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Abstract
In real-world applications, costs for products are not deterministic: neither static nor dynamic. They actually tend to be 
non-stationary and cross-correlated. To overcome this drawback, there have been some efforts by researchers to extend the 
Wagner–Whitin algorithm to consider stochastic costs. However, they assume that the information of probability density 
function of random costs exists. This paper applied a robust approach in reformulating the uncertain lot-sizing problem 
and used the Wagner–Whitin algorithm to find an optimal solution of its robust counterpart. The solution of the proposed 
algorithm in an example from the literature is compared with the classical one.

Keywords Wagner–Whitin algorithm · Robust approach · Uncertainty · Non-stationary · Randomness

Introduction and literature review

Lot sizing has been in question since the beginning of indus-
trialization. It aims to answer two questions in the area of 
inventory control: when to order and how much to order. The 
first question is also known as the reorder point and the sec-
ond one is the size of the ordered lot. To put it another way, 
the lot-sizing problem wants to find a balance between the 
setup costs vs. inventory holding costs. Harris was the first 
one to attack this problem and introduced economic order 
quantity (EOQ) (Harris 1915). In the EOQ model, which 
provides us with an optimal lot size, the demands are con-
stant in the infinite planning horizon. Later, Wilson found 

order points by the means of a statistical approach and could 
popularize the EOQ model (Wilson 1934).

Contradictory to the conditions of EOQ, when the param-
eters such as demands or costs of production are dynamic in 
a finite planning horizon, the EOQ model gives us decep-
tive results (Grewal 1999) and therefore a new solution 
is required. We know that in real-world applications, it 
rarely happens that the demands or costs stay constant in 
an infinite time horizon. It is more logical if we consider 
dynamic demands or costs in a finite time horizon. Wagner 
and Whitin (1958), as the pioneers, tackled such a lot-sizing 
problem. Their algorithm gives us the optimal solution for 
lot sizing through dynamic programming. Wagner–Whitin 
algorithm is useful for problems with deterministic and 
dynamic demands and costs. The computational complexity 
of this classic algorithm is O(t2)—where t is the time hori-
zon (Hoesel and Wagelmans 1990; Brahimi et al. 2017). In 
Wagner–Whitin algorithm, the following assumptions exist 
(Johnson and Montgomery 1974): The planning horizon is 
finite and no shortages are allowed. Furthermore, the initial 
and final inventory levels ought to be zero and a single lot 
may be procured in each period. In 2004, Wagner claimed 
that this algorithm has been so useful since its publication 
in 1958 (Wagner 2004). Other solutions to the lot-sizing 
problem include some improvements to Wagner–Whitin 
algorithm, heuristic methods, linear programming, integer 
programming, fuzzy logic, etc. For more information, the 
reader is referred to Singh (1992) and Grewal (1999).

 * Payam Hanafizadeh 
 hanafizadeh@gmail.com
 http://www.hanafizadeh.ir

 Amir Shahin 
 hoomanash@gmail.com

 Mehdi Sajadifar 
 sajadifar@usc.ac.ir

1 Department of Industrial Management, AllamehTabataba’i 
University, Tehran 1489684511, Iran

2 Faculty of Quality Management Systems and Inspection, 
Institute of Standard and Industrial Research of Iran, 
Karaj 31745-139, Iran

3 Department of Industrial Engineering, University of Science 
and Culture, Tehran 13145-871, Iran

http://orcid.org/0000-0002-5233-987X
http://crossmark.crossref.org/dialog/?doi=10.1007/s40092-018-0298-y&domain=pdf


436 Journal of Industrial Engineering International (2019) 15:435–447

1 3

Contradictory to the initial conditions of the EOQ model 
and the Wagner–Whitin algorithm, in real-world applica-
tions, the demands or costs of production are not determin-
istic: neither static nor dynamic. They actually tend to be sto-
chastic and probabilistic (Şenyiğit et al. 2013). To overcome 
this drawback, there have been some efforts by researchers to 
extend the Wagner–Whitin algorithm to fit stochastic situa-
tions. Vargas (2009) presented the stochastic version of the 
Wagner–Whitin algorithm with stochastic and time-varying 
demands. He also investigated the Wagner–Whitin algorithm 
when the density function of the demand is known. His algo-
rithm, similar to Wagner–Whitin’s, gives us an optimal solu-
tion. In addition, Fleischhacker and Zhao (2011) extended 
the Wagner–Whitin algorithm to include the risk of failure 
in demands and therefore they could transform it into a sto-
chastic production-inventory model.

There are also other heuristic and meta-heuristic meth-
ods for dealing with lot-sizing problems in the presence of 
stochastic demands or costs. For instance, Manikas et al. 
(2009) and Şenyiğit and Erol (2010) simulated lot-sizing 
problem when both demands and costs are uncertain and 
stochastic. Piperagkas et al. (2012) also used three nature-
inspired heuristics to tackle the dynamic lot-sizing problem 
under stochastic and stationary demands. Moreover, meta-
heuristic algorithms are other methods for dealing with 
stochastic variables in lot-sizing problem. As an example, 
Şenyiğit et al. (2013) have trained different artificial neural 
networks with genetic algorithm and bee algorithm. They 
have then used these neural networks in studying the lot-
sizing problem when costs and demands are stochastic. For a 
review on the use of genetic algorithms and artificial neural 
networks in the stochastic dynamic lot-sizing problem, refer 
to Goren et al. (2010) and Radzi et al. (2000), respectively. 
In addition, Winands et al. (2011) reviewed different models 
concerning stochastic lot-sizing problem.

One of the sources for future estimation of uncertain 
parameters such as cost is historical data. According to the 
above literature, information about uncertain parameters lies 
into two groups. Firstly, we may have probabilistic informa-
tion about random costs in which in this case we have prob-
ability density function (pdf) of the random parameter. It is 
common to use stochastic programming when the pdf exists. 
Secondly, we do not have information about pdf and the only 
information about random costs is its moments like the mean 
and covariance. The second case can be categorized into two 
groups, namely stationary and non-stationary. Stationary 
refers to the case that the moments will not change during 
the planning time horizon, while in the non-stationary case, 
moments will change from time to time during the planning 
time horizon.

From a practical viewpoint, the parameters of the lot-siz-
ing problem such as costs and demands are random and thus 
not deterministic. This is the most important weak point of 

the deterministic methods. In addition, as far as the stochas-
tic methods are concerned, their main drawback is that they 
are dependent on a known probabilistic distribution. How-
ever, the proposed method of this paper does not assume to 
have any information about the pdf of random costs and the 
only required information is the covariance matrix and the 
mean value vector of the historical data of costs.

