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Abstract In many cases, redundant systems are beset by

both independent and dependent failures. Ignoring depen-

dent variables in MTBF evaluation of redundant systems

hastens the occurrence of failure, causing it to take place

before the expected time, hence decreasing safety and

creating irreversible damages. Common cause failure

(CCF) and cascading failure are two varieties of dependent

failures, both leading to a considerable decrease in the

MTBF of redundant systems. In this paper, the alpha-factor

model and the capacity flow model are combined so as to

incorporate CCF and cascading failure in the evaluation of

MTBF of a 2-out-of-3 repairable redundant system. Then,

using a transposed matrix, the MTBF function of the sys-

tem is determined. Due to the fact that it is difficult to

estimate the independent and dependent failure rates,

industries are interested in considering uncertain failure

rates. Therefore, fuzzy theory is used to incorporate

uncertainty into the model presented in this study, and a

nonlinear programming model is used to determine sys-

tem’s MTBF. Finally, in order to validate the proposed

model, evaluation of MTBF of the redundant system of a

centrifugal water pumping system is presented as a prac-

tical example.

Keywords Mean time between failures (MTBF) �
Redundant repairable systems � Common cause failure

(CCF) � Cascading failure � Fuzzy parameters

Introduction

Redundancy is a well-known and widely used approach to

enhancement of failure-sensitive systems which are subject

to both dependent and independent failures. In most relia-

bility analyses and mean time between failures (MTBF)

evaluation models for redundant systems, components are

considered independent of one another with respect to fail-

ure. This results in an incorrect and inaccurate evaluation of

system features. Therefore, it is highly crucial to identify and

consider dependent failures in the evaluation of reliability

and MTBF of systems. Common cause failure (CCF) is one

of the most important dependent failures in redundant sys-

tems, in which an intrinsic factor leads to the propagation of

failure in all components, resulting in the simultaneous

failure of components in the redundant system (Kančev and

Čepin 2012). Failing to incorporate CCF into MTBF of

redundant systems leads to irreversible damage. In March

22, 1975, negligence of CCF led to a fire that occurred in a

nuclear power plant located in the state of Alabama, USA

(Mortazavi et al. 2016). After this event, in order to prevent

the recurrence of such incidents, extensive research was

conducted on CCF, resulting in the development of various

standards (Mosleh et al. 1988, 1998). As another example,

one may refer to the failure of all four engines of the Boeing

747 in fight BA 009 on 24 June 1982 over the Indian Ocean

(Tootell 1985). The engineers estimated the likelihood of all

four engines failing during the same flight to be negligible;

however, a CCF of volcano ash proved otherwise. Other

catastrophic incidents resulted by ignoring the likelihood of

dependent failures in redundant systems have been reported,

e.g., the hydraulic pumps failure due to engine explosion in

United Airlines DC-10 in July 1989 (Galison 2000).

Another variety of dependent failures in redundant systems

is cascading failure (also known as load share); when a
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component in the redundant system fails, the intact compo-

nents undergo greater load or the failure propagates through

the system to other components; hence, their failure rates

change.As an example, the costly collision of the space rocket

Ariane 5 on 4 June 1996 was due to cascading failure (Gleick

1996). Ariane 5 and its precious cargo of four expensive

satellites were destroyed due to an error in the rocket navi-

gation computer that led to generation of a number which was

too large for the system to calculate. This in turn resulted in

handing over control to an identical redundant computer in

which the same failure occurred. The out-of-control rocket

changed direction to compensate for an estimated error and

was finally destroyed in its own turbulence. The significance

of the influence of cascading failures can be recognized

through many examples of catastrophic incidents reportedly

stem from this type of dependent failure, e.g., the explosion of

Boeing 707, Pan Am flight 214, on 8 December 1963 and

Boeing 747, TWA 800, on 17 July 1999 (Negroni 2013).

Considering the significant impact of dependent failures

(CCF and cascading failure) on reliability of redundant

systems, these types of failures substantially affect MTBF

of such systems. Neglecting the role that these types of

failures play may result in significantly misleading MTBF

evaluation models which in turn lead to incorrect MTBF

value. Therefore, this paper addresses these two important

types of failures and incorporates those into a proposed

model for MTBF evaluation of a 2-out-of-3 repairable

redundant system.

