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Abstract To design a group layout of a cellular manu-

facturing system (CMS) in a dynamic environment, a

multi-objective mixed-integer non-linear programming

model is developed. The model integrates cell formation,

group layout and production planning (PP) as three inter-

related decisions involved in the design of a CMS. This

paper provides an extensive coverage of important manu-

facturing features used in the design of CMSs and enhances

the flexibility of an existing model in handling the fluctu-

ations of part demands more economically by adding

machine depot and PP decisions. Two conflicting objec-

tives to be minimized are the total costs and the imbalance

of workload among cells. As the considered objectives in

this model are in conflict with each other, an archived

multi-objective simulated annealing (AMOSA) algorithm

is designed to find Pareto-optimal solutions. Matrix-based

solution representation, a heuristic procedure generating an

initial and feasible solution and efficient mutation operators

are the advantages of the designed AMOSA. To demon-

strate the efficiency of the proposed algorithm, the per-

formance of AMOSA is compared with an exact algorithm

(i.e., [-constraint method) solved by the GAMS software

and a well-known evolutionary algorithm, namely NSGA-

II for some randomly generated problems based on some

comparison metrics. The obtained results show that the

designed AMOSA can obtain satisfactory solutions for the

multi-objective model.

Keywords Dynamic cellular manufacturing systems �
Group layout � Production planning � Archived multi-

objective simulated annealing

Introduction

Wemmerlov and Hyer (1986) defined the implementation

of a cellular manufacturing system (CMS) in four design

steps including: (1) cell formation (CF) (i.e., grouping parts

with similar processing requirements into part families and

capable machines for processing those parts into machine

cells); (2) group layout (GL) (i.e., placing machines within

each cell, called intra-cell layout, and cells in connection

with one another, called inter-cell layout); (3) group

scheduling (GS) (i.e., scheduling part families); and (4)

resource allocation (i.e., assigning tools, human and

material resources).

An increasingly significant issue in designing modern

manufacturing systems which produce multiple products

and operate in highly unstable environments is that the

existing layout configurations (i.e., product, functional and

cellular type layout configurations) are not suitable to reach

an optimal strategy for whole planning horizon (Benjafaar

et al. 2002). This disadvantage exists because these layouts
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are generally designed for a given product mix and demand

volume in a fixed planning horizon. Unplanned changes in

product mix and demand volume necessitate reconfigura-

tion of these layouts. In a dynamic environment, the

product mix and part demands vary during a multi-period

planning horizon and necessitate reconfigurations of cells

to form cells efficiently for successive periods. This type of

model is called the dynamic cellular manufacturing system

(DCMS) (Rheault et al. 1995). Drolet et al. (2008) devel-

oped a stochastic simulation model to indicate that DCMSs

are generally more efficient than classical CMSs or job

shop systems, especially by considering the performance

measures such as the throughput time, work-in-process,

tardiness, and the total marginal cost.

In designing a manufacturing system, it is very desirable

to achieve an optimal solution regarding all the objectives

considered individually in the literature. However, this is

unattainable because of the conflicts existing between

various objectives. Wemmerlov and Johnson (2000) indi-

cated that there are many conflicting objectives in practical

implementation of a CMS. For example, there is a con-

tradiction between minimizing the cell load imbalances and

minimizing the outsourcing cost and inter-cell material

handling cost. The main reason of this contradiction is

because leveraging the workload among cells necessitates

some of parts to be outsourced or some of processing

operations in cells to be reallocated to another. For solving

this type of problems with conflicting objectives, it is

reasonable to investigate a set of solutions that provide

flexibility for decision-maker to choose the preferred

solution among them.

For the first time, designing a group layout of a DCMS

was presented by Kia et al. (2012) through a mixed-integer

non-linear programming model. A disadvantage of their

work was that the number of cells formed in each period

was predetermined by system designer. In an extended

study, a multi-objective model was formulated by Kia et al.

(2013) enhanced with the ability of finding the optimal

number of cells. Some other advantages in their model

include: (1) multi-rows layout of equal-sized facilities; (2)

flexible configuration of cells; (3) calculating relocation

cost based on the locations assigned to machines; (4) dis-

tance-based calculation of intra-cell and inter-cell material

handling costs; (5) considering intra-cell movements

between two machines of a same type; (6) applying the

equations of material flow conservation; and (7) integrating

the CF and GL decisions in a dynamic environment.

The model presented in this study is an extended version

of the multi-objective model proposed by Kia et al. (2013).

In addition, machine depot feature and PP decisions are

added to the previous model to enhance its flexibility in

handling changing demand. An obvious drawback in their

work was that no metaheuristic approach was designed for

solving the problem in a reasonable time. To overcome this

disadvantage, an archived multi-objective simulated

annealing (AMOSA) is designed to solve the problem.

The aims of this study are twofold: the first one is to

extend an existing mathematical model with an extensive

coverage of important manufacturing features consisting of

alternative process routings, operation sequence, process-

ing time, production volume of parts, purchasing machine,

duplicate machines, machine capacity, machine depot, lot

splitting, group layout, multi-rows layout of equal area

facilities, flexible reconfiguration of cells, variable number

of cells, outsourcing and inventory holding of parts. The

second aim is to design an AMOSA algorithm for solving

the developed model.

The advantages of the designed AMOSA have been: (1)

a matrix-based solution representation; (2) a heuristic

method that fulfills the ingredients of the solution matrices

hierarchically to satisfy all constraints; (3) explorative

neighborhood generating mutations that affect on all

components of objective function; and (4) employing the

advantages of AMOSA including: (a) calculation of the

acceptance probability of a mutated solution in a new way

and (b) considering different forms of acceptance proba-

bilities depending on the domination status.

Since DCMS and PP decisions are interrelated and may

not be handled sequentially (Safaei and Tavakkoli-Mog-

haddam 2009; Defersha and Chen 2008b), some of the PP

attributes such as inventories holding and outsourcing of

parts are incorporated to the extended model. The effects of

incorporated design features on improving the performance

of a DCMS have been also illustrated by (Kia 2014). For

example, regarding the number of formed cells as decision

variable can considerably improve the performance of a

CMS by reducing forming cell cost. Furthermore, machine

depot can be effective in improving the performance of a

DCMS by reducing machine overhead cost and configuring

cells more usefully because of removing idle machines from

cells. Additionally, production planning decisions have been

shown as improving strategies by satisfying high-volume

demands because of leveling machine utilization in different

periods. It is worth mentioning, because of the dynamic

nature of PP problems, the integration of the CMS and PP

makes the problem very complex and computationally hard.