Here, we use a robust approach to deal with uncertain 
costs with non-stationary moments in a lot-sizing problem. 
Deviations of uncertain costs are postulated in a closed and 
convex space, namely U. The covariance matrix and the 
mean value vector of the costs calculated on the historical 
data are used to formulate the uncertainty region. The uncer-
tainty region U is a unit ball centered by a nominal (mean) 
value of the uncertain parameter. Radius of the uncertainty 
region changes by exerting coefficient r, according to the 
expected risk for the decision maker. The meaning of the 
unit ball differs in various structures defined by norms, 
and the appropriate norm is chosen (Hanafizadeh and Seifi 
2004). Such uncertainty region can be considered for all 
uncertain parameters such as costs, demands, lead time and 
so forth. However, in this study, the uncertainty has been 
considered only for future costs to keep the formula sim-
ple. After determining the uncertainty region, considering 
the worst-case behavior for uncertain costs in the U uncer-
tainty region, the robust counterpart of a lot-sizing problem 
is developed. Robust formula of the objective function and 
the constraint of the lot-sizing problem are used inside the 
classical Wagner–Whitin algorithm to find an optimal solu-
tion for its robust counterpart. Therefore, in this article, an 
extension of Wagner–Whitin algorithm is considered as the 
so-called robust algorithm. After that, an analysis is done 
on the robust relations to find out what happens if some 
parameters of the relations vary. The next step is to solve 
an example from the literature and use the robust approach 
versus the classical Wagner–Whitin algorithm in finding the 
optimal solution. It is noteworthy that the robust algorithm 
offers an optimal solution for the robust counterpart of the 
lot-sizing model, while the classical Wagner–Whitin algo-
rithm offers an optimal solution for the lot-sizing problem 
with nominal value of costs.

In Sect. 1, we expand the Wagner–Whitin algorithm when 
costs are uncertain and correlated with each other. Then, the 
new robust extension is analyzed in Sect. 2 and in Sect. 3 the 
application of the proposed method is depicted through solv-
ing an example from the literature. The example is solved 
by both the proposed robust method and the classical Wag-
ner–Whitin algorithm, and the results are compared to each 
other. In addition, the reader can find the conclusion and 
then the limitations and future studies in Sect. 4.
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Robust Wagner–Whitin algorithm 
with uncertain costs

In this paper, small bold italic letters and capital bold letters 
are used to delineate vectors and matrices, respectively. In 
addition, numbers are illustrated by small italic letters.

In the robust approach, the variations of the uncertain 
parameters are postulated in a continuous, closed, convex, 
bounded and non-null region. The concept of norm func-
tion is applied to make U uncertainty region (Hanafizadeh 
and Seifi 2004). This article applies to distributions whose 
contours can be approximated by a convex norm body. The 
following relationship exists for l1, l2 and l∞ norm bodies 
(Boyd and Vandenberghe 2004):

Small letter u is a vector variable indicating perturba-
tion of the uncertain cost, and it falls within lq − norm body 
region.

Now, starting with the Wagner–Whitin algorithm, the 
standard equations to calculate the price of the minimum 

(1)lq − norm body = {��R(n)�‖�‖q ≤ r}

where ‖�‖1 ≥ ‖�‖2 ≥ ‖�‖∞

cost program for periods 1 to k, when the inventory level at 
period k is zero, are (Wagner and Whitin 1958):

where fk is the minimum cost program for period 1 to period 
k when inventory level at period k is zero.

mjk is the cost incurred in periods j + 1 through k.
aj+1 is the fixed cost if an order is made in period j + 1.
cj+1 is the cost of producing each unit in period j + 1.
bj+1 is the number of units produced/bought in period 

j + 1.
ht is the cost of keeping a produced unit in the warehouse 

from period t to period t + 1.
dr is the estimated demand for period r.
Subject to:

and lt is the inventory level at period t.
Here, we write relation (5) in vector form:

(2)fk = min
0≤j<k

[
fj + mjk

]

(3)mjk = aj+1 + cj+1bj+1 +

k−1∑
t=j+1

ht

k∑
r=t+1

dr

(4)lt−1 + bt = dt + lt

(5)

mjk =

⎛⎜⎜⎜⎜⎜⎝

aj+1
0

0

⋮

0

⎞⎟⎟⎟⎟⎟⎠

T

⎛⎜⎜⎜⎝

1

1

⋮

1

⎞⎟⎟⎟⎠
+ cj+1

�
k�

i=j+1

di

�
+

k−1�
t=j+1

ht

k�
r=t+1

dr

=
�
ajk

�T
ejk + cj+1

�
dj+1 + dj+2 +⋯ + dk

�
+

⎛⎜⎜⎜⎝

hj+1
hj+1
⋮

hj+1

⎞⎟⎟⎟⎠

T⎛⎜⎜⎜⎝

dj+2
dj+3
⋮

dk

⎞⎟⎟⎟⎠

+

⎛⎜⎜⎜⎝

hj+2
hj+2
⋮

hj+2

⎞⎟⎟⎟⎠

T⎛⎜⎜⎜⎝

dj+3
dj+4
⋮

dk

⎞⎟⎟⎟⎠
+⋯ +

�
hk−1

�T�
dk
�

=
�
ajk

�T
ejk +

⎛⎜⎜⎜⎝

cj+1
cj+1
⋮

cj+1

⎞⎟⎟⎟⎠

T⎛⎜⎜⎜⎝

dj+1
dj+2
⋮

dk

⎞⎟⎟⎟⎠
+
�
hj + 1,k

�T
dj + 1,k +

�
hj + 2,k

�T
dj+�,k +⋯

+
�
hk - 1,k

�T
dk - 1,k

=
�
ajk

�T
ejk + (cjk)Tdjk +

k−1�
t=j+1

��
htk

�T
dtk

�



438 Journal of Industrial Engineering International (2019) 15:435–447

1 3

where

It is assumed that the changes of uncertain vectors aj,k , cjk 
and htk occur in the closed, convex and continuous regions 
U1, U2 and U3, respectively. They are defined as:

where

ajk =

⎛
⎜⎜⎜⎜⎜⎝

aj+1
0

0

⋮

0

⎞
⎟⎟⎟⎟⎟⎠

⎫
⎪⎪⎬⎪⎪⎭

(k − j)times

ejk =

⎛⎜⎜⎜⎝

1

1

⋮

1

⎞⎟⎟⎟⎠

⎫⎪⎬⎪⎭
(k − j)times

cjk =

⎛
⎜⎜⎜⎝

cj+1
cj+1
⋮

cj+1

⎞
⎟⎟⎟⎠

⎫
⎪⎬⎪⎭
(k − j)times

htk =

⎛⎜⎜⎜⎝

ht
ht
⋮

ht

⎞⎟⎟⎟⎠

⎫⎪⎬⎪⎭
(k − t)times

djk =

⎛⎜⎜⎜⎝

dj+1
dj+2
⋮

dk

⎞⎟⎟⎟⎠

(6)
Ujk

(
q1, r1

)
=
{
ajk ∶ ajk = �

ajk +
(
�ajk

)
t|t ∈ Bq1

(
r1
)}

(7)
U�

jk

(
q2, r2

)
=
{
cjk ∶ cjk = �

cjk + (�cjk )u|u ∈ B�
q2

(
r2
)}

(8)
U��

tk

(
q3, r3

)
=
{
htk ∶ htk = �

htk + (�htk )v|v ∈ B��
q3

(
r3
)}

�
ajk =

⎛
⎜⎜⎜⎜⎜⎝

�aj+1

0

0

⋮

0

⎞
⎟⎟⎟⎟⎟⎠

⎫
⎪⎪⎬⎪⎪⎭

(k − j)times

In Eqs. (6), (7) and (8), �ajk , �cjk and �htk are the mean val-
ues of vectors ajk , cjk and htk , respectively. Bq1

