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Abstract This paper deals with multi-component machine

repair model having provision of warm standby units and

repair facility consisting of two heterogeneous servers (pri-

mary and secondary) to provide repair to the failed units. The

failure of operating and standby unitsmay occur individually

or due to some common cause. The primary server may fail

partially following full failure whereas secondary server

faces complete failure only. The life times of servers and

operating/standby units and their repair times follow expo-

nential distribution. The successive over relaxation (SOR)

technique has been used to obtain the steady state queue size

distribution of the number of failed units in the system. To

explore the system characteristics, various performance

indices such as expected number of failed units in the queue,

throughput, etc. have been obtained. Numerical results have

been provided to illustrate the computational tractability of

the proposed SOR technique. To examine the effect of sys-

tem descriptors on the performance indices, the sensitivity

analysis is also performed.

Keywords Machine repair � Mixed warm spares �
Unreliable servers � Common-cause failure � Successive
over relaxation (SOR)

Introduction

With the advancement in technology, the use of automated

machines in many areas of practical utility has become

common. The machines have entered every nook and

corner of our life; thus there is dependence of every one on

them. An interruption due to machine failure not only af-

fects the quality of the service facilitated by the machines,

but also increases the cost of operation of machining sys-

tem. The machine interference is one of the key problems

in many industries such as manufacturing systems, com-

munication systems, computer systems, transportation, etc.

The interference in normal functioning occurs when a

machine stops and will not resume its operation until it is

attended by the repairman. When a repairman finds more

machines to repair than his capacity at a time, the problem

of machine interference arises. Due to cost and technical

constraints, the trade-off between the repairman staffing

level and the magnitude of machine interference has be-

come an important issue and has drawn the attention of

many queue theorists who considered the machine inter-

ference problem as finite source queueing model. In recent

past, the contributions of Jain (1997), Yang et al. (2005),

Ke and Lin (2008), Jain et al. (2008) and many more are

worth-noting in this regard. The survey on the machine

interference problems was done by Haque and Armstrong

(2007) and Jain et al. (2010). Wang et al. (2013) performed

a comparative analysis of the machine repair problem with

imperfect coverage and service pressure condition.

The loss of production while the broken-down machines

are under attention of repairman can be reduced to some

extent by providing spare part support. Based on failure

characteristic, the spare units can be categorized into three

types (1) cold (2) warm and (3) hot. While not in use, the

cold spare units do not fail, whereas the failure of warm
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(hot) spare units is less than (equal to) the failure rate of

operating units. Several papers have appeared in queueing

and reliability literature which explored various aspects of

machine repair problems with standby in different contexts.

Sivazlian and Wang (1989), Wang (1995), Wang and Kuo

(2000) and Wang and Chang (2002) did the cost and

probabilistic analysis of machining system with standby

components. Yuan and Meng (2011) did reliability analysis

of a warm standby repairable system with priority in use.

Jain (2013) suggested numerical approach based on

Runge–Kutta method to compute the transient performance

indices of machining systems with mixed standbys by in-

corporating the features of service interruption and priority.

For themodeling of queueing problems,many researchers

developed more realistic queueing models by incorporating

the concept of server vacation. However, a limited number of

papers have appeared on machine repair models with spares

provisioning by including the feature of vacation of the re-

pairmen. Gupta (1997) considered machine interference

problem with warm spare, server vacations and exhaustive

service. Ke andWang (2007) suggested the vacation policies

for machine repair problem with two types of spares. Wang

et al. (2006, 2009) suggested optimal management of the

machine repair problem with working vacation and used

Newton’s method for the solution purpose. Ke et al. (2011)

made an algorithmic analysis of unreliable server machine

repair system with spares by developing multi-server syn-

chronous vacation model with service interruptions due to

server failure. Ke and Wu (2012) and Ke et al. (2013) de-

veloped a multi-server machine repair model with standbys

and synchronous multiple vacations.

To deal with more realistic scenarios of machining

system, the behavior of the customers and care taker should

be taken into account for the performance analysis of such

systems. Machine repair problems by incorporating the

concepts of balking and reneging have been investigated by

many researchers (Shawky 1997, 2000; Wang and Ke

2003; Jain et al. 2003; Sharma et al. 2004). Wang et al.

(2011) performed cost benefit analysis of a machining

system with warm standby components and variable server

by incorporating the concept of balking. In recent past, the

concept of common-cause failure which can be realized in

many real time machining systems has been studied ex-

tensively (Platz 1984; Mosleh 1991; Pan and Nonaka

1995). The redundancy provision in K-r-out of-N: G con-

figuration machining system under the assumption of

common-cause failure has been investigated by Reddy

(1993), Jain and Ghimire (1997), Jain et al. (2002), and

many more. Jain and Mishra (2006) analyzed system

characteristics of multistage degraded machining system

with common-cause shock failure and state dependent

rates. El-Damcese (2009) investigated the performance

indices of warm standby systems subject to common-cause

failures with time varying failure and repair rates. The

effect of common-cause failures as major issue in safety of

machining systems was examined by Ilavsky et al. (2013).