The first objective of the developed model is to minimize

the total costs of intra-cell and inter-cell material handling,

machine relocation, machine purchase, machine overhead,

machine processing, forming cells, outsourcing and inven-

tory holding. The second objective is to minimize the

workload imbalances among cells. The main constraints are

machine capability, demand satisfaction through different

PP strategies, machine availability in cells or depot,

machine location, cell size, machine time capacity, and

material flow conservation.
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Twelve numerical examples are solved using the

[-constraint method as an exact method, the designed

AMOSA and NSGA-II as a prominent multi-objective

genetic algorithm in order to investigate the efficiency of

the designed AMOSA algorithm. The results show the

efficiency of this algorithm in reaching Pareto-optimal

solutions in terms of some performance measures and

computational time.

The remainder of this paper is organized as follows. The

literature review is presented in ‘‘Literature review’’. In

‘‘Mathematical model and problem descriptions’’, a multi-

objective mathematical model integrating DCMS, GL and

PP decisions is extended based on an existing model. The

development of the designed AMOSA is discussed in ‘‘The

archived multi-objective simulated annealing (AMOSA)

algorithm for DCMS’’ and a brief description of NSGA-II

is also given. Section ‘‘Computational results for multi-

objective model by AMOSA’’ illustrates the test problems

that are utilized to investigate the performance of the

developed AMOSA algorithm. Finally, conclusion is given

in section ‘‘Conclusion’’.

Literature review

Van Veldhuizen and Lamont (2000) and Eiben and Smith

(2003) reported that evolutionary multi-objective optimi-

zation (EMO) algorithms are able to find efficient solutions

for multi-objective optimization problems since their

search mechanism is based on the use of a population of

candidate solutions. EMO utilize a set of tools to perform

multi-objective optimization by evolving a set of alterna-

tive trade-off solutions (Coello Coello 2005).

Some algorithms implemented in EMO area can be

mentioned as follows: multi-objective simulated annealing

(MOSA) (Suppapitnarm et al. 1999), multi-objective

genetic algorithm (MOGA) (Fonseca and Fleming 1995),

vector evaluated genetic algorithm (VEGA) (Schaffer

1985), Pareto archive evaluation strategy (PAES) (Know-

les and Corne 1999), fast and elitist non-dominated sorting

genetic algorithm (NSGA-II) (Deb et al. 2002), and

strength Pareto evolutionary algorithm (SPEA-II) (Zitzler

et al. 2001).

We choose the archived multi-objective simulated

annealing (AMOSA) algorithm introduced by Bandyo-

padhyay et al. (2008) as a representative of the state-of-the-

art in EMO to solve our multi-objective model because its

performance has been shown that is better than other EMO

algorithms such as MOSA, NSGA-II and PAES in a

majority of the test problems. There are two remarkable

differences in the proposed AMOSA when compared with

the previous works. First, the acceptance probability of

new solution x obtained by mutating current solution y is

calculated based on the amount of domination of solution

x with respect to the solutions in the archive keeping non-

dominated solutions and solution y. Second, different forms

of acceptance probabilities depending on the domination

status are considered.

Since a comprehensive literature review related to

layout problems and dynamic issues in designing a CMS

has been carried out by Kia et al. (2012, 2013), here only

the studies of multi-objective modeling of a CMS are

summarized in Table 1. Many models have been proposed

for multi-objective modeling in CMSs incorporating dif-

ferent conflicting objectives. A list of these objectives is

also given in Table 1. We investigate 19 prominent

papers through counting the number of objectives which

have been incorporated in each paper. By considering the

studies reviewed in Table 1, it can be understood that the

model extended in this paper includes a larger coverage

of the commonly used objectives than the individual

papers presented in Table 1. This is another advantage of

the developed model in comparison with previous studies.

Also, this is the first time that an AMOSA algorithm is

employed for solving a multi-objective model of a

DCMS.

Mathematical model and problem descriptions

Model assumptions

In this section, the multi-objective DCMS model integrat-

ing GL and PP is formulated under the two types of

assumptions. Since some of these assumptions are the same

as those considered by Kia et al. (2013), they are not

repeated here and only their numbers are mentioned. The

numbers of repetitive assumptions are (1), (2), (3), (4), (5),

(6), (7), (8), (10), (12), (14), (15), (16), (17) and (18). The

new assumptions are considered as follows:

1. When there is surplus processing capacity in a period,

idle machines can be removed from the cells and

transferred to the machine depot, where the idle

machines are kept. This can decrease the machine

overhead costs, provide empty locations in cells to

accommodate required machines and shorten the

distances traveled by parts among machines. When-

ever it is necessary to increase the processing time

capacity of the system because of high demand

volume, those machines are returned to the cells.

2. Cell reconfiguration involves different situations which

are: (1) transferring of the existing machines between

different locations; (2) purchasing and adding new

machines to cells; and (3) transferring machines

between cells and the machine depot.

58 Page 4 of 17 J Ind Eng Int (2014) 10:58

123



3. Obviously, the maximum number of machines which

can be present in a period is equal to the number of

locations. Therefore, the maximum number of cells

which can be formed is determined by Cmax ¼
the number of locations=lower bound of cell size. The

number of cells which should be formed in each period

is considered as a decision variable.

4. The transferring cost of each machine type between two

periods is known. All machine types can be moved to the

machine depot or any location in the cells. Even if a

machine is removed from or returned to the cells, this

transferring cost is incurred. This cost is paid for several

situations: (1) to install a new purchased machine or a

machine returned from the machine depot; (2) to uninstall

a machine removed from a cell and kept in the machine

depot; and (3) to transfer a machine between two different

locations. Transferring machine contains uninstallation

of a machine from a location and installation of that

machine in another location. Installing and uninstalling

costs are considered to be the same. Actually, if a machine

is added to a cell, only the installing cost will be imposed.

In the same way, if a machine is removed from a cell, only

the uninstalling cost will be incurred. Then, if a machine is

transferred between two different locations in the cells,

both uninstalling and installing costs will be imposed.

Thus, it is reasonable to assume that the unit cost of adding

or removing a machine to/from the cells is half of the

transferring machine cost.

5. Depending on the fluctuations of demand volumes and

total costs of meeting those demands, the system can

produce some surplus parts in a period, hold them as an

inventory between successive periods and use them in

the future planning periods. Also, due to limited

machine capacities, outsourcing can be used to provide

some of the required parts to meet the market demand.