(
r1
)
 , Bq2

(
r2
)
 

and Bq3

(
r3
)
 are lq1 , lq2 and lq3 norm bodies which are built by 

the following definitions, respectively:

�ajk , �cjk and �htk are (k − j) × (k − j), (k − j) × (k − j) and 
(k − t) × (k − t) symmetric positive definite matrices, respec-
tively. They are square root matrices of covariance matrices 
of uncertain vectors ajk , cjk and htk , respectively (Johnson 
and Wichern 2007). They are calculated as:

In Eqs.  (12), (13) and (14), Cajk , Ccjk and Chtk are the 
covariance matrices of uncertain vectors ajk , cjk and htk , 
respectively. The covariance matrix is symmetric and posi-
tive definite (Johnson and Wichern 2007).

In practice, the uncertainty regions defined in (6), (7) and 
(8) describe the changes of stochastic vectors ajk , cjk and htk 
from their mean values, which are �ajk , �cjk and �htk , respec-
tively. These changes are affected by the change in slope of 
�ajk , �cjk and �htk matrices and are defined as the disorders 
occurring in Bq1

(
r1
)
 , Bq2

(
r2
)
 and Bq3

(
r3
)
 , respectively.

Applying the worst case in (5) (here, since mjk is a cost, 
the worst case for mjk means choosing the supremum of 

�
cjk =

⎛
⎜⎜⎜⎜⎝

�cj+1

�cj+1

⋮

�cj+1

⎞
⎟⎟⎟⎟⎠

⎫⎪⎪⎬⎪⎪⎭

(k − j)times

�
htk =

⎛
⎜⎜⎜⎜⎝

�ht

�ht

⋮

�ht

⎞
⎟⎟⎟⎟⎠

⎫⎪⎪⎬⎪⎪⎭

(k − t)times

(9)Bq1

�
r1
�
= {t�Rn�‖t‖q1 ≤ r1}

(10)Bq2

�
r2
�
= {u�Rn�‖u‖q2 ≤ r2}

(11)Bq3

�
r3
�
= {v�Rn�‖v‖q3 ≤ r3}

(12)�ajk = �

1

2

ajk

(13)�cjk = �

1

2

cjk

(14)�htk = �

1

2

htk
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mjk vector which can occur in U1

(
q1, r1

)
 , U2

(
q2, r2

)
 and 

U3

(
q3, r3

)
 ), we have:

Using definitions (6), (7) and (8) in relation (15), we have:

Based on the definition of the dual norm, the dual of the 
lq1 , lq2 and lq3 norms are the lp1 , lp2 and lp3 norms, respec-
tively, where q1, q2, q3, p1, p2 and p3 satisfy 1/p1 + 1/q1 = 1, 
1/p2 + 1/q2 = 1 and 1/p3 + 1/q3 = 1. Hence, using the defini-
tion of the dual norm in (16), it is concluded that:

(15)

Robust mjk

(
q1, q2, q3, r1, r2, r3

)
= sup

ajk�U1

(
q1, r1

)
, cjk�U2

(
q2, r2

)
and

htk�U3

(
q3, r3

)
mjk

= sup

ajk�U1

(
q1, r1

)
, cjk�U2

(
q2, r2

)
and

htk�U3

(
q3, r3

)

((
ajk

)T
ejk + (cjk)Tdjk +

k−1∑
t=j+1

((
htk

)T
dtk

))

= sup
ajk�U1(q1,r1)

((
ajk

)T
ejk

)
+ sup

cjk�U2(q2,r2)

((
cjk

)T
djk

)

+ sup
htk�U3(q3,r3)

(
k−1∑
t=j+1

(
htk

)T
dtk

)

(16)

Robust mjk

�
q1, q2, q3, r1, r2, r3

�
=
�
�
ajk
�T

ejk + sup
‖t‖q1≤r1

��
(�ajk )t

ajk
�T

ejk
�
+ (�cjk )Tdjk + sup

‖u‖q2≤r2

��
(�cjk )u

cjk
�T

djk
�

+

k−1�
t=j+1

(�htk )Tdtk +

k−1�
t=j+1

sup
‖v‖q3≤r3

��
(�htk )v

htk
�T

dtk
�

=
�
�
ajk
�T

ejk + sup
‖t‖q1≤r1

��
ta

jk
�T

(�aj+1)
Tejk

�
+ (�cjk )Tdjk + sup

‖u‖q2≤r2

��
uc

jk
�T

(�cjk )
Tdjk

�

+

k−1�
t=j+1

(�htk )Tdtk

+

k�
t=j+1

sup
‖v‖q3≤r3

��
vh

tk
�T

(�htk )
Tdtk

�

(17)

Robust mjk

(
q1, q2, q3, r1, r2, r3

)
=
(
�
ajk
)T

ejk + r1
‖‖‖(�ajk )

Tejk
‖‖‖p1 + (�cjk )Tdjk + r2

‖‖‖(�cjk )
Tdjk

‖‖‖p2
+

k−1∑
t=j+1

(�htk )Tdtk +

k∑
t=j+1

r3
‖‖‖(�htk )

Tdtk
‖‖‖p3 ;1∕p1 + 1∕q1 = 1;1∕p2 + 1∕q2

= 1;1∕p3 + 1∕q3 = 1

A robust model is proposed in (17) which obtains robust 
amounts of mjk by selecting various norm bodies and 

radiuses for U1, U2 and U3 uncertainty regions (Hanafiza-
deh and Seifi 2006). Considering the definition of mjk in (5), 
robust formulation can be summarized as follows:
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mjk is the cost incurred in periods j + 1 through k calcu-
lated by the Wagner–Whitin algorithm without considering 
robustness.

And relation (2) for the robust case can be written as:

Relations (18) and (19) are the final definitions of the 
robust cost of production planning within the Wagner–Whi-
tin algorithm.

Analysis of the Wagner–Whitin algorithm 
with robust costs

Based on what is defined in (18), r1‖‖(�ajk )
Tejk‖‖p1 , 

r2
‖‖‖(�cjk )

Tdjk
‖‖‖p2 and r3

∑k

t=j+1

���(�htk )
Tdtk

���p3 are added to 

mjk to calculate Robust mjk

(
q1, q2, q3, r1, r2, r3

)
 . The ampli-

t u d e  o f  r1
‖‖(�ajk )

Tejk‖‖p1  ,  r2
‖‖‖(�cjk )

Tdjk
‖‖‖p2  a n d 

r3
∑k

t=j+1

���(�htk )
Tdtk

���p3 is dependent on the form and chosen 

radius of uncertainty regions r1, r2 and r3 and the size of 
�ajk , �cjk and �htk matrices. r1, r2, and r3 are the radiuses 
of uncertainty regions and are positive real numbers. Moreo-
ver, based on the norm function properties (Boyd and Van-
denberghe 2004), ‖‖(�ajk )

Tejk‖‖p1 , 
‖‖‖(�cjk )

Tdjk
‖‖‖p2 and 

∑k

t=j+1

���(�htk )
Tdtk

���p3 are always nonnegative real numbers. 