The organization of the paper is as follows: In the next

section, a review of the related literature is presented. In

‘‘Alpha factor model and capacity flow model’’ section,

addresses the alpha factor model and capacity flowmodel. In

‘‘Formulating the model’’ section, the MTBF for 2-out-of-3

redundant repairable system is computed with CCF and

cascading failure based on alpha factor model and capacity

flowmodel and, also the developedMTBF function together

with fuzzy parameter is discussed, and the NLP method is

used to determine themembership function. In ‘‘Case study’’

section, in order to validate the proposed model, a case study

on the redundant systemof centrifugal pumps is presented. In

‘‘Comparison of results’’ section, the results of the developed

model are compared with those of a model offered in pre-

vious studies and an analysis is carried out. Finally, ‘‘Dis-

cussion and conclusion’’ section, concludes the paper and

presents some guidelines for future works.

Literature review

Studied extensively in recent years, the fuzzy theory is an

efficient tool for considering uncertainty in reliability

analyses (Purba et al. 2014; Sharma and Sharma 2015;

Gupta et al. 2016; Kumar and Goel 2017). Due to

uncertainty and imprecision, it is not easy to estimate

dependent and independent failure rates. Therefore, dif-

ferent industries in the real world are interested in con-

sidering these rates as intervals (minimum failure rate and

maximum failure rate) using the fuzzy theory and fuzzy

numbers. Wu and Tsai (2000) developed weighted-based

fuzzy clustering procedure to estimate time-to-failure dis-

tribution. The fuzzy reliability computation of single

component is a fundamental problem. Jiang and Chen

(2003) focused on the computation of the fuzzy reliability

of a single component. The idea is that if the value of fuzzy

reliability of a single component can be determined, it will

be possible to compute the fuzzy reliability of the whole

system by conventional methods. The general redundant

system with the random fuzzy lifetime was considered by

Zhao and Liu (2004). In their research, three system per-

formances with random fuzzy lifetimes are studied. In

addition, Liu et al. (2007) regarded component failure rate

and lifetime as fuzzy variables and established mathemat-

ical models for non-repairable series and parallel systems.

In another research by Liu et al. (2010), component life-

time and repair time were modeled by random fuzzy

exponential distribution. In addition, system MTBF and

mean time to repair (MTTR) were calculated. Liu et al.

(2011) used bivariate exponential distribution, assuming

that components have interdependent lifetimes.

To estimate lifetime and repair time, Liu et al. (2014)

used random fuzzy exponential distribution and evaluated

the availability of a redundant system with non-identical

repairable components. González-González et al. (2016)

used nonlinear regression to model a degradation process

in order to predict mean time to failure (MTTF). To include

uncertainty in the extrapolation process, they used trape-

zoidal fuzzy numbers to shape the time-to-failure estima-

tion. Aghili and Hajian-Hoseinabadi (2017) introduced a

flexible form of Markov process to evaluate the reliability

of repairable systems. They then used fuzzy arithmetic

calculations to incorporate uncertainty into their presented

model. Some other studies focused on repairable systems

with fuzzy repair rates. Chhoker and Nagar (2015) and Hu

and Su (2016) developed frameworks for modeling, ana-

lyzing and predicting the reliability of redundant repairable

systems with fuzzy parameters.

Redundant systems are in various types. Standby sys-

tems are one of the most widely used types of redundant

systems, in which one or several components are put on

standby mode. In case of failure of an operating compo-

nent, the standby component replaces the failed component

and prevents system breakdown. Ke et al. (2008) proposed

a procedure to construct the MTTF membership function of

a redundant repairable system with two primary compo-

nents and one standby. They assumed component failures

to be independent of one another. Lin et al. (2012) analyzed
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the reliability and MTBF of a redundant repairable system

with one primary component, one standby component, and

one unreliable service station. They assumed failure and

repair rates to follow fuzzy exponential distributions. In the

study by Huang et al. (2006), a parametric NLP approach is

addressed to analyze the MTBF of a repairable system with

switching failure and fuzzy parameters, assuming that

components fail only due to their independent failure.

Jahanbani Fard et al. (2017) applied the concepts of a-cuts
and fuzzy algorithm to a repairable system with two pri-

mary units in parallel as one active and one standby

redundancy with imperfect coverage. They proposed a

method to construct membership functions for MTBF and

availability using paired NLP models.

Lethal shocks cause redundant system components to fail

simultaneously (simultaneous failure). In some studies, such

shocks are known as common cause shock failure. Only few

studies have investigated dependent failure with fuzzy

parameters. Huang et al. (2008) addressed the fuzzy avail-

ability and fuzzyMTTF of a system with two components in

series and parallel configurations. They categorized system

failures into two groups of individual failures and common

cause shock failures assuming failure rates to be fuzzy

numbers with trapezoidal membership functions. Jain et al.