The following notations are used in the model:

Sets

P = {1, 2, …, P} Index set of part types

K(p) = {1, 2, …, Kp} Index set of operations indices for

part type p

M = {1, 2, …, M} Index set of machine types

C = {1, 2, …, C} Index set of cells

L = {1, 2, …, L} Index set of locations

T = {1, 2, …, T} Index set of time periods.

Model parameters

IEp Inter-cell material handling cost per part type p per

unit of distance

IAp Intra-cell material handling cost per part type p per

unit of distance

dm Transferring cost per machine type m

Dpt Demand for part type p in period t

Tm Capacity of one unit of machine type m

C Maximum number of cells that can be formed in

each period

FCt Cost of forming a cell in period t

BU Upper cell size limit

BL Lower cell size limit

tkpm Processing time of operation k on machine m per

part type p

dll0 Distance between two locations l and l0

am Overhead cost of machine type m in each period

bm Variable cost of machine type m for each unit time

cm Purchase cost of machine type m

OCp Outsourcing cost per unit part type p

HCp Inventory holding cost per unit part type p during

each period

akpm 1 if operation k of part type p can be processed on

machine type m; 0 otherwise

Decision variables

Xkpmlt Number of parts of type p processed by

operation k on machine type m located in

location l in period t

Wmlct 1 if one unit of machine type m is located in

location l and assigned to cell c in period t; 0,

otherwise

Ykpmlm0l0t Number of parts of type p processed by

operation k on machine type m located in

location l and moved to the machine type m0

located in location l0 in period t

Yct 1 if cell c is formed in period t; 0, otherwise

NP
mt

Number of machine type m purchased in

period t

Nþ
mt Number of machine type m removed from

machine depot and returned to cells in period t

N�
mt Number of machine type m removed from cells

and moved to the machine depot in period t

Opt Number of part type p to be outsourced in

period t

Vpt Inventory quantity of part type p kept in period

t and carried over to period t ? 1.

Mathematical model

The developed DCMS model is now formulated as a

multi-objective mixed-integer non-linear programming

model:
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minZ1 ¼
XT

t

XC

c

XM

m

XL

l

XM

m0

XL

l0 6¼l

XP

p

XKp�1

kp

Wmlct � Wm0l0ct

� Ykpmlm0l0t � dll0 � IAp ð1Þ

þ
XT

t

XC

c

XC

c0 6¼c

XM

m

XL

l

XM

m0

XL

l0

XP

p

XKp�1

kp

Wmlct � Wm0l0c0t

� Ykpmlm0l0t � dll0 � IEp ð2Þ

þ 1

2

XC

c

XL

l

XM

m

dm � Wmlc;t¼1 þ
1

2

XT�1

t

XL

l

XM

m

dm

�
XC

c

Wmlct �
XC

c

Wmlc;tþ1

�����

����� ð3Þ

þ
XT

t

XM

m

cm � NP
mt ð4Þ

þ
XT

t

XM

m

am �
XC

c

XL

l

Wmlct

 !
ð5Þ

þ
XT

t

XP

p

XKp

kp

XM

m

XL

l

bm � tkpm � Xkpmlt ð6Þ

þ
XT

t

XC

c

FCt � Yct ð7Þ

þ
XT

t

XP

p

OCp � Opt ð8Þ

þ
XT

t

XP

p

HCp � Vpt ð9Þ

and

minZ2 ¼
XT

t

XC

c

XM

m

XL

l

XP

p

XKp

k

Wmlct � Xkpmlt � tkpm

�����

�
XM

m

XL

l

XP

p

XKp

k

Xkpmlt � tkpm

 !
=
XC

c

Yct

����� ð10Þ

Subject to:

Xkpmlt �M � akpm 8k 2 Kp; 8p 2 P; 8m 2 M; 8l 2 L; 8t 2 T

ð11Þ

Dpt ¼
XM

m

XL

l

Xk¼1;pmlt þ Vpt�1 � Vpt þ Opt 8p 2 P; 8t 2 T

ð12Þ
XC

c

XL

l

Wmlct ¼
XC

c

XL

l

Wmlct�1 þ NP
mt þ Nþ

mt � N�
mt 8m

2 M; 8t 2 T ð13Þ

Nþ
mt �

Xt�1

t¼2

N�
mt �

Xt�1

t¼3

Nþ
mt 8m 2 M; t ¼ 3; . . .; T ð14Þ

XM

m

XL

l

Wmlct �BU � Yct 8c 2 C; 8t 2 T ð15Þ

BL � Yct �
XM

m

XL

l

Wmlct 8c 2 C; 8t 2 T ð16Þ

Yðcþ1Þt � Yct 8c 2 C � 1; 8t 2 T ð17Þ

XP

p

XKp

k

Xkpmlt � tkpm � Tm

XC

c

Wmlct 8m 2 M; 8l 2 L; 8t 2 T

ð18Þ

Xkpmlt ¼
XM

m0

XL

l0
Ykpmlm0l0t 8k 2 Kp; 8p 2 P; 8m 2 M; 8l

2 L; 8t 2 T ð19Þ

Xkpm0l0t ¼
XM

m

XL

l

Yk�1pmlm0l0t 8k 2 Kp; 8p 2 P; 8m0

2 M; 8l0 2 L; 8t 2 T ð20Þ

XM

m

XC

c

Wmlct � 1 8l 2 L; 8t 2 T ð21Þ

Xkpmlt; Ykpmlm0l0t;NP
mt;Nþ

mt;N�
mt;Opt;Vpt � 0 and integer 8k

2 Kp; 8p 2 P; 8m 2 M; 8l 2 L; 8t 2 T ð22Þ

Wmlct; Yct;2 0; 1f g 8m 2 M; 8c 2 C; 8l 2 L; 8t 2 T

ð23Þ

The first objective function consists of nine cost com-

ponents. Terms (1)–(7) are the same as those formulated by

Kia et al. (2013) and calculate the total cost of intra-cell

and inter-cell material handling, cell reconfiguration,

machine purchase, machine overhead, machine operation,

and forming cells. Finally, terms (8) and (9) which are

added to the previous model are for outsourcing and

inventory holding costs.

The second objective function is the same as the second

one formulated by Kia et al. (2013) to minimize the total

cell load variation.

Constraints (11), (15), (16), (18)–(21) are the same as

those formulated by Kia et al. (2013). Therefore, a short

description is given for them.

Inequality (11) guarantees that each operation of a part

is processed on the machine by which can be processed.