Mishra and Jain (2013) studied the effect of common-cause

failure on the maintainability of a deteriorating system

having the inspection provision.

Due to wear and tear or any other technical fault, the

servers may be prone to partial or complete failures. In case

of partial failure, the servers continue to operate but their

failure rate increases which further leads to fully failure

state of the system. The overload due to functioning of less

number of components which are required for normal op-

eration also causes the adverse effect on the performance of

the machining system. In machine repair system, the server

providing repair to the failed machines may breakdown due

to over load or long run operation. Ke and Lin (2008)

discussed sensitivity analysis of machine repair problems

in manufacturing systems with service interruptions due to

server failure. Yue et al. (2009) studied a heterogeneous

two-server queueing system with balking and server

breakdowns. In many multi-component machining sys-

tems, the target of high availability using redundancy is

rather difficult and some time impossible. The high avail-

ability and efficiency of a machining system can also be

enhanced by improving its maintainability. To reduce the

workload of failed units in such systems and to achieve

pre-specified availability, the better maintenance facility

can be provided with the provision of additional repairman.

In real time systems, the working capacity of two repair-

men may not be same. Jain et al. (2004) have studied a (N,

L) switch-over policy for two heterogeneous repairmen

machine repair model with warm standbys and vacation.

The provision of two heterogeneous servers and vacation

was considered by Kumar and Jain (2013) for the (m,

M) machine repair problem with spares and switching

failure.

In this investigation, we develop (m, M) Markov model

for multi-component machining system with mixed warm

standby provisioning and under the care of two hetero-

geneous servers. To make model more realistic, we con-

sider that the primary server as well as secondary server

are unreliable and subject to breakdown individually or

simultaneously due to common cause. The primary server

can also work with slower rate in case of partial failed

condition. To illustrate the practical applicability of our

model, we give the example of a power plant having M

operating nuclear turbine generators (i.e. base units) and

S1 and S2 standby units of gas turbine generators of type 1

and 2 (having different failure characteristics). The type 1

standby unit i.e. gas turbine generator is used first in case

of failure of any operating generator. When all S1 of type

1 gas turbine generators are used and further any other

operating generator fails, we replace it by type 2 gas
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turbine generators if available. In case when all the

standby generators of both types are used to replace the

failed generator and there are less than M but at least m

generators are functioning in the power plant, the failure

rate of operating generator increases due to overload.

There is a provision of two dissimilar servers who provide

repair of the failed generators with different rates. The

life times of nuclear/gas turbine generators and servers are

exponentially distributed. The server who is responsible

for maintenance of system may also be unavailable due to

illness or pre-commitment to some other job. Both pri-

mary as well as secondary servers may become unavail-

able individually or simultaneously due to some common

cause. The primary service engineer may be available

partially and will provide repair of the failed generator

with reduced rate. From partial available state either he

becomes fully available after some treatment or goes for

complete rest and becomes completely unavailable to

provide repair of the failed generator. The secondary

service engineer either provides repairs if available or

may become completely inoperative due to breakdown.

The unavailable service engineers can restore its repair

capability after some random interval of times which are

exponentially distributed.

For the performance modeling and queueing analysis of

the concerned machine repair problem, the investigation

done is organized as follows. The model description by

stating the requisite assumptions and notations is presented

in ‘‘Model description and assumptions’’. In ‘‘Steady state

equations’’, the governing equations are constructed with

the help of state dependent failure and repair rates. Various

performance measures in terms of steady-state probabilities

are obtained in ‘‘Some performance indices’’. The sensi-

tivity analysis has been performed to examine the effect of

various parameters on the system performance in

‘‘Numerical results’’. Finally, conclusions are drawn in

‘‘Conclusion’’.

Model description and assumptions

In this section, we give the machining system description

by clearly throwing light on the various components of the

system. For the mathematical modeling, the basic factors

associated with the machine repair problem under consid-

eration have been stated in terms of requisite assumptions

and notations.

Consider an (m, M) machining system having two

servers. The primary server can fail partially as well as

fully whereas secondary server can fail completely. To

support the system, the provision of two type warm

standbys is made. The life times of operating units,

standby units and servers are exponentially distributed.

The failure rate of type 1(2) standby units is a1ða2Þ
which is less than that of failure rate k of operating

units. The system can also fail due to common cause.

We use the following other assumptions to formulate the

model mathematically:

• When primary server is functioning, the secondary

server works as standby.

• Both servers provide repair according to exponential

distribution.

• The primary server can work in normal and degraded

mode (i.e. partially failed state) both whereas secondary

server can work only in normal mode.

• If primary server fails partially, the secondary server

turns on if there is any machine to be repaired and turns

off when the queue becomes empty.

• There is a need of repair to the broken-down server to

restore its operating state.

• The repair time of broken-down server is assumed to be

exponentially distributed.