Therefore, Robust mjk

(
q1, q2, q3, r1, r2, r3

)
 is always greater 

than mjk. Another important element in the difference 
between Robust mjk

(
q1, q2, q3, r1, r2, r3

)
 and mjk is selecting 

the q1, q2 and q3 norms. The effects of these norms are sum-
marized in the following observation.

Observation 1 Regarding relation (19), if qi(i = 1, 2, 3) in 
Robust mjk

(
q1, q2, q3, r1, r2, r3

)
 increases, then the uncer-

tainty region increases, too. As far as the dual norm defi-
nition is concerned (Boyd and Vandenberghe 2004), the 
greater qi(i = 1, 2, 3) gets us into a smaller pi(i = 1, 2, 3) 

(18)

Robust mjk

(
q1, q2, q3, r1, r2, r3

)

= mjk + r1
‖‖‖(�ajk )

Tejk
‖‖‖p1 + r2

‖‖‖(�cjk )
Tdjk

‖‖‖p2
+ r3

k∑
t=j+1

‖‖‖(�htk )
Tdtk

‖‖‖p3 ;1∕p1
+ 1∕q1 = 1;1∕p2 + 1∕q2 = 1;1∕p3 + 1∕q3 = 1

(19)

Robust fk
(
q1, q2, q3, r1, r2, r3

)
= min

0≤j<k

[
Robust fj

(
q1, q2, q3, r1, r2, r3

)

+Robust mjk

(
q1, q2, q3, r1, r2, r3

)]

and based on relation (1), if pi(i = 1, 2, 3) gets smaller, 
lpi(i = 1, 2, 3) norm gets greater. To explain it more clearly, 
it results in a bigger uncertainty region:

Proposition 1 A greater uncertainty region, for either 
Ujk

(
q1, r1

)
 or U′

jk

(
q2, r2

)
 or U′′

tk

(
q3, r3

)
 , makes a greater 

Robust mjk

(
q1, q2, q3, r1, r2, r3

)
∶

Proof of relation (20) From (1), we have:

If all sides of the above relation are multiplied by r1, which 
is a positive real number, we have:

By adding mjk + r2
���(�cjk )

Tdjk
���p2 + r3

k∑
t=j+1

���(�htk )
Tdtk

���p3 to 

all sides of the above relation, we get the following 
relation:

Ujk

(
∞, r1

)
> Ujk

(
2, r1

)
> Ujk

(
1, r1

)
,

U�
jk

(
∞, r2

)
> U�

jk

(
2, r2

)
> U�

jk

(
1, r2

)
,

U��
tk

(
∞, r3

)
> U��

tk

(
2, r3

)
> U��

tk

(
1, r3

)
.

(20)

Robust mjk

(
1, q2, q3, r1, r2, r3

)

≤ Robust mjk

(
2, q2, q3, r1, r2, r3

)

≤ Robust mjk

(
∞, q2, q3, r1, r2, r3

)

(21)
Robust mjk

(
q1, 1, q3, r1, r2, r3

)

≤ Robust mjk

(
q1, 2, q3, r1, r2, r3

)

≤ Robust mjk

(
q1,∞, q3, r1, r2, r3

)

(22)
Robust mjk

(
q1, q2, 1, r1, r2, r3

)

≤ Robust mjk

(
q1, q2, 2, r1, r2, r3

)

≤ Robust mjk

(
q1, q2,∞, r1, r2, r3

)

(23)
‖‖‖(�ajk )

Tejk
‖‖‖1 ≥

‖‖‖(�ajk )
Tejk

‖‖‖2 ≥
‖‖‖(�ajk )

Tejk
‖‖‖∞

(24)r1
‖‖‖(�ajk )

Tejk
‖‖‖1 ≥ r1

‖‖‖(�ajk )
Tejk

‖‖‖2 ≥ r1
‖‖‖(�ajk )

Tejk
‖‖‖∞

(25)

mjk + r1
‖‖‖(�ajk )

Tejk
‖‖‖1 + r2

‖‖‖(�cjk )
Tdjk

‖‖‖p2 + r3

k∑
t=j+1

‖‖‖(�htk
)Tdtk

‖‖‖p3

≥ mjk + r1
‖‖‖(�ajk )

Tejk
‖‖‖2 + r2

‖‖‖(�cjk )
Tdjk

‖‖‖p2 + r3

k∑
t=j+1

‖‖‖(�htk
)Tdtk

‖‖‖p3

≥ mjk + r1
‖‖‖(�ajk )

Tejk
‖‖‖∞ + r2

‖‖‖(�cjk )
Tdjk

‖‖‖p2 + r3

k∑
t=j+1

‖‖‖(�htk
)Tdtk

‖‖‖p3
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Based on the relation 1/p1 + 1/q1 = 1, we have the following 
results:

According to relations (18), (25), (26), (27) and (28), we 
have:

  □

Proof of relation (20) From (1), we have:

If all sides of the above relation are multiplied by the 
positive real number r2, we have:

We add mjk + r1
��(�ajk )

Tejk��p1 + r3
∑k

t=j+1

���(�htk )
Tdtk

���p3 
to all sides of the above relation. We have:

Based on the relation 1/p2 + 1/q2 = 1, we have the follow-
ing results:

According to relations (15), (32), (33), (34) and (35), we 
have:

(26)If q1 = 1 then p1 = ∞

(27)If q1 = 2 then p1 = 2

(28)If q1 = ∞ then p1 = 1

(29)

Robust mjk

(
∞, q2, q3, r1, r2, r3

)

≥ Robust mjk

(
2, q2, q3, r1, r2, r3

)

≥ Robust mjk

(
1, q2, q3, r1, r2, r3

)
.