Constraint (12) shows that demand of each part can be

satisfied in a period through internal production or external

outsourcing or inventory carried from the previous period

or each combined strategy of these PP decisions leading to

optimal plan. Equation (13) describes that the number of
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machine type m utilized in the period t is equal to number

of utilized machines of the same type in the previous period

plus the number of new machines of the same type pur-

chased at the beginning of the current period, plus the

number of machines of the same type removed from the

machine depot and returned to the cells or minus

the number of machines of the same type removed from the

cells and moved to the machine depot at the beginning of

the current period. Inequality (14) ensures that the number

of machine type m which can be returned from the machine

depot to the cells does not exceed from the number of

machine type m available in the machine depot in each

period. It is worth mentioning that returning machines from

the machine depot to cells can be started in the third period,

because there is no any machine in the machine depot

before that period.

Constraints (15) and (16) enforce the number of

machines assigned to each cell is limited within the user-

defined lower and upper bounds. The forming cells in an

ordinal number are determined by Constraint (17). The

limitation of machine time capacity is defined by Constraint

(18). The conservation of material flow among machines is

defined by Eqs. (19) and (20). Constraints set (21) ensures

that each location receives one machine at most and only

belongs to one cell, simultaneously. The logical binary and

non-negativity integer necessities for the decision variables

are provided by Constraints (22) and (23).

The archived multi-objective simulated annealing

(AMOSA) algorithm for DCMS

Kirkpatrick et al. (1983) introduced the simulated anneal-

ing (SA) algorithm as a stochastic neighborhood search

technique for solving hard combinatorial optimization

problems. SA emulates the annealing process which

attempts to force a system to its lowest energy through

controlled cooling. It has been used to many optimization

problems in a wide variety of areas, including dynamic

cellular manufacturing systems (Kia et al. 2012; Majazi

Dalfard 2013; Safaei et al. 2008; Defersha and Chen 2008a,

b, 2009; Mungwattana 2000). In this section, the AMOSA

algorithm which is based on the principle of SA algorithm

is developed to solve the presented model.

It must be confessed that some parts of the designed

AMOSA algorithm for solving the extended multi-objec-

tive model have been similar to the solution procedure

proposed by Kia et al. (2012). However, there have been

some differences as follows. The solution representation

has been modified since new decision variables related to

production planning decisions (i.e., inventory holding and

outsourcing), forming cells and machine depot have been

added to the mathematical model formulated by Kia et al.

(2012). These new decision variables are needed to be

incorporated to the solution representation. Also, the heu-

ristic approach has been modified and has hierarchically

built up an initial feasible solution. Updating matrices of a

solution after implementing a mutation operator has been

another difference. Finally, the main differences resulted

from the AMOSA procedure have been as clustering the

archive solutions and acceptance/rejection mechanism of a

neighborhood solution.

Solution representation

A solution schema proportional to the integrated DCMS

model for determining group layout and production plan-

ning consists of seven ingredients in each period as fol-

lows. The description for the ingredients which have been

designed previously by Kia et al. (2012) is shortened.

1. The first ingredient related to the number of purchased

duplicates of each machine type in each period is

named matrix NPM,T which is similar to the matrix

[Ma_Du] introduced by Kia et al. (2012). The com-

ponents of this matrix M 9 1 as shown in Fig. 1

present the number of purchased duplicates of each

machine type.

2. The second ingredient related to the number of

machine duplicates returned from machine depot to

cells in each period is named matrix NplusM,T. The

components of this matrix M 9 1 as shown in Fig. 2

present the number of machine duplicates which is

returned from machine depot to cells. npluspjt =

a means that a duplicates of machine type j are

returned from machine depot to cells in period t.

3. The third ingredient related to the number of machine

duplicates removed from cells and moved to machine

depot in each period is named matrix NminusM,T. The

components of this matrix M 9 1 as shown in Fig. 3

present the number of machine duplicates which is

removed from cells and moved to machine depot.

nminusjt = a means that a duplicates of machine type

j removed from cells and moved to machine depot in

period t.

It is worth mentioning while completing the matrices

NPM,T, NplusM,T and NminusM,T, the Constraints (13) and

(14) should be considered.

4. The fourth ingredient related to the simultaneous

assignment of duplicates of each machine type to

locations and cells is named matrix L C ML;C;T which

is a combination of the matrices [Ma_Du_Lo] and

[Ce_Lo] introduced by Kia et al. (2012). The compo-

nents of this matrix L 9 C as shown in Fig. 4 represent

the assignment of machine duplicates to locations and
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cells, simultaneously. While completing the matrix

L C ML;C;T , Constraints (15), (16), (17) and (21)

should be satisfied. After completing the matrices

NPM,T and L C ML;C;t for the entire periods, the

values of NplusM,T and NminusM,T can be derived from

Eq. (13) in each period.

5. The fifth ingredient presenting the quantity of part

operations assigned to the duplicates of each machine

type located in locations is named matrix

P L Op QP;L;Op;T which is similar to the matrix

[Pa_Op_Lo] introduced by Kia et al. (2012). This is

a three-dimensional matrix P 9 L as shown in Fig. 5,

in which each component contains k arrays (k is

maxp Kp

� �
) presenting the assignment of part opera-

tions to locations. wplkp
¼ a means that a quantities of

part type p are processed by operation kp on the

machine located in location l. While completing the

matrix P L Op QP;L;OP;T , Constraints (11) and (18)–

(20) should be satisfied.

6. The sixth ingredient indicating the quantity of inven-

tory of parts kept in period t and carried over to period

t ? 1 is named matrix VP,T. The components of this

matrix P 9 1 as shown in Fig. 6 represent the quantity

of inventory of parts kept between each two peri-

ods.vpt = a means that a quantities of part type p are

kept in period t and carried over to period t ? 1. For

example, the term v31 = 50 means that 50 quantities of

part type 3 are kept in period 1 and carried over to

period 2.

7. The seventh ingredient indicating the quantity of parts

outsourced in period t is named matrix OP,T. The

components of this matrix P 9 1 as shown in Fig. 7

represent the quantity of outsourced parts in each

period. opt = a means that a quantities of part type

p are outsourced in period t. For example, the term of

o31 = 50 means that 50 quantities of part type 3 are

outsourced in period 1.

While completing the matrices P L Op QP;L;OP;T , VP,T

and OP,T, Eq. (12) should to be satisfied.

In general, with combining seven ingredients described

above, the solution representation in each period is

obtained as shown in Fig. 8. It is obvious that each solution

combining seven ingredients consists of the T structure,

where T is the number of periods.