(2012) investigated a repairable redundant system with

imperfect coverage, common cause shock failure, reboots,

and recovery, and determined the fuzzified reliability,

availability, and MTTF. Jain (2016) studied a repairable

redundant systemwith warm standby components and repair

facility. He took into account the real system conditions

including repair, repair delay, switching failure, and CCF.

Taking these into consideration helped developing appro-

priate availability functions for the redundant system.

In most of the aforementioned researches, dependent

failures are ignored. A few studies have merely hinted at a

single kind of dependent variables (e.g., CCF or common

cause shock failure). However, there are many redundant

systems which are exposed to cascading failure as well as

CCF. Dependent failures and reparability are among the

features that should be taken into consideration in evalua-

tion of MTBF of redundant systems in order to obtain

realistic results. Hence, it is important to develop a method

which incorporates these features into the MTBF function.

Furthermore, it was demonstrated in this paper how

dependent failures affect and reduce redundant system

MTBF. If dependent failures are not incorporated into

reliability analyses, reliability parameters are not correctly

evaluated creating misleading results about the redundant

systems. Some other studies have been silent regarding

fuzzy failure rates, whereas engineers designing redundant

systems would prefer the failure rates expressed as lin-

guistic terms that can be effectively modeled as fuzzy

numbers. Therefore, this research presents a method to

evaluate the MTBF of a 2-out-of-3 redundant repairable

system with independent failure, CCF, cascading failure,

and fuzzy parameters.

Alpha factor model and capacity flow model

CCF, as a category of dependent failures, may significantly

affect the reliability of redundant systems. The alpha-fac-

tor, originally developed by Mosleh et al. (1998), is a

method for modeling CCF in k-out-of-n redundant systems.

To clarify the formulations of the alpha-factor, capacity

flow and the proposed models, Table 1 presents the nota-

tions used in the paper.

Figure 1 depicts the fault tree of a 2-out-of-3 redundant

system with 3 identical components A, B and C that con-

stitute a Common Cause Component Group (CCCG) which

is a set of components subject to failures due to a common

cause in addition to their independent failures. The mini-

mal cut sets for the fault tree in Fig. 1 are:

fA;Bg; fA;Cg; fB;Cg; fA;B;Cg ð1Þ

Each component A, B and C is subject to CCF as well as

independent failure. Figure 2 illustrates the fault tree for

component A for which the minimal cut sets are as follows:

fAIg; fCABg; fCACg; fCABCg ð2Þ

Similarly, the minimal cut sets for components B and

C are presented the following expressions, respectively.

fBIg; fCABg; fCBCg; fCABCg ð3Þ
fCIg; fCACg; fCBCg; fCABCg ð4Þ

In the above sets, AI, BI, and CI are the independent

failures of components A, B, and C, respectively. Also,

CAB, CAC, CBC, and CABC are the failures of {A, B}, {A, C},

{B, C}, and {A, B, C} due to the common cause, respec-

tively. Thus, the probability of failure in a 2-out-of-3

redundant system is

PðsÞ ¼ PðAIÞPðBIÞ þ PðAIÞPðCIÞ þ PðBIÞPðCIÞ
þ PðCABÞ þ PðCACÞ þ PðCBCÞ þ PðCABCÞ

ð5Þ

To simplify the above equation and without loss of

generality and because the components are identical, it is

assumed that

PðAIÞ ¼ PðBIÞ ¼ PðCIÞ ¼ Q1

PðCABÞ ¼ PðCACÞ ¼ PðCBCÞ ¼ Q2

PðCABCÞ ¼ Q3

ð6Þ

Hence, the probability of failure of a 2-out-of-3 redun-

dant system is

PðTÞ ¼ 3ðQ1Þ2 þ 3Q2 þ Q3 ð7Þ

J Ind Eng Int (2018) 14:281–291 283

123



In alpha-factor model, two parameters QT and ak are

predefined. The former, QT, is the total failure frequency of

the system caused by independent failure and CCF and the

latter, ak, is a fraction of the total frequency of failure event
including the failure of k components in the system. Kang

et al. (2011), Zheng et al. (2013) and Hassija et al. (2014)

have already proposed methods to estimate the value of ak.
To estimate the parameter alpha (a), all of these methods

require comprehensive data regarding independent failure

and CCF. In most cases, however, a and QT are not com-

puted easily. There may be a lack of appropriate infor-

mation regarding redundant system failure; therefore, Q1,

Q2, and Q3 cannot be computed accurately. Under such

circumstances, these parameters are often expressed

through linguistic terms. In other words, independent fail-

ure rate and CCF rate can be represented by triangular

fuzzy numbers. Figure 3 illustrates the membership func-

tions of fuzzy numbers considering independent failure

rate, CCF rate, and repair rate as triangular fuzzy numbers.