(30)
‖‖‖(�cjk )

Tdjk
‖‖‖1 ≥

‖‖‖(�cjk )
Tdjk

‖‖‖2 ≥
‖‖‖(�cjk )

Tdjk
‖‖‖∞

(31)r2
‖‖‖(�cjk )

Tdjk
‖‖‖1 ≥ r2

‖‖‖(�cjk )
Tdjk

‖‖‖2 ≥ r2
‖‖‖(�cjk )

Tdjk
‖‖‖∞

(32)

mjk + r1
‖‖‖(�ajk )

Tejk
‖‖‖p1 + r2

‖‖‖(�cjk )
Tdjk

‖‖‖1 + r3

k∑
t=j+1

‖‖‖(�htk )
Tdtk

‖‖‖p3

≥ mjk + r1
‖‖‖(�ajk )

Tejk
‖‖‖p1 + r2

‖‖‖(�cjk )
Tdjk

‖‖‖2 + r3

k∑
t=j+1

‖‖‖(�htk )
Tdtk

‖‖‖p3

≥ mjk + r1
‖‖‖(�ajk )

Tejk
‖‖‖p1 + r2

‖‖‖(�cjk )
Tdjk

‖‖‖∞ + r3

k∑
t=j+1

‖‖‖(�htk )
Tdtk

‖‖‖p3

(33)If q2 = 1 then p2 = ∞

(34)If q2 = 2 then p2 = 2

(35)If q2 = ∞ then p2 = 1

 □

Proof of relation (21) From (1), we have:

which means:

We add relations (37), (38) and (39) to each other to get:

We multiply all sides of the above relation by the positive 
real number r3. Thus, we have:

We add mjk + r1
‖‖(�ajk )

Tejk‖‖p1 + r2
‖‖‖(�cjk )

Tdjk
‖‖‖p2 to all sides 

of relation (41), and we then get:

(36)

Robust mjk

(
q1,∞, q3, r1, r2, r3

)

≥ Robust mjk

(
q1, 2, q3, r1, r2, r3

)

≥ Robust mjk

(
q1, 1, q3, r1, r2, r3

)
.

‖‖‖(�h
tk )Tdtk

‖‖‖1 ≥
‖‖‖(�h

tk )Tdtk
‖‖‖2 ≥

‖‖‖(�h
tk )Tdtk

‖‖‖∞
for ∀

‖‖‖(�h
tk )Tdtk

‖‖‖(t = j + 1, j + 2,… , k),

(37)

‖‖‖(𝐖hj+𝟏,k )
Tdj+𝟏,k‖‖‖1 ≥

‖‖‖(𝐖hj+𝟏,k )
Tdj+𝟏,k

‖‖‖2 ≥
‖‖‖(𝐖hj+𝟏,k )

Tdj+𝟏,k
‖‖‖∞

(38)

‖‖‖(�hj+�,k )
Tdj+�,k

‖‖‖1 ≥
‖‖‖(�hj+�,k )

Tdj+�,k
‖‖‖2 ≥

‖‖‖(�hj+�,k )
Tdj+�,k

‖‖‖∞

(39)
‖‖‖(�hkk )

Tdkk
‖‖‖1 ≥

‖‖‖(�hkk )
Tdkk

‖‖‖2 ≥
‖‖‖(�hkk )

Tdkk
‖‖‖∞

(40)

k∑
t=j+1

‖‖‖(�h
tk )Tdtk

‖‖‖1 ≥
k∑

t=j+1

‖‖‖(�h
tk )Tdtk

‖‖‖2 ≥
k∑

t=j+1

‖‖‖(�h
tk )Tdtk

‖‖‖∞

(41)

r3

k∑
t=j+1

‖‖‖(�h
tk )Tdtk

‖‖‖1 ≥ r3

k∑
t=j+1

‖‖‖(�h
tk )Tdtk

‖‖‖2

≥ r3

k∑
t=j+1

‖‖‖(�h
tk )Tdtk

‖‖‖∞

(42)

mjk + r1
‖‖‖(�ajk )

Tejk
‖‖‖p1 + r2

‖‖‖(�cjk )
Tdjk

‖‖‖p2 + r3

k∑
t=j+1

‖‖‖(�htk
)Tdtk

‖‖‖1

≥ mjk + r1
‖‖‖(�ajk )

Tejk
‖‖‖p1 + r2

‖‖‖(�cjk )
Tdjk

‖‖‖p2 + r3

k∑
t=j+1

‖‖‖(�htk
)Tdtk

‖‖‖2

≥ mjk + r1
‖‖‖(�ajk )

Tejk
‖‖‖p1 + r2

‖‖‖(�cjk )
Tdjk

‖‖‖p2 + r3

k∑
t=j+1

‖‖‖(�htk
)Tdtk

‖‖‖∞
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Based on the relation 1/p3 + 1/q3 = 1, we have the following 
results:

According to relations (18), (42), (43), (44) and (45), we 
have:

  □

The radius of uncertainty regions 
(
rii = 1, 2, 3

)
 is an 

important element in robust formulation (18) which is the 
difference between Robust mjk

(
q1, q2, q3, r1, r2, r3

)
 and mjk. 

Since ri (for i = 1, 2, 3) is a positive real number, based 
on (18) the existence of the following observation seems 
important.

Observation 2 When the radius of any uncertainty 
regions (either r1 or r2 or r3) increases, the amount of 
Robust mjk

(
q1, q2, q3, r1, r2, r3

)
 increases, too.

Proof for the uncertainty region r1 Imagine

Then, by multiplying the positive real number ‖‖(�ajk )
Tejk‖‖p1 

to both sides of the above relation, we have:

N ow  we  a d d  t h e  p o s i t i ve  r e a l  n u m b e r 
mjk + r2

���(�cjk )
Tdjk

���p2 + r3
∑k

t=j+1

���(�htk )
Tdtk

���p3 to both 

sides of relation (47) and we get the following relation:

(43)If q3 = 1 then p3 = ∞

(44)If q3 = 2 then p3 = 2

(45)If q3 = ∞ then p3 = 1

(46)

Robust mjk

(
q1, q2,∞, r1, r2, r3

)

≥ Robust mjk

(
q1, q2, 2, r1, r2, r3

)

≥ Robust mjk

(
q1, q2, 1, r1, r2, r3

)
.

r1 ≥ r′
1

(47)r1
‖‖‖(�ajk )

Tejk
‖‖‖p1 ≥ r�

1

‖‖‖(�ajk )
Tejk

‖‖‖p1

Regarding relation (18) and the above relation, it can be seen 
that when r1 ≥ r1

′ we have:

  □

Proof for the uncertainty region r2 Imagine

Then, by multiplying the positive real number ‖‖‖(�cjk )
Tdjk

‖‖‖p2 
to both sides of the above relation, we have:

N ow  we  a d d  t h e  p o s i t i ve  r e a l  n u m b e r 
mjk + r1

��(�ajk )
Tejk��p1 + r3

∑k

t=j+1

���(�htk )
Tdtk

���p3 to both 

sides of relation (49) and we get the following relation:

Regarding relation (18) and the above relation (50), it can 
be seen that when r2 ≥ r2

′, we have:

  □

Proof for the uncertainty region r3 Imagine

(48)

mjk + r1
‖‖‖(�ajk )

Tejk
‖‖‖p1 + r2

‖‖‖(�cjk )
Tdjk

‖‖‖p2 + r3

k∑
t=j+1

‖‖‖(�htk
)Tdtk

‖‖‖p3

≥ mjk + r�
1

‖‖‖(�ajk )
Tejk

‖‖‖p1 + r2
‖‖‖(�cjk )

Tdjk
‖‖‖p2 + r3

k∑
t=j+1

‖‖‖(�htk
)Tdtk

‖‖‖p3

Robust mjk

(
q1, q2, q3, r1, r2, r3

)
≥ Robust mjk

(
q1, q2, q3, r

�

1
, r2, r3 )

r2 ≥ r′
2

(49)r2
‖‖‖(�cjk )

