

the levels of decomposition have an effect on the endpoint

detection; only for the optimal level 6, EP is reached at the

right moment. Based on Figs. 7 and 8, W-CV-hotelling

could not detect the EP at the right moment. While W-SD-

Hotelling can detect the EP on the right time, there is no

time delay.

W-MEWMA Based on Figs. 9, 10 and 11 there is no

incidence if the level of decomposition or wavelet types are

changed. It should be noted that for some control charts, the

choice of other wavelet types could affect the detection of

endpoint, especially, if the signal is nearest to the threshold

and at the same time representing high fluctuations.

As can be seen, W-CV-MEWMA is not steady and then

it becomes steady, hence one could construct control limits

from OE interval and then monitor the process which is

moving from unstable to stable one. Figure 12 shows the

Hotelling chart for level 3 and 6. Figure 13 presents

Hotelling chart for W-mean using three different wavelet

types of Daubechies family. Hence, there is no significant

incidence on endpoint detection if different wavelet types

(db1, db4, db8) are chosen. While, if there is an increase in

the level of decomposition (from 1 to 8) till the optimal

level, one moves from under-etched wafer to endpoint

detection.

The W-Hotelling chart

For mean, there is no time delay.

For coefficient of variation, the endpoint is detected

before the right moment.

For standard deviation, the endpoint is detectable on the

right moment.

The W-MEWMA chart

For the mean and SD, the EP is detected on the right

time.

For the CV, the EP is detected before the usual endpoint

time.

Fig. 5 W-mean-Hotelling

chart for db1 and 8, decomposed

till level 3

Fig. 6 The W-mean-Hotelling control chart at the optimal level 6
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Results and discussion based on monitoring wavelet

windowed regression

Polynomial relation order 2

Figure 14 presents the estimated windowed profiles.

Linear regression From in-control W-mean-Hotelling

statistic, the target profile will be estimated. To estimate

the aforementioned relation for the online data, the etch

data will be divided in several windows, the size of each

window is 100 points and the starting point is from the 40th

point. The first fourty points refer to the initial transient

state and then the main state process is attained which

becomes approximately stable. Recall that the chosen size

of windows or more precisely the sample size to estimate

Fig. 7 The W-CV Hotelling

control chart

Fig. 8 The W-SD Hotelling

control chart

Fig. 9 The W-mean MEWMA control chart
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the relation is 100 based on A Rough Rule of Thumb for

Determining Sample Sizes (Wilson Van Voorhis et al.

2007). From Fig. 15, the W-mean Hotelling profiles have

the ability to detect the EP. The EP is detected in the first

encountered profile corresponding to the profile change

compared to the target mean.

To point out, the W-mean-Hotelling regression is able to

detect the endpoint. Both SD nd CV statistics are not able

to detect EP if they are used as dependent variable. The

size of window is 100 which is the most appropriate, if we

increase or decrease it, the estimated regression will be

erroneous and will conduct to false EPD. The starting point

is from the 40th to preserve fixed window size till the end

of process. This proposed method can only determine the

window containing endpoint event. At the fifth window, the

student statistic is significant referring to reliable statistic.

Fig. 10 The W-CV MEWMA

control chart

Fig. 11 The W-SD MEWMA

control chart at two levels of

decomposition and two wavelet

types
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Conclusion

In this paper, we have tried to improve the endpoint

detection in plasma etch process by employing in the first

stage a new proposed algorithm named spectra peak section

(SPS) and in the second stage we have combined wavelet

analysis with modified multivariate charts (Hotelling and

MEWMA). The results are investigated for 200 runs with

different associations to ensure about the pertinence of the

findings. Three statistics are investigated to detect the

endpoint, mean, SD and CV. We have also investigated

different wavelet types and for two different levels of

Fig. 12 The W-mean Hotelling

for level 3 and 6

Fig. 13 The W-mean Hotelling for DB1, DB4, DB8
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Fig. 14 Profile estimation

function (f(x)) at level 3 and 6

Fig. 15 The estimated

W-Hotelling linear function

(f(x))
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decomposition. The findings for W-Hotelling chart, both

w-mean Hotelling and w-SD Hotelling are able to detect the

endpoint. For the coefficient of variation, when the limits

are computed based on main etch, the right endpoint is

undetectable but we can notice that this chart can be used as

an indicator of the endpoint approaches or also the W-CV

Hotelling could be constructed based on the over etch

interval by which the endpoint is detected directly and

easily if the process enters in a steady state. Moreover, only

Hotelling for SD and CV are computed based on details

coefficients because those coefficients are the most reliable

and appropriate for monitoring variance. The same con-

clusion made by Hotelling is recorded for the MEWMA

statistic. Then concerning the proposed estimated regres-

sion method, both estimated w-Hotelling regressions are

able to identify the endpoint window only for the mean. The

W-SD and W-CV Hotelling estimated regressions are not

able to detect the change and hence to identify the non-

target profile. In addition, to monitor the mean shift is

beneficial to use directly the approximation coefficients

while to monitor the SD and CV, it is appropriate to use

detailed coefficients because the latter present high noise

translated by high variance.
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