A fuzzy membership function can be defined as a

function presented by the following notation.

l ~A : U ! ½0; 1� uj ! l ~AðuÞ ð8Þ

Let a, b and c be real numbers where a\ b\ c. The

membership function of a triangular fuzzy number is pre-

sented by the following equation:

l ~A ¼

x� a

b� a
a� x� b

1 x ¼ b

x� c

b� c
b� x� c

0 others

8
>>>>>><

>>>>>>:

ð9Þ

Another type of dependent failures is known as ‘‘cas-

cading failure or load share’’. When a component in a

Table 1 Notations
t Time scale

Pk(t) The probability of k components fail at time t (k = 0,1,2,3)

AI, BI, CI Independent failures of components A, B, and C

CAB, CAC, CBC Failures of A&B, A&C, B&C due to CCF

CABC Failure of A&B&C due to CCF

Q1 Independent failures rate

Q2 Simultaneous failure rate of two components caused by common cause

Q3 Simultaneous failure rate of three components caused by common cause

Qx
* Failure rate of surviving components after suffering the failure of X component

c Load factor

x Repair rate

~Q1
Fuzzy number for independent failure

~Q2
Fuzzy number for CCF (Q2)

~Q3
Fuzzy number for CCF (Q3)

~x Fuzzy number for repair rate

a, b, c Triangular fuzzy number parameters

f(t) System probability density function at time t

R(t) System reliability function at time t

Fig. 1 The fault tree of 2-out-of-3 redundant system

Fig. 2 The fault tree of component A
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redundant system fails, the load on to the intact compo-

nents increases which in turn changes the failure rate of the

surviving components affecting the MTBF of the total

system. The capacity flow model is proposed as an easy

way for load share modeling (Yinghui and Jing 2008). It

this model, a k-out-of-n system with n identical compo-

nents is assumed. Load L is applied equally to all operation

components. When all the components are in operation, the

load on each component equals L/n. With the first com-

ponent failure, load on operating components increases to

L/(n - 1). The initial failure rate for all the components

equals Q1. Due to the increase in load following the failure

of the first components, the failure rate of each intact

components, x, equals Qx
*, which is defined by

Q�
x ¼

n

n� x

� �c
:Q1 x ¼ 0; 1; . . .; n� 1 ð10Þ

In the above equation, x is the number of failed com-

ponents in a redundant system and c is the load factor.

Load share exists in many redundant systems such as water

pumps, electric generators, suspension bridge cables, and

computer parts (e.g., CPUs, graphics cards, laptop RAMs).

Formulating the model

Assumptions

• The system and the components have two states: they

either work or fail.

• Load share in centrifugal pumping 2-out-of-3 redun-

dant system is detected by the use of technical

measures.

• Initially, all the system components operate (they are

not failed).

• After each repair, the system restarts and operates

exactly the same as a newly installed and started

system.

• Component failure is repaired immediately after

detection.

• Failure rates and repair rate of the components are

constant (component lifetime has exponential

distribution).

• Components are repaired individually (there is one

repairman).

Using Markov chains, alpha-factor model and capacity

flow model, a model can be developed to properly evaluate

the MTBF of a 2-out-of-3 redundant repairable system. The

main rule to evaluate MTBF is presented in the following

equation. An MTBF evaluation requires system reliability

as a function of time.

MTBF ¼
Z 1

0

RTðtÞdt þ
Z 1

0

t � f ðtÞdt ð11Þ

Let Pn(t) be the probability that n components fail at

time t assuming n 2 {0, 1, 2, 3} where t C 0 and the

process is a continuous-time homogeneous Markov chain

in which the transition rates matrix is as follows.