Generating an initial solution

The initial solution is generated according to a hierarchical

approach, in which matrices L C ML;C;t

� �
, NPM;t

� �
,

NplusM;t

� �
, NminusM;t

� �
, P L Op QP;L;OP;t

� �
, VP;t

� �
and

OP;t

� �
are constructed sequentially in each period by the

random numbers limited in the determined interval pro-

vided that those matrices satisfy corresponding constraints.

Since the matrices L C ML;C;t

� �
, NplusM;t

� �
, NminusM;t

� �
,

VP;t

� �
and OP;t

� �
have been added to the solution repre-

sentation designed by Kia et al. (2013), the procedure of

generating an initial solution and neighborhood generation

strategy need to be modified. The generation process of

initial solutions is described as follows.

In the first stage, the matrix L C ML;C;t

� �
determining

how duplicates of each machine type are assigned to

Fig. 1 Purchased duplicates of

machines in period t

Fig. 3 Removed duplicates of machines from cells to depot in

period t

Fig. 2 Returned duplicates of machines from depot to cells in

period t

Fig. 4 Assignment of machine duplicates to locations and cells

Fig. 5 Assignment of part

operations to machine

duplicates in locations

58 Page 8 of 17 J Ind Eng Int (2014) 10:58

123



locations and cells is constructed. To generate a good ini-

tial solution, the number of machines of each type which is

required for processing part operations is estimated

roughly. This is done by considering parameters tkpm and

Dpt of each part type and randomly selecting a machine

capable to process each operation of a part. Then, the

components of matrix L C ML;C;t

� �
receive numbers ran-

domly distributed between 1 and M (the number of

machine types) for all periods. The number of rows is equal

to the number of locations and the number of columns is

equal to Cmax (the maximum number of cells). Therefore,

numbers in each row of matrix L C ML;C;t

� �
show the

machines located in the related location in the successive

periods. Also, numbers in each column present the

machines assigned to related cells in successive periods.

Based on Constraint (21), each location is allowed to

accommodate one machine at most. To satisfy this con-

straint, only one component in each row of a matrix can

take a value greater than zero. After distributing these

numbers in locations (rows) of matrix L C ML;C;t

� �
, cell

size limits should be investigated. Three cases may happen

by completing matrix L C ML;C;t

� �
. In the first case, the

number of machines assigned to a cell (column) is less than

the lower bound of that cell. In this case, that cell will not

be formed and actually all assignments to that cell will be

transferred to other cells. In the second case, the number of

machines assigned to a cell (column) is placed between the

lower and upper bounds of that cell. In this case, that cell

will be formed and all assignments to that cell will be

accepted. In the third case, the number of machines

assigned to a cell (column) is greater than the upper bound

of that cell. In this case, some extra machines are randomly

chosen and moved to next cell to reach the upper bound.

By this procedure, Constraints (15) and (16), related to cell

size limits, are satisfied. To satisfy Constraint (18), it is

required to form cells in order. For example, if cell 4 was

formed while cell 2 was not formed due to cell size limits,

thus the machines which had been assigned to cell 4 would

be transferred to cell 2. In fact, cell 2 is formed instead of

cell 4. By this simple procedure, Constraint (17) is met.

As a result, the configuration of machines in cells and

assignments of locations to cells are determined by con-

structing of matrix L C ML;C;t

� �
. Based on Eq. (13),

matrices NPM;t

� �
, NplusM;t

� �
and NminusM;t

� �
are derived

from matrices L C ML;C;t

� �
which have been generated in

successive periods.

After configuring cells which consists of locating

machines in locations and assigning locations to cells by

completing matrices L C ML;C;t

� �
, part operations are

assigned to the machines located in the locations by con-

structing the matrices P L Op QP;L;OP;T in successive

periods. While completing the matrices P L Op QP;L;OP;T ,

the Constraints (11) (i.e., machine process capability), (12)

(i.e., part demand satisfaction), (18) (i.e., machine time

capacity), and (19) and (20) (i.e., material flow conserva-

tion) should be satisfied.

Neighborhood generation strategy

Well-designed solution mutation (SM) operators are sig-

nificant to the success of SA. In this research, we develop

seven different (SM) operators. These are cell-number

mutation operator (SM1), machine-number mutation

operator (SM2), machine-inter-cell mutation operator

(SM3), machine-intra-cell mutation operator (SM4),

machine-location mutation operator (SM5), route-volume

mutation operator (SM6) and part-operation mutation

operator (SM7). To implement each one of these operators

on a solution, a period is selected randomly and then the

mutation operator is implemented on the selected period of

solution. If implementing one mutation operator results in

an infeasible solution, that solution will be eliminated.

These operators are implemented on the selected period of

the solution as follows.

The cell-number mutation operator (SM1) changes the

number of formed cells by adding or removing a formed

cell. By this operator, the only matrix L C ML;C;t

� �
is

changed. Therefore, if a formed cell is removed, all

machine duplicates assigned to that cell will be reassigned

to the other cells randomly. In addition, if a new cell is

formed, some machine duplicates assigned to the other

cells will be reassigned to the newly formed cell. It is worth

mentioning that the part operations processed by the ran-

domly selected machines will be remained with them.

Adding or removing a cell needs updating matrix

Fig. 6 The quantity of

inventory of parts kept between

periods

Fig. 7 The quantity of

outsourced parts in each period

Fig. 8 Solution representation in period t
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L C ML;C;t

� �
and can influence terms (1), (2), (7) and (10)

of the objective function.

The machine-number mutation operator (SM2) changes

the matrices NPM;t

� �
, NplusM;t

� �
and NminusM;t

� �
by add-

ing or removing a duplicate of a machine type or concur-

rently removing a duplicate of a machine type and then

adding a duplicate of another machine type. Implementing

this operator might need updating all matrices and can

influence all terms of the objective function.

The machine-inter-cell mutation operator (SM3) ran-

domly selects two different filled columns of matrix

L C ML;C;t

� �
and substitute their values. In this way, dif-

ferent machine duplicates assigned to different cells are

substituted between cells. The machine-intra-cell mutation

operator (SM4) randomly selects a filled column of matrix

L C ML;C;t

� �
and substitutes its values. In this way, dif-

ferent machine duplicates assigned to different locations of

a cell are substituted. The machine-location mutation

operator (SM5) randomly selects two different filled rows

of matrix L C ML;C;t

� �
and substitutes their values.