Tdjk
‖‖‖p2 ≥ r�

2

‖‖‖(�cjk )
Tdjk

‖‖‖p2

(50)

mjk + r1
‖‖‖(�ajk )

Tejk
‖‖‖p1 + r2

‖‖‖(�cjk )
Tdjk

‖‖‖p2 + r3

k∑
t=j+1

‖‖‖(�htk
)Tdtk

‖‖‖p3

≥ mjk + r1
‖‖‖(�ajk )

Tejk
‖‖‖p1 + r�

2
(�cjk )

Tdjk
p2

+ r3

k∑
t=j+1

‖‖‖(�htk
)Tdtk

‖‖‖p3

Robust mjk

(
q1, q2, q3, r1, r2, r3

)

≥ Robust mjk

(
q1, q2, q3, r1, r

′

2
, r3

)
.

r3 ≥ r′
3

Table 1  Data for the example Month (t) 1 2 3 4 5 6

Expected demand (dt) 60 100 140 200 120 80
Fixed cost (at) 150 140 160 160 170 190
Variable unit cost (ct) 7 7 8 7 6 10
Unit inventory cost (ht) 1 1 2 2 2 2
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Then, by multiplying the positive real number ∑k

t=j+1

���(�htk )
Tdtk

���p3 to both sides of the above relation, we 

have:

N ow  we  a d d  t h e  p o s i t i ve  r e a l  n u m b e r 
mjk + r1

‖‖(�ajk )
Tejk‖‖p1 + r2

‖‖‖(�cjk )
Tdjk

‖‖‖p2 to both sides of 

relation (51) and we get the following relation:

Regarding relation (18) and the above relation, it can be seen 
that when r3 ≥ r3

′, we have:

(51)r3

k∑
t=j+1

‖‖‖(�htk )
Tdtk

‖‖‖p3 ≥ r�
3

k∑
t=j+1

‖‖‖(�htk )
Tdtk

‖‖‖p3

(52)

mjk + r1
‖‖‖(�ajk )

Tejk
‖‖‖p1 + r2

‖‖‖(�cjk )
Tdjk

‖‖‖p2 + r3

k∑
t=j+1

‖‖‖(�htk )
Tdtk

‖‖‖p3

≥ mjk + r1
‖‖‖(�ajk )

Tejk
‖‖‖p1 + r2

‖‖‖(�cjk )
Tdjk

‖‖‖p2 + r�
3

k∑
t=j+1

‖‖‖(�htk )
Tdtk

‖‖‖p3

  □

The variance from the mean value and the covariance 
of ajk , cjk or htk is also another element in the difference 
between Robustmjk

(
q1, q2, q3, r1, r2, r3

)
 and mjk. This differ-

ence is in �ajk , �cjk or �htk which are the square matrix 
of the covariance matrix of uncertain parameters ajk , cjk 
and htk , respectively. Generally speaking, when there are 
two matrices � and �′ while �′ ≤ � , it means that each 
and every element of � is greater than or equal to the cor-
responding element of �′ . The forthcoming observation 
explains the influence of the covariance matrix on the cal-
culated Robust mjk

(
q1, q2, q3, r1, r2, r3

)
.

Observation 3 A greater covariance matrix results in a big-
ger Robust mjk

(
q1, q2, q3, r1, r2, r3

)
.

For calculating relation (18), we need to calculate 
‖‖(�ajk )

Tejk‖‖p1 , 
‖‖‖(�cjk )

Tdjk
‖‖‖p2 and ‖‖‖(�htk )

Tdtk
‖‖‖p3 . For calcu-

Robust mjk

(
q1, q2, q3, r1, r2, r3

)

≥ Robust mjk

(
q1, q2, q3, r1, r2, r

′

3

)
.

Table 2  Covariance matrix of 
the fixed costs for the example

a1 a2 a3 a4 a5 a6

a1 16.8295 − 2.0216 6.7098 − 5.6965 1.5415 2.2143
a2 − 2.0216 17.9889 − 1.0131 − 8.7064 2.0467 − 7.5321
a3 6.7098 − 1.0131 15.1860 − 5.6151 2.0252 1.5293
a4 − 5.6965 − 8.7064 − 5.6151 16.0058 1.5769 7.0755
a5 1.5415 2.0467 2.0252 1.5769 14.4069 − 7.6083
a6 2.2143 − 7.5321 1.5293 7.0755 − 7.6083 12.0184

Table 3  Covariance matrix of 
the cost of producing each unit 
in each period for the example

c1 c2 c3 c4 c5 c6

c1 3.3000 1.9485 2.3921 1.2466 1.6918 1.1016
c2 1.9485 3.9000 1.0245 2.5075 1.0532 1.2400
c3 2.3921 1.0245 3.0000 1.1447 2.6227 1.2457
c4 1.2466 2.5075 1.1447 3.6000 1.6106 2.1542
c5 1.6918 1.0532 2.6227 1.6106 4.0000 1.5793
c6 1.1016 1.2400 1.2457 2.1542 1.5793 2.0000

Table 4  Covariance matrix of 
the unit inventory costs for the 
example

h1 h2 h3 h4 h5 h6

h1 3.3000 1.0368 1.6351 1.6212 1.0273 1.3254
h2 1.0368 3.0000 0.8114 0.8431 1.3059 1.1657
h3 1.6351 0.8114 1.8000 1.4365 1.5601 0.5190
h4 1.6212 0.8431 1.4365 2.2000 0.7892 1.5962
h5 1.0273 1.3059 1.5601 0.7892 2.7000 0.0473
h6 1.3254 1.1657 0.5190 1.5962 0.0473 1.8000
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lating these three norms, each of the rows of �ajk , �cjk and 
�htk , the square matrices of the covariance matrices, is mul-
tiplied by the vectors ejk , djk and dtk , respectively. After that, 
the p1 norm of (�ajk )

Tejk , the p2 norm of (�cjk )
Tdjk and the 

p3 norm of (�htk )
Tdtk are calculated and added to each other. 

Since norm is a nonnegative real number (Boyd and Van-
denberghe, 2004), the sum of these three norms is of course 
a nonnegative real number. Therefore, the bigger the com-
ponents of �ajk , �cjk and �htk , the bigger ‖‖(�ajk )

Tejk‖‖p1 , ‖‖‖(�cjk )
Tdjk

‖‖‖p2 and ‖‖‖(�htk )
Tdtk

‖‖‖p3 become, respectively, and 

based on (18), a greater Robustmjk

(
q1, q2, q3, r1, r2, r3

)
 is 

achieved.

Application of the Wagner–Whitin algorithm 
with robust costs

In this part, one example from the literature is studied and 
solved with the classical Wagner–Whitin algorithm and with 
the robust algorithm presented in this paper. The coming 
example is taken from (Johnson and Montgomery 1974).

This example is a single-item production planning 
problem and has 6-month planning horizon. The manager 
can purchase the product at the beginning of each month. 
The details are depicted in Table 1. Moreover, neither ini-
tial inventory is assumed nor shortages are planned. The 
problem is to determine the quantities to be procured at the 
beginning of each month.