Fig. 3 The membership function for failure rates and repair rate

W ¼

�ð3Q1 þ 3Q2 þ Q3Þ 3Q1 3Q2 Q3

x �ðxþ 2Q�
1 þ 3Q2 þ Q3Þ ð2Q�

1 þ 2Q2Þ ðQ2 þ Q3Þ
0 x �ðxþ Q�

2 þ 2Q2 þ Q3Þ ðQ�
2 þ 2Q2 þ Q3Þ

0 0 x �x

2

6
6
4

3

7
7
5 ð12Þ
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Considering the state transition matrix in Eq. (12), the

Laplace transform techniques cannot be easily and effec-

tively used to estimate the system reliability function.

Therefore, a method is adopted to evaluate the MTBF of

such systems (Wang et al. 2006; Sridharan 2006; Yen et al.

2013) and is formulated as:

MTBF ¼ E½TPð0Þ!PðabsorbingÞ� ¼ Pð0Þð�W�1
absorbingÞ

1

1

� �

ð13Þ

In the above equation, the matrix, Wt, which is the

W transposed, is utilized for computing MTBF. Since the

system is a 2-out-of-3, the rows and columns of matrix Wt

corresponding to the absorbing states, i.e., third and fourth

column and the same rows, are removed and the new

matrix is called Wabsorbing where

Wabsorbing ¼
�ð3Q1 þ 3Q2 þ Q3Þ x

3Q1 �ðxþ 2Q�
1 þ 3Q2 þ Q3

� �

ð14Þ

The initial state vector is

Pð0Þ ¼ ½P0ð0ÞP1ð0Þ� ¼ ½ 1 0 � ð15Þ

Then, using Eq. (13) we have

Since Q1, Q2, and Q3 are triangular fuzzy numbers, the

system MTBF equation is transformed to the following

form:

By utilizing the above equation, MTBF can be expres-

sed as a function based on fuzzy numbers. Therefore,

according to Zadeh’s extension principle, the membership

function for MTBF can be defined as follows:

lf ð ~Q1; ~Q2; ~Q3; ~xÞðzÞ ¼ supmin l ~Q1
ðQ1Þ; l ~Q2

ðQ2Þ;
n

l ~Q3
Q3Þ; l ~xðxÞjMTBF ¼ f ðQ1;Q2;Q3;xÞð g ð18Þ

Unfortunately, the membership function in the above

equation cannot be presented in a usable form. In this

paper, we adapted NLP modeling to deal with this problem.

To apply this technique, according to the principle, the a-
cuts as crisp intervals are utilized. These a-cuts can be

written as follows:

~Q1ðaÞ ¼ ½XL
1a;X

U
1a� ¼ ½minfQ1jl ~Q1

ðQ1Þ� ag;
maxfQ1jl ~Q1

ðQ1Þ� ag�
~Q2ðaÞ ¼ ½XL

2a;X
U
2a� ¼ ½minfQ2jl ~Q2

ðQ2Þ� ag;
maxfQ2jl ~Q2

ðQ2Þ� ag�
~Q3ðaÞ ¼ ½XL

3a;X
U
3a� ¼ ½minfQ3jl ~Q3

ðQ3Þ� ag;
maxfQ3jl ~Q3

ðQ3Þ� ag�
~xðaÞ ¼ ½XL

4a;X
U
4a� ¼ ½minfxjl ~xðxÞ� ag;

maxfxjl ~xðxÞ� ag�

ð19Þ

To obtain the lower and upper bounds of the fuzzy

numbers, NLP problems are constructed as follows:

MTBF ¼ f ðQ1;Q2;Q3;xÞ

¼ 3Q1

9Q1Q2 þ 3Q1Q3 þ 6Q2Q3 þ 6Q1Q
�
1 þ 6Q2Q

�
1 þ 2Q3Q

�
1 þ 3Q2xþ Q3xþ 9Q2

2 þ Q2
3

þ 3Q2 þ Q3 þ 2Q�
1 þ x

3Q1Q2 þ 3Q1Q3 þ 6Q2Q3 þ 9Q1Q
�
1 þ 6Q2Q

�
1 þ 2Q3Q

�
1 þ 3Q2xþ Q3xþ 9Q2

2 þ Q2
3

ð16Þ

M ~TBF ¼ f ð ~Q1; ~Q2; ~Q3; ~xÞ

¼ 3 ~Q1

9 ~Q1
~Q2 þ 3 ~Q1

~Q3 þ 6 ~Q2
~Q3 þ 6 ~Q1ð1:5Þc ~Q1 þ 6 ~Q2ð1:5Þc ~Q1 þ 2 ~Q3ð1:5Þc ~Q1 þ 3 ~Q2 ~xþ ~Q3 ~xþ 9 ~Q2