In this way, different machine duplicates assigned to

different locations are substituted. Implementing these

operators needs updating matrices L C ML;C;t

� �
and

P L Op QP;L;OP;t

� �
and can influence terms (1)–(3) and

(10) of the objective function.

The route-volume mutation operator (SM6) changes the

matrices P L Op QP;L;Op;t

� �
, VP;t

� �
and OP;t

� �
by

increasing or decreasing the production lot volumes of

some defined routes for a part which results in modification

of internal production volume of that part or concurrently

decreasing a portion of a production lot and then increasing

same volume to another production lot. This operator can

influence terms (1), (2), (6) and (8)–(10). The part-opera-

tion mutation operator (SM7) changes the matrix

P L Op QP;L;Op;t

� �
by selecting an operation of a part and

changing the machine assigned to process that operation.

This operator can influence terms (1), (2), (6) and (10) of

the objective function.

Clustering the archive solutions

Clustering of the solutions in the archive where the non-

dominated solutions obtained so far are stored is employed

in AMOSA algorithm in order to explicitly compel the

diversity of the non-dominated solutions and keep the

archive size under a given upper bound. As it was revealed

by Bandyopadhyay et al. (2008), the most time-consuming

part in AMOSA algorithm is the clustering procedure

which is based on single linkage algorithm (Jain and Dubes

1988). Here, we use a simple elimination method to

remove extra solutions from the archive instead of single

linkage algorithm and avoid its complexity. Whenever the

number of solutions in archive becomes more than upper

bound, a surrounding rectangle is made by two neighbor

solutions for each solution except those in extreme points.

A rectangle with smaller area shows greater crowded

region in archive. Then, the solution surrounded by the

smallest rectangle area is eliminated to increase the uni-

formity in the archive and meet limit on archive size.

Amount of domination

The concept of amount of domination is used for com-

puting the acceptance probability of a new solution in

AMOSA. By considering two solutions x and y, the amount

of domination is calculated as Ddomx;y ¼
QM

i¼1;Zi xð Þ6¼Zi yð Þ
Zi xð Þ � Zi yð Þ=Rij jð Þ, where M = number of objective

functions and Ri is the range of the ith objective. In our

model, M = 2 and the solutions present in the archive are

used for computing Ri.

Acceptance/rejection mechanism of a neighborhood

solution based on AMOSA

One of the solutions, called current-sol, is randomly

selected as the initial solution at temperature T0 from

Archive. The current-sol is mutated to generate a new

solution called new-sol. The domination status of new-sol

is examined with regard to the current-sol and solutions in

the archive. Based on the domination status between cur-

rent-sol and new-sol, three different cases may happen.

These are described below.

Case 1: current-sol dominates the new-pt and k solutions

from the Archive dominate the new-sol. In this case, the

new-sol is accepted as the current-sol with

Probability ¼ 1

1 þ expðDdomavg � TÞ ð24Þ

where Ddomavg ¼
Pk

i¼1 Ddomi;new�sol

� �
þ

�

Ddomcurrent�sol;new�solÞ= k þ 1ð Þ. Note that Ddomavg denotes

the average amount of domination of the new-sol by

(k ? 1) solutions, namely, the current-sol and k solutions

of the archive.

Case 2: current-sol and new-sol are non-dominating with

respect to each other. Now, based on the domination status

of new-sol and solutions of archive, the following three

situations may happen.

1. new-sol is dominated by k solutions in the archive

where k C 1. The new-sol is selected as the current-sol

with

Probability ¼ 1

1 þ expðDdomavg � TÞ ð25Þ
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where Ddomavg ¼
Pk

i¼1 Ddomi;new�sol=k .

2. new-sol is also non-dominating with regard to the other

solutions in the archive. In this case, the new-sol is on

the same front as the archive. Therefore, the new-sol is

accepted as the current-sol and added to the archive. If

the archive becomes overfull, proposed elimination

method is performed to reduce the number of solutions

to archive size.

3. new-sol dominates points of the archive. Again, the

new-sol is selected as the current-sol, and added to the

Archive. All the dominated solutions are removed

from the archive.

Case 3: new-sol dominates current-sol. Here, based on the

domination status of new-sol and solutions of archive, the

following three situations may happen.

1. new-sol dominates the current-sol but k(k C 1) solu-

tions in the archive dominate this new-sol. Note that

this situation may happen only if the current-sol is not

a member of the archive. Here, the minimum of the

difference of domination quantities between the new-

sol and the k solutions, denoted by Ddommin, of the

archive is calculated. The solution from the archive

which corresponds to the minimum difference is

selected as the current-sol with Probability ¼
1= 1 þ exp �Ddomminð Þð Þ: Otherwise, the new-sol is

accepted as the current-sol.

2. new-sol is non-dominating with regard to the solutions

in the archive except the current-sol if it belongs to the

archive. Thus new-sol, which is now accepted as the

current-sol, can be considered as a new non-dominated

solution that must be added to archive. If the current-

sol is in the archive, then it is removed. Otherwise, if

the number of points in the archive becomes more than

the archive size, elimination method is performed to

reduce the number of points to archive size.

3. new-sol also dominates k(k C 1), other solutions, in

the archive. Thus, the new-sol is accepted as the

current-sol and added to the archive, while all the

dominated solutions of the archive are removed.

The above process is repeated Markov chain length

(MCL) times for each temperature T. Temperature is

reduced to a�T, using the cooling rate of a till the minimum

temperature Tf is attained. The process thereafter stops, and

the archive containing the final non-dominated solutions is

reported.

NSGA-II

Here, a brief description of employed non-dominated

sorting genetic algorithm II (NSGA-II) is explained. At

first, a random parent population P0 of size N is created

by the procedure described in ‘‘Generating and initial

solution’’. The non-dominated fronts F1, F2,…, Fk are

identified by using the fast non-dominated sorting algo-

rithm defined by Deb et al. (2002). Offspring population

Q0 of size N is created by using binary tournament

selection operator, crossover operators and mutation

operators. Thereafter, two populations P0 and Q0 are

combined together to form a new population Rt of size

2N. Then, a non-dominated sorting is performed on Rt to

identify different fronts. Next, making up the new popu-

lation Pt of size N starts with filling up by the first non-

domination front and continues with solutions of the

second non-domination front, and so forth. Since all

fronts cannot be accommodated in N slots available for

the new population Pt, the solutions of the last front that

cannot be completely accommodated are realized in the

descending order of their crowding distance values and

solutions from the top of the ordered list are chosen to be

accommodated in the population Pt. Now, offspring

population Qt?1 of size N is created from population Pt?1

by using the tournament selection, crossover, and muta-

tion operators. In a similar way, two new populations

Pt?1 and Qt?1 are combined to form a new population

Rt?1 of size 2N and these steps are repeated until the

stopping criterion is satisfied. In this case, the algorithm

terminates if the computational time for successive gen-

erations exceeds the specific time.