In this problem, there are three different costs. The first 
one is the fixed cost of each period which we should pay 
if procurement is made at the beginning of each period. 
This fixed cost of each period is different for different peri-
ods (months) but here we assume that they are also cor-
related with each other and the covariance matrix is given 
in Table 2.

In addition to the fixed costs, there are variable unit costs 
and unit inventory costs for each month. The first one is 
related to the cost of producing or purchasing each unit in 

each month, and the latter one is for the cost of keeping a 
unit of product in the warehouse from a period to the next 
period. In this problem, it is assumed that variable unit costs 
are correlated with each other and the covariance matrix is 
given in Table 3.

Moreover, assuming correlation between unit inventory 
costs, the covariance matrix is given in Table 4 for this 
example. 

Firstly, we consider a one-period horizon. For this, we 
have: b1 = d1 = 60, and f1 = f0 + m01 = f0 + a1 + c1b1 = 0 + 15
0 + 7(60) = 570. Hence, by having j = 0 and k = 1, we have:

Imagine q1 = 3, q2 = 2, q3 = 5, r1 = 2, r2 = 1.1 and r3 = 1.2.

Now, we consider the first two periods (months). Last 
production can occur either in period 1 or in period 2. We 
need to evaluate both cases:

m01 = 570,

f0 = 0,

f1 = 570,

Robust mjk

(
q1, q2, q3, r1, r2, r3

)

= Robust m01(3, 2, 5, 2, 1.1, 1.2)

= m01 + 2
‖‖‖(�a01

)
T
e
��‖‖‖1.5 + 1.1

‖‖‖(�c01
)
T
d
��‖‖‖2

= 680.130191

Robust f0(3, 2, 5, 2, 1.1, 1.2) = 0

Robust f1(3, 2, 5, 2, 1.1, 1.2)

= Robust f0(3, 2, 5, 2, 1.1, 1.2)

+ Robust m01(3, 2, 5, 2, 1.1, 1.2)

= 680.130191

Table 5  Values of Robustfj
(
q1, q2, q3, r1, r2, r3

)
+ Robustmjk

(
q1, q2, q3, r1, r2, r3

)
 for the example with robust costs

Period of last pro-
curement (j + 1)

Last period with 
zero inventory (j)

Planning horizon (k)

1 2 3 4 5 6

1 0 680.130191 1736.457322 3828.5132 7129.702305 9995.161173 12489.63045
2 1 1612.902594 3123.89178 5905.622864 8304.894676 10400.56671
3 2 2869.142577 5344.611239 7478.44898 9270.98068
4 3 4448.729854 5841.925805 7143.347851
5 4 5220.798195 6071.781954
6 5 6073.844243
Robustfj 680.130191 1612.902594 2869.142577 4448.729854 5220.798195 6071.781954
jk* 0 1 2 3 4 4
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As we can see, for a two-period horizon, the optimal last 
point of zero inventory is at the end of period 1 (j2

* = 1) and 
thus the optimal period for the last procurement is period 2.

For a three-period horizon, we have:

The optimal period of last procurement is 3 and j3
* = 2.

For a four-period horizon:

It can be seen that j4
* = 3.

For a five-period horizon:

Robust f2(3, 2, 5, 2, 1.1, 1.2) = min
0≤j<2

[
Robust fj(3, 2, 5, 2, 1.1, 1.2) + Robust mj2(3, 2, 5, 2, 1.1, 1.2)

]

= min

{
Robust f0(3, 2, 5, 2, 1.1, 1.2) + Robust m02(3, 2, 5, 2, 1.1, 1.2) = 1736.457322

Robust f1(3, 2, 5, 2, 1.1, 1.2) + Robust m12(3, 2, 5, 2, 1.1, 1.2) = 1612.902594

}

= 1612.902594

Robust f3(3, 2, 5, 2, 1.1, 1.2) = min
0≤j<3

�
Robust fj(3, 2, 5, 2, 1.1, 1.2) + Robust mj3(3, 2, 5, 2, 1.1, 1.2)

�

= min

⎧
⎪⎨⎪⎩

Robust f0(3, 2, 5, 2, 1.1, 1.2) + Robust m03(3, 2, 5, 2, 1.1, 1.2) = 3828.5132

Robust f1(3, 2, 5, 2, 1.1, 1.2) + Robust m13(3, 2, 5, 2, 1.1, 1.2) = 3123.89178

Robust f2(3, 2, 5, 2, 1.1, 1.2) + Robust m23(3, 2, 5, 2, 1.1, 1.2) = 2869.142577

⎫
⎪⎬⎪⎭

= 2869.142577

Robust f4(3, 2, 5, 2, 1.1, 1.2) = min
0≤j<4

�
Robust fj(3, 2, 5, 2, 1.1, 1.2) + Robust mj4(3, 2, 5, 2, 1.1, 1.2)

�

= min

⎧⎪⎪⎨⎪⎪⎩

Robust f0(3, 2, 5, 2, 1.1, 1.2) + Robust m04(3, 2, 5, 2, 1.1, 1.2) = 7129.702305

Robust f1(3, 2, 5, 2, 1.1, 1.2) + Robust m14(3, 2, 5, 2, 1.1, 1.2) = 5905.622864

Robust f2(3, 2, 5, 2, 1.1, 1.2) + Robust m24(3, 2, 5, 2, 1.1, 1.2) = 5344.611239

Robust f3(3, 2, 5, 2, 1.1, 1.2) + Robust m34(3, 2, 5, 2, 1.1, 1.2) = 4448.729854

⎫⎪⎪⎬⎪⎪⎭
= 4448.729854

Table 6  Robust optimal plan for 
the example

b1 b2 b3 b4 b5 b6

60 100 140 200 200 0

Table 7  Values of fj + mjk for 
the example with dynamic 
demands

Period of last pro-
curement (j + 1)

Last period with zero 
inventory (j)

Planning horizon (k)

1 2 3 4 5 6

1 0 570 1370 2630 4830 6390 7590
2 1 1410 2530 4530 5970 7090
3 2 2650 4650 6090 7210
4 3 4090 5170 6050
5 4 4980 5620
6 5 5970
fj 570 1370 2530 4090 4980 5620
jk* 0 0 1 3 4 4

Table 8  Classical optimal plan 
for the example

b1 b2 b3 b4 b5 b6

60 240 0 200 200 0
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For which j5
* = 4.

For a six-period horizon:

For which j6
* = 4.

The results of the robust approach are summarized in 
Table 5.

As it can be seen in the above table, the minimum cost over 
the six-period planning horizon is Robustf6 = 6071.781954 , 
and since j6

* = 4, we order in period 5 an amount equal to 
b5

* = d5 + d6 = 200 and therefore b6
* = 0. Since j6

* = 4, at the 
end of period 4 the warehouse is empty. Therefore, we next 
consider a four-period horizon. For a four-period horizon, 
we saw that j4

* = 3 and thus at the end of period 3 the ware-
house becomes empty. Therefore, b4

* = 200. Now consider a 
three-period horizon: j3* = 2, and thus we order at period 3 an 
amount of b3

* = 140. For a two-period horizon, we have j2
* = 1 

and therefore we need to make an order at the beginning of 
period 2, an amount equal to b2

* = d2 = 100. Then, we note 
the first horizon and we have j1

* = 0. Thus, at the beginning of 
the first period, we order b1

* = d1 = 60. Therefore, the robust 
optimal plan is to order lots of 60, 100, 140, 200, 200 and 0 
over the six-period horizon as illustrated in Table 6.