2 þ ~Q2
3

þ 3 ~Q2 þ ~Q3 þ 2ð1:5Þc ~Q1 þ ~x

3 ~Q1
~Q2 þ 3 ~Q1

~Q3 þ 6 ~Q2
~Q3 þ 9 ~Q1ð1:5Þc ~Q1 þ 6 ~Q2ð1:5Þc ~Q1 þ 2 ~Q3ð1:5Þc ~Q1 þ 3 ~Q2 ~xþ ~Q3 ~xþ 9 ~Q2

2 þ ~Q2
3

ð17Þ
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M ~TBFLa ¼ minf ðQ1;Q2;Q3;xÞ
subject to XL

1a �Q1 �XU
1a

XL
2a �Q2 �XU

2a

XL
3a �Q3 �XU

3a

XL
4a �x�XU

4a

M ~TBFUa ¼ maxf ðQ1;Q2;Q3;xÞ
subject to XL

1a �Q1 �XU
1a

XL
2a �Q2 �XU

2a

XL
3a �Q3 �XU

3a

XL
4a �x�XU

4a

ð20Þ

By solving the above problems, given the a-cuts, the upper
and lower boundaries for theMTBFmembership function are

determined for each a-cuts. Using the upper and lower

boundaries for each a-cut, the membership function MTBF

can be obtained. The highest membership function is one of

the conventional methods used in most previous studies (Lee

et al. 2001; Chen et al. 2013;D’Urso et al. 2017). In this paper,

the highest membership value method is applied to defuzzify

the fuzzy numbers through the following equation.

lM ~TBFðz�Þ� lM ~TBFðzÞ 8 z 2 universe ð21Þ

Therefore, MTBF is determined by:

MTBF ¼ MTBFa a ¼ 1 ð22Þ

In addition, estimation of upper and lower boundaries of

MTBF can provide useful insights for system designers and

maintenance operators. The upper and lower bounds of

MTBF are as follows:

MTBFUpper boundary ¼ MTBFUa a ¼ 0

MTBFLower boundary ¼ MTBFLa a ¼ 0
ð23Þ

Case study

Centrifugal water pumps play an indispensable role in

many industries, including nuclear industries (Kang et al.

2011), cooling towers (Alavi and Rahmati 2016), main

water transfer routes (Mortazavi et al. 2016), etc. Cen-

trifugal water pumps are utilized in the main water

pipelines to compensate for water pressure drop. Failure of

these pumps results in water outages/shortage in the water

supply network which in turn may lead to significant los-

ses. Specifically, drinking water outage has social, cultural,

political and health consequences. Therefore, in recent

years, the reliability of the water supply networks and

equipment has been a point of attraction for both practi-

tioners and researchers. In practice, it is common to use

three pumps in parallel to prevent water outage in case of

failure of a pump (Fig. 4). If two pumps out of the three

pumps fail, there will be a water pressure drop or a water

outage in the water supply network. In addition, because of

the water pressure inside the pipes, the load is transferred

to the intact pumps if one of the pumps fails (load share).

The centrifugal water pumping is a redundant system that

fails due to CCF as well as independent failure. CCCG in

centrifugal pumping redundant system is presented in

Fig. 5. One of the important features in the maintenance

and inspection of systems is MTBF that presents an esti-

mation of the time to failure of the system and provides the

opportunity of starting the preventive maintenance. Fur-

thermore, MTBF is tool in controlling the maintenance

costs of the centrifugal water pumps.

Failure data regarding values of failure and repair rates

are usually preferred to be expressed in linguistic terms

which are easily and preferably expressed as triangular

fuzzy numbers. Table 2 presents the failure and repair rates

Fig. 4 The centrifugal pumping

2-out-of-3 redundant system
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data of the centrifugal water pumping system and Fig. 6

presents the associated membership.

Figure 6 illustrates the membership function of failure

rates and repair rate of centrifugal water pumps.

In this research, MATLAB� software is utilized to

determine the a-cuts for independent failure rate, CCF

rates, and repair rate. In the next step, fuzzy MTBF is

calculated for the centrifugal pumping redundant system

for 11 distinct values (See Table 3).