Computational results for multi-objective model

by AMOSA

Assessing the ability of AMOSA to reach true Pareto-

optimal

At first, to investigate the performance of the developed

AMOSA algorithm to reach optimal Pareto front, the effi-

cient solutions obtained by [-constraint method as an exact

method for the three numerical examples are compared

with the best Pareto solutions obtained by AMOSA. Since

the input data and the solutions obtained by GAMS soft-

ware for these examples have been given by Kia et al.

(2013), they are not repeated here.

The extended AMOSA algorithm have been coded in

MATLAB R2010a and executed on an Intel� CoreTM

2.66 GHz Personal Computer with 4 GB RAM. We have

chosen a reasonable set of values in respect to some

experiments which were executed with various parameters-

sets. Extensive experiments are suggested for future stud-

ies. For the designed AMOSA, the cooling rate, archive

size, initial temperature, final temperature and MCL are set

as 0.99, 20, 100,000, 100, and 200, respectively.
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Tables 2 and 3 present the non-dominated solutions

obtained by AMOSA algorithm and [-constraint method in

solving three examples.

To compare the results of AMOSA algorithm and

[-constraint method on three test problems, we use four

well-known metrics in the literature (Okabe et al. 2003),

which are briefly explained as follows.

Number of non-dominated solutions (N)

In this respect, the algorithm with more non-dominated

solutions in a shorter time has a better performance.

Maximum spread (Maxspread)

This metric shows the span of Pareto front obtained by the

algorithm. Obviously, the larger Maxspread is preferred. It is

calculated by:

Maxspread ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXT

t¼1
min ft � max ftð Þ2

r
ð26Þ

where T is the number of objective functions (i.e., 2) and ft
is the value of tth objective function.

Spacing

This metric measures the range (distance) variance of

adjacent solutions in the Pareto front. As a result, the

smaller value of spacing indicates more uniformity of

solutions in Pareto front and would be more desirable.

Equation (27) calculates the third metric.

Spacing ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=n � 1

Xn

i¼1
di � �dð Þ2

q
ð27Þ

where di ¼ minj f i
1 � f

j
1

�� ��þ f i
2 � f

j
2

�� ��
 �
; i; j ¼ 1; . . .; n; �d is

the average of all di and n is the number of non-dominated

solutions.

Table 2 Pareto solutions

obtained by AMOSA algorithm

for the three examples

Solution

number

Example 1 Solution

number

Example 2 Solution

number

Example 3

Z2 Z1 Z2 Z1 Z2 Z1

1 281,496 1.77 1 1,085,841 1 1 336,990 0

2 264,612 3.2 2 711,086 3.51 2 327,250 5

3 262,156 15.48 3 475,288 6.99 3 326,775 25

4 262,062 61 4 464,570 9.61 4 318,375 55

5 261,001 108 5 464,407 11.31 5 311,000 70

6 259,973 140.53 6 463,337 18.52 6 306,500 230

7 259,844 156 7 463,088 23.06 7 305,500 570

8 259,831 183.01 8 460,781 38.83 8 304,750 770

9 259,204 202.85 9 450,552 46.65 9 299,700 1,040

10 258,489 206.97 10 441,416 67.46 10 297,500 1,370

11 258,339 214.69 11 440,478 129.03 11 297,000 1,570

12 258,175 273.1 12 438,717 301.99 12 295700 1,640

13 258,009 306.92 13 437,675 322.11 13 295,500 1,670

14 257,917 314.19 14 295,000 1,870

15 257,703 432 15 290,250 2,350

16 257,535 463 16 289,250 2,370

17 257,283 607

18 257,006 731

19 256,778 762

20 256,471 992

Table 3 Pareto solutions

obtained by [-constraint method

for the three examples

Solution number Example 1 Solution number Example 2 Solution number Example 3

Z1 Z2 Z1 Z2 Z1 Z2

1 260,000 800 1 433,000 270 1 288,600 1,490

2 261,000 680 2 466,000 54 2 292,300 770

3 264,000 400 3 496,000 17 3 296,250 530

4 269,000 49 4 525,000 16 4 304,300 0
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Time

Obviously, the algorithm with the smaller value of exe-

cution time is more desirable.

In Table 4, the performance metrics obtained by

AMOSA algorithm and [-constraint method are presented

for three examples. As can be seen, AMOSA algorithm has

found more non-dominated solutions (N) in solving all

three examples which brings more flexibility for the system

designer to make decision among more alternatives.

The obtained values for performance metric (Maxspread)

in all three examples also show more extension of Pareto

front obtained by AMOSA in compare to [-constraint

method. This is another advantage of the designed solution

approach.

Nevertheless, in regard to performance metric (Spacing)

it should be admitted that the values obtained by AMOSA

algorithm are not as satisfactory as those obtained by

[-constraint method as true Pareto front. Although, it is

worth mentioning that uniformity of solutions is deter-

mined by system designer in [-constraint method. Hence,

more uniformity is observed for the non-dominated solu-

tions obtained by [-constraint method. Considering the fact

the number of the non-dominated solutions obtained by

AMOSA algorithm is much more than those obtained by

[-constraint method, there is possibility to eliminate some

neighbor solutions in a crowded region of Pareto set to

reduce the amount of performance metric (spacing) and

improve the performance of AMOSA in this aspect.

Regarding the performance metric time, it is clear that

computational time of AMOSA is much lesser than

[-constraint method. This is another achievement of the

designed AMOSA in reaching solutions near true Pareto

front in solving NP-hard proposed model.

As the required time to obtain an optimal solution from

true Pareto front by GAMS is too long for the first and

second example, to save computation effort each run is

interrupted on a predetermined time and the solution

obtained so far is reported. As a result, the obtained solu-

tions might not belong to true Pareto front. However, for

the third example finding the optimal solution has been

possible by eliminating alternative routings feature from

the main model.

Considering the optimality status of the obtained Pareto

front by [-constraint method as described above, the

quality of non-dominated solutions obtained by AMOSA

and [-constraint method is compared through Figs. 9, 10

and 11. As it is revealed by Figs. 9 and 10, the Pareto front

obtained by AMOSA is closer to true Pareto front than one

obtained by[-constraint method. Comparing the computa-

tional time of two methods proves the remarkable

achievement of the designed AMOSA in solving an NP-

hard problem.