The results of the classical Wagner–Whitin algorithm as 
indicated in Johnson and Montgomery (1974) are summa-
rized in Table 7.

From Table 7, you can see that f6 = 5620 and j6* = 4. There-
fore, we order in period 5 an amount of b5

* = d5 + d6 = 200 
and b6

* = 0. Since j6
* = 4, the warehouse is empty at the end 

Robust f5(3, 2, 5, 2, 1.1, 1.2) = min
0≤j<5

�
Robust fj(3, 2, 5, 2, 1.1, 1.2) + Robust mj5(3, 2, 5, 2, 1.1, 1.2)

�

= min

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

Robust f0(3, 2, 5, 2, 1.1, 1.2) + Robust m05(3, 2, 5, 2, 1.1, 1.2) = 9995.161173

Robust f1(3, 2, 5, 2, 1.1, 1.2) + Robust m15(3, 2, 5, 2, 1.1, 1.2) = 8304.894676

Robust f2(3, 2, 5, 2, 1.1, 1.2) + Robust m25(3, 2, 5, 2, 1.1, 1.2) = 7478.44898

Robust f3(3, 2, 5, 2, 1.1, 1.2) + Robust m35(3, 2, 5, 2, 1.1, 1.2) = 5841.925805

Robust f4(3, 2, 5, 2, 1.1, 1.2) + Robust m45(3, 2, 5, 2, 1.1, 1.2) = 5220.798195

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

= 5220.798195

Robust f6(3, 2, 5, 2, 1.1, 1.2) = min
0≤j<6

�
Robust fj(3, 2, 5, 2, 1.1, 1.2) + Robust mj6(3, 2, 5, 2, 1.1, 1.2)

�

= min

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Robust f0(3, 2, 5, 2, 1.1, 1.2) + Robust m06(3, 2, 5, 2, 1.1, 1.2) = 12489.63045

Robust f1(3, 2, 5, 2, 1.1, 1.2) + Robust m16(3, 2, 5, 2, 1.1, 1.2) = 10400.56671

Robust f2(3, 2, 5, 2, 1.1, 1.2) + Robust m26(3, 2, 5, 2, 1.1, 1.2) = 9270.98068

Robust f3(3, 2, 5, 2, 1.1, 1.2) + Robust m36(3, 2, 5, 2, 1.1, 1.2) = 7143.347851

Robust f4(3, 2, 5, 2, 1.1, 1.2) + Robust m46(3, 2, 5, 2, 1.1, 1.2) = 6071.781954

Robust f5(3, 2, 5, 2, 1.1, 1.2) + Robust m56(3, 2, 5, 2, 1.1, 1.2) = 6073.844243

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
= 6071.781954

of period 4. Thus, we consider a four-period horizon. In the 
table, we see that for a four-period horizon, j4* = 3, and there-
fore at the end of period 3, the ware house is empty. Hence, 

b4
* = 200, and then we consider a three-period horizon for 

which j3
* = 1 and we order at period 2 an amount equal to 

b2
* = d2 + d3 = 240. Therefore, b3

* = 0. Since j3
* = 1, we next 

consider the first horizon: j1
* = 0 and at the beginning of the 

first period we order b1
* = d1 = 60. Finally, the classical opti-

mal plan is to order lots of 60, 240, 0, 200, 200 and 0 over 
the six-period horizon. You can find this plan in Table 8.

Conclusion

In this paper, an important, real-world extension of the sto-
chastic Wagner–Whitin algorithm is dealt with, in the case 
where costs are non-stationary and correlated. Since the robust 
approach takes the information about the variance and correla-
tion of historical data into account, it is expected to be more 
reliable than using only the mean of uncertain cost. One of the 
main aspects and features of this research is that we try to solve 
one of the most famous classic inventory problems with a pro-
active approach: considering uncertain costs and solving robust 
counterpart of the lot-sizing problem with the Wagner–Whitin 
algorithm. Consider a company using the Wagner–Whitin algo-
rithm for finding out the amount and frequency of orders in a 
production planning system. In this system, if the costs of each 
period are known at the beginning of the planning horizon, by 
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using the Wagner–Whitin algorithm we can easily calculate and 
find out that the orders that should be made at the beginning of 
each period and the amount of these orders. We confront the 
problem when the costs vary around its mean with some vari-
ations measured by its variance and correlated with each other, 
and the decision maker does not know about the exact costs at 
the beginning of the planning horizon. In this case, the optimum 
solution of the Wagner–Whitin algorithm is not necessarily 
practical. We used a robust approach to deal with the uncertain 
costs. In the presented approach, the variations of the uncertain 
costs are assumed to be in a convex and closed set. This set is 
the uncertainty region, and its size and shape are formed based 
on the information of the covariance matrix. According to what 
is defined in relation (18), a positive term is added to the cost 
of production planning within the robust Wagner–Whitin algo-
rithm due to uncertainty in costs. If a decision maker predicts 
that the future circumstances are more risky, they would decide 
to be more conservative. Thus, for the variations of uncertain 
costs, they would consider a bigger uncertainty region and as 
the uncertainty region gets bigger, the cost of production plan-
ning within the robust Wagner–Whitin algorithm increases, too.

As future studies, it is proposed to researchers to compare 
the robust method with the classical Wagner–Whitin algo-
rithm with a level of buffer and perform simulation on the 
results of such a comparison. Comparing the robust method 
with other methods from the literature is not appropriate 
while different types of information such as pdf in case of 
probabilistic cost or fuzzy information in case of possibil-
istic costs are used. However, in our proposed method, the 
only information is covariance and mean of uncertain costs.

The idea of robust approach when costs are correlated and 
non-stationary is quite novel and intact in the area of supply 
chain. This paper, as the first one in this area, can be leading 
to more research for the cases when different parameters of 
supply chain models are uncertain and correlated with each 
other. More precisely, a similar research to this study can be 
extended particularly if the demands of a lot-sizing problem 
are uncertain and correlated with each other. Moreover, one 
can study the case when lead times are not zero and are cor-
related with each other while demands are uncertain as well. 
The proposed method is solved for only one single problem, 
and the optimal robust solution for this problem is obtained. 
It is conspicuous that for generalizing the better quality of the 
robust solution, it is required to conduct a general simulation 
for a group of problems in large numbers and then the judg-
ment of the quality of robust solution is comparable to the 
classical one. In addition, since the presented method is for 
the single-item production, the method can be extended to the 
multi-item production case as well.

Since by applying the robust approach to relationships 
(2), (3) and (4), the Wagner–Whitin solution algorithm is 
still usable to solve lot-size robust model, its computational 
complexity follows the original algorithm.

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat iveco 
mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.
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