Fig. 5 CCCG for centrifugal pumping 2-out-of-3 redundant system

Table 2 Fuzzy failure and repair rates

Subject Value

Fuzzy number for independent failure (0.003, 0.004, 0.005)

Fuzzy number for CCF (Q2) (0.0045, 0.0055, 0.0065)

Fuzzy number for CCF (Q3) (0.006, 0.007, 0.008)

Fuzzy number for repair rate (0.02, 0.035, 0.05)

Load factor c 0.25

Fig. 6 The membership function for failure rates and repair rate of centrifugal water pump system
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It is concluded from Table 3 that for a = 1, the MTBF

value of the centrifugal pumping redundant system is

41.99947 days. For possibility level a = 0, the MTBF

range of the centrifugal redundant pumping system is

approximately [MTBFa=0
L = 35.63052, MTBFa=0

U =

50.97627]. If Eq. (21) is used for defuzzification, MTBF

equals 41.99947 days. All three values of MTBFa=0
L ,

MTBFUa¼0, and MTBFa=1 can be beneficial for system

designers and maintenance operators.

Comparison of results

As mentioned previously, neglecting dependent failures in

MTBF evaluation of redundant systems leads to overrated

results. Huang et al. (2008) posited that redundant systems

fail due to independent failure and lethal shocks, each of

which entails the failure of all redundant system compo-

nents. In their studies, they only considered independent

failure (Q1) and common cause shock failure (Q3). If

MTBF for a 2-out-of-3 redundant system is evaluated

following their approach, MTBF function is determined by

the following equation.

MTBF ¼ 3Q1

6Q2
1 þ 2Q1Q3 þ Q3x

þ 2Q1 þ x
6Q2

1 þ 2Q1Q3 þ Q3x

ð24Þ

Table 3 MTBF values

obtained by applying different

a-cuts values

a X1a
L X1a

U X2a
L X2a

U X3a
L X3a

U X4a
L X4a

U MTBFa
L MTBFa

U

0.00 0.003 0.005 0.0045 0.0065 0.006 0.008 0.066 0.074 35.63052 50.97627

0.10 0.0031 0.0049 0.0046 0.0064 0.0061 0.0079 0.0664 0.0736 36.18262 49.91712

0.20 0.0032 0.0048 0.0047 0.0063 0.0062 0.0078 0.0668 0.0732 36.75132 48.89942

0.30 0.0033 0.0047 0.0048 0.0062 0.0063 0.0077 0.0672 0.0728 37.33738 47.92080

0.40 0.0034 0.0046 0.0049 0.0061 0.0064 0.0076 0.0676 0.0724 36.77827 46.97908

0.50 0.0035 0.0045 0.005 0.006 0.0065 0.0075 0.068 0.072 38.56482 46.07222

0.60 0.0036 0.0044 0.0051 0.0059 0.0066 0.0074 0.0684 0.0716 39.20793 45.19835

0.70 0.0037 0.0043 0.0052 0.0058 0.0067 0.0073 0.0688 0.0712 39.87190 44.35571

0.80 0.0038 0.0042 0.0053 0.0057 0.0068 0.0072 0.0692 0.0708 40.55775 43.54268

0.90 0.0039 0.0041 0.0054 0.0056 0.0069 0.0071 0.0696 0.0704 41.26655 42.75773

1.00 0.004 0.004 0.0055 0.0055 0.007 0.007 0.07 0.07 41.99947 41.99947

Bold values indicate lower and upper bounds

Table 4 MTBF values

obtained by applying different

a-cuts values ignoring Q1
* and

Q2

a X1a
L X1a

U X3a
L X3a

U X4a
L X4a

U MTBFa
L MTBFa

U

0.00 0.003 0.005 0.006 0.008 0.066 0.074 120.053 166.667

0.10 0.0031 0.0049 0.0061 0.0079 0.0664 0.0736 121.843 163.654

0.20 0.0032 0.0048 0.0062 0.0078 0.0668 0.0732 123.679 160.732

0.30 0.0033 0.0047 0.0063 0.0077 0.0672 0.0728 125.561 157.897

0.40 0.0034 0.0046 0.0064 0.0076 0.0676 0.0724 127.491 155.144

0.50 0.0035 0.0045 0.0065 0.0075 0.068 0.072 129.471 152.47

0.60 0.0036 0.0044 0.0066 0.0074 0.0684 0.0716 131.502 149.873

0.70 0.0037 0.0043 0.0067 0.0073 0.0688 0.0712 133.588 147.349

0.80 0.0038 0.0042 0.0068 0.0072 0.0692 0.0708 135.729 144.895

0.90 0.0039 0.0041 0.0069 0.0071 0.0696 0.0704 137.928 142.508

1.00 0.004 0.004 0.007 0.007 0.07 0.07 140.187 140.187

Bold values indicate lower and upper bounds

Fig. 7 The comparison of MTBF for the two models
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Obviously, (Q2) and (Q1
*) rates are ignored in this

function. In centrifugal water pumping systems, however,

these two failure rates must be taken into consideration. In

other words, it can be said that cascade failure and CCF

both exist in these systems. If the redundant system con-

sists of more than two components, in order to take CCF

into consideration, models such as alpha-factor and MGL

should be used (Beckman 1995).