By comparing Pareto fronts obtained for example 3 in

Fig. 11, it can be seen that the non-dominated solutions

delivered by AMOSA are in a short distance to true Pareto

front obtained by GAMS. The relative gap for non-domi-

nated solutions which are close to each other in both Pareto

fronts is around 5 %. This can be regarded as a satisfactory

result. By considering Figs. 9, 10 and 11, the concept of

multi-objective approach can be also revealed easily. The

decision-maker should choose one of these alternatives:

Table 4 Comparison between AMOSA algorithm and [-constraint

method for the three examples

Example Method N Maxspread Spacing Time (s)

1 [-constraint 4 9,031 2,029 72,000

AMOSA 20 25,044 3,731 577

2 [-constraint 5 150,000 12,507 50,000

AMOSA 13 648,166 117,249 807

3 [-constraint 4 15,770 2,159 36,000

AMOSA 16 47,798 2,789 478

Fig. 9 Pareto front obtained by AMOSA algorithm and [-constraint method for example 1
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lower costs and higher cell workload imbalance or more

costs and more even cell workload.

Comparison between AMOSA, NSGA-II and [-

constraint method

In this section, 12 numerical examples are solved using the

extended AMOSA to evaluate its computational efficiency

in terms of performance metrics defined above. The

obtained solutions by AMOSA are compared with those

obtained by NSGA-II and [-constraint and shown in

Table 5. For better comparison, Quality metric defined as

below is replaced with the metric number of non-domi-

nated solutions (N).

Quality metric (QM)

It calculates the fraction of solutions from a particular

method that remains non-dominating when the final Pareto

solutions obtained from all the algorithms are combined. A

value near 1 indicates better performance, whereas a value

near 0 indicates poorer performance. Based on this metric,

Fig. 10 Pareto front obtained by AMOSA algorithm and [-constraint method for example 2

Fig. 11 Pareto front obtained by AMOSA algorithm and [-constraint method for example 3
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the algorithm that finds more Pareto-optimal solutions has

a better performance. However, some Pareto solutions of

an algorithm may be dominated by those obtained by the

other algorithms. Hence, the number of final non-domi-

nated solutions obtained by each algorithm is important to

calculate this metric (Bandyopadhyay et al. 2004).

As it has been reported in the literature, an effective

cooling schedule is essential for reducing the amount of

time required by the algorithm to find an optimal solution.

But cooling schedules are almost always heuristic and it

would be needed to balance moderately the computational

time with the simulated annealing dependence on problem

size.

The simulated annealing schedule is defined by initial

temperatures in points [30,000, 50,000, 100,000, 150,000],

a MCL in points [30, 50, 200] and final temperatures set to

100 as well as a cooling rate a = 0.995.

Because of exponential reduction of error probability,

several short-term runs of SA results better than a long-

term one (Defersha and Chen 2008a, b). Hence, each run

has been repeated 5 times to solve each example and the

best obtained solution among them has been reported.

Since there are numerous decision variables and con-

straints in the proposed model, some of the numerical

examples cannot be solved in a reasonable time by GAMS.

Therefore, the solving process will be continued until the

GAMS software encounters a resource limit as an out of

memory message. At this point, the best obtained value of

objective function is reported as Pareto solutions to be

compared with AMOSA.

For the examples 5–11, GAMS is interrupted because of

out of memory predicament. As a result, the obtained Pa-

reto solutions for those examples are not optimal. Gener-

ating numerical examples is stopped at example 12, as the

solution space is enlarged so much that GAMS even cannot

generate a feasible solution before encountering out of

memory message.

The computational results corresponding to the defined

four performance metrics for the 12 different numerical

examples are presented in Table 5. We have compared the

encoded AMOSA with the NSGA-II and [-constraint

method.

In NSGA-II, the crossover probability is kept equal to

0.9. Here, the population size in NSGA-II is set to 100.

Maximum iterations for NSGA-II are 500.

The quality metric, maximum spread and spacing values

obtained using the three methods are discussed as follows.

AMOSA performs the best for example problems 6–12 in

terms of quality metric. The [-constraint performs well for

example problems 1–5.

AMOSA is giving the best performance of maximum

spread all the times, while [-constraint performs the worst.

It is seen that AMOSA takes less time in almost allT
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examples because of its smaller complexity. However, the

performance of AMOSA is not satisfactory in terms of

spacing metric in compare to [-constraint method.

Conclusion

A solution approach based on simulated annealing

algorithm was employed to solve a multi-objective

mixed-integer non-linear programming (MINLP) model

integrating CF, GL and PP decisions under a dynamic

environment. Incorporating design features including

alternative process routings, operation sequence, process-

ing time, production volume of parts, purchasing machine,

duplicate machines, machine capacity, lot splitting, group

layout, multi-rows layout of equal area facilities, flexible

reconfiguration, machine depot, variable number of cells,

balancing cell workload, outsourcing and inventory hold-

ing of parts in a multi-objective model is one of the

advantages of the integrated model.

The extended model was capable to determine optimally

the production volume of alternative processing routes of

each part, the material flow happening between different

machines, the cell configuration, the machine locations, the

number of formed cells, the number of purchased machines,

the number of machines kept in depot, the production plan

for each part type by satisfying demand through internal

production, outsourcing and inventory holding.

Since the extended multi-objective model belongs to

NP-hard problems, an archived multi-objective simulated

annealing (AMOSA) with an effective solution structure

and seven mutation operators has been developed to solve

the extended model and produce non-dominated solutions.

In this study, a heuristic hierarchical procedure was

designed to generate the initial solutions with good quality.

In addition, the solution structure was presented as a matrix

with seven ingredients fulfilled hierarchically to satisfy all

constraints and successive neighbor solutions are produced

from the initial solution by implementing elaborately

designed mutation operators. All components in the

objective functions could be influenced by designed oper-

ators to more exploration and exploitation of solution

space. The computational results showed that the devel-

oped AMOSA had the satisfactory performance in reaching

Pareto solutions in comparison to NSGA-II and [-con-

straint method based on some comparison metrics.

Incorporating other features, such as introducing

uncertainty in part demands, machine time capacity and

cost coefficients, integrating with reliability and labor

issues, designing layout of unequal-area facilities, imple-

menting extensive experiments for problem tuning, and

solving more numerical examples especially in real cases

will be left to future research.
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