In this research, failure rates and repair rate for the

MTBF function are considered as triangular fuzzy numbers

(Table 2); therefore, Eq. (24) is rewritten as Eq. (25).

Using NLP, fuzzy MTBF values are computed for 11

distinct values. These values are presented in Table 4.

M~TBF ¼ 3 ~Q1

6 ~Q2
1 þ 2 ~Q1

~Q3 þ ~Q3 ~x
þ 2 ~Q1 þ ~x

6 ~Q2
1 þ 2 ~Q1

~Q3 þ ~Q3 ~x

ð25Þ

Figure 7 presents a column chart for lower and upper

bounds as well as the center value for the fuzzy MTBF for

both models. As illustrated, the lower bound of MTBF in

the study by Huang et al. (2008) is higher than that of the

model developed by the present study. This is because the

former study only considered independent and common

cause shock failures. A similar situation exists for upper

bound of MTBF and center of MTBF values.

Failure rate estimation is one of the most accurate (and

most expensive) reliability analysis activities. An inaccu-

rate estimation of failure rate leads to an inaccurate or

incorrect evaluation of reliability, availability, MTTF, and

MTBF of systems. In most cases, accelerated tests are

utilized for accurate estimation of failure rates. It should be

noted, however, that creating genuine conditions in these

tests is considerably costly and sometimes not feasible.

Therefore, it is more appropriate to consider failure rate

values as intervals. Upper bound, lower bound, and central

values for failure rates and repair rate can be expressed

through triangular fuzzy numbers. As a result, MTTF and

MTBF adopt upper bound, lower bound, and central values

as well. More specifically, independent failure rate and

dependent failure rates each can be expressed as triangular

fuzzy numbers. The functioning condition of redundant

systems causes them to undergo failure at different times.

Therefore, it is possible to determine an interval for failure

rate using previous failure data. In centrifugal water

pumping redundant systems, fuzzy failure rates can also be

collected by taking previous failure data into consideration.

Repair rate can also be considered as triangular fuzzy

numbers. In this case, the maintenance operator can

determine an interval for the maintenance operation. Using

the model presented in this paper, the MTBF of a redun-

dant system with two types of dependent failures as well as

fuzzy failure rates and fuzzy repair rate can be evaluated.

Discussion and conclusion

Most dependent failures reduce MTTF and MTBF in

redundant systems. Therefore, the frequency of dependent

failure events in redundant systems must be minimized and

appropriate corrective actions must be taken. However,

redundant systems undergo both independent failures and

dependent failures. In this paper, using Markov chain and

transposed matrix, the MTBF function for a 2-out-of-3

redundant system is developed by taking into consideration

two types of dependent failures. First, the alpha-factor

model and capacity flow model are briefly outlined. Since

the failure rates are usually preferred to be expressed as

linguistic terms, the failure and maintenance rates are

expressed as triangular fuzzy numbers, and, the upper

bound, lower bound, and central values for the fuzzy

MTBF of a 2-out-of-3 redundant system are determined by

applying Zadeh’s extension principle, concepts of a-cuts,
and NLP. To validate the model, the results were compared

with those obtained by the model developed by Huang

et al. (2008). The comparison revealed that considering

dependent failures in the MTBF function leads to the

reduction of the MTBF of redundant systems. Obviously,

by investigating and integrating dependent failures in

MTBF evaluation models for redundant systems, more

applicable and realistic MTBF models can be developed.

System failure in dynamic environment is another variety

of dependent failures (XiaoFei andMin 2014). To evaluate the

MTBF of redundant systems, it is assumed that the compo-

nents operate in a static environment. Therefore, the models

developed under such assumptionsmay not be appropriate for

redundant systems operating in dynamic conditions. It is

recommended that future studies develop a model to evaluate

the MTBF of redundant system, incorporating CCF, cascade

failure in dynamic environments. The dynamic model may

also incorporate uncertainty of the real-world problems.
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