• The type 1 standby (warm) units if available replace the

failed operating units, and then its characteristic is the

same as that of operating units. In case when type 1

standby units are exhausted, type 2 standby unit is used

to replace the failed operating units.

• When both types of standby units have been used, and

operating units fail, the system will be in functioning

state in degraded mode till there are at least m(\M)

operating units present in the system. As soon as there

are less than m operating units in the machining system,

it fails.

• The switch-over time from standby to operating state of

the units is assumed to be negligible.

To describe the model, the following notations are used:

M Number of operating units in the system

S1(S2) Number of warm spare units of type 1(2) in the

system

M Minimum number of operating units required for

the system to function

k(kc) Failure rate (common-cause failure rate) of

operating units in the system

kd Degraded failure rate of operating units when all

warm spares are utilized

bc(bcp) Common-cause failure rate of first server is in

working (partially failed) state

b1(b2) Failure rate of first (second) server

b01p Partially failure rate of first server when second

server is in breakdown state

b1p Partially failure rate of first server when second

server is in working state

rc Common cause repair rate of both servers
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rcp Common cause repair rate of partially failed first

server when second server is in working state

r1(r2) Repair rate of first (second) server

l1 Repair rate of the servers when first server is in

working state and second server is in breakdown

state

l2 Repair rate of servers when first server is in

breakdown state and second server is in working

state

Pi,0,1 Probability that there are i failed units in the

system and first server is in breakdown state

while the second one is in working state

Pi,0,0 Probability that both servers are in break-

down state and there are i failed units in the

system

Pi,1,1 Probability that both servers are in working state

and there are i failed units in the system

Pi,1,0 Probability that there are i failed units in the

system and first server is in working state while

the second one is in breakdown state

Pi,p,1 Probability that there are i failed units in the

system and first server is in partially failed state

while the second one is in working state

Pi,p,0 Probability that there are i failed units in the

system and first server is in partially failed state

while the second one is in breakdown state

Steady state equations

In this section, the mathematical formulation of the

machine repair problem under consideration is done by

constructing Chapman Kolmogov equations for the sys-

tem state probabilities. To construct the difference equa-

tions governing the model, we define the failure rates as

follows:

kn ¼

Mkþ ðS1 � nÞa1 þ S2a2 þ kc; 0� n\S1

Mkþ ðS1 þ S2 � nÞa2 þ kc; S1 � n\S1 þ S2 � S

ðM þ S� nÞkd þ kc; S� n�M þ S� m ¼ K � 1

0; Otherwise

8
>>><

>>>:

Chapman Kolmogorov equations governing the model

(see Fig. 1) are given by

k0 þ bc þ b1 þ b2 þ b1p
� �

P0;1;1

¼ l1P1;1;1 þ r2P0;1;0 þ r1P0;p;1 þ rcP0;0;0 þ r1P0;0;1 ð1Þ

kn þ bc þ b1 þ b2 þ b1p þ l1
� �

Pn;1;1

¼ kn�1Pn�1;1;1 þ l1Pnþ1;1;1 þ r2Pn;1;0 þ r1Pn;0;1

þ rcPn;0;0; 1� n\M þ S� m

ð2Þ

bc þ b1 þ b2 þ b1p þ l1
� �

PK;1;1

¼ kK�1PK�1;1;1 þ l1PKþ1;1;1 þ r2PK;1;0 þ r1PK;0;1

þ rcPK;0;0 ð3Þ

Fig. 1 Steady state transition

diagram
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k0 þ b1 þ r2 þ b01p

h i
P0;1;0 ¼ l1P1;1;0 þ b2P0;1;1 þ r1P0;p;0

þ r1p0;0;0 ð4Þ

kn þ b1 þ r2 þ b01p þ l1
h i

Pn;1;0

¼ kn�1Pn�1;1;0 þ l1Pnþ1;1;0 þ b2Pn;1;1 þ r1pn;p;0

þ r1Pn;0;0; 1� n�M þ S� m ð5Þ

b1 þ b01p þ l1 þ r2

h i
PK;1;1 ¼ kK�1PK�1;1;1 þ b2PK;1;1

þ r1PK;p;0 þ r1PK;0;0; ð6Þ

k0 þ bcpþ b1 þ b2 þ r1½ �P0;p;1

¼ l2P1;p;1 þ r2P0;p;0 þ b1pP0;1;1 þ r1p0;0;1 þ rcpP0;0;0

ð7Þ

kn þ bcpþ b1 þ b2 þ l2 þ r1½ �Pn;p;1

¼ kn�1Pn�1;p;1 þ l2Pnþ1;p;1 þ r2Pn;p;0 þ b1pPn;1;1

þ r1Pn;0;1 þ rcpPn;0;0; 1� n�M þ S� m ð8Þ

bcpþ b1 þ b2 þ l2½ �PK;p;1 ¼ kK�1PK�1;p;1 þ r2PK;p;0

þ b1pPK;1;1 þ r1pn;0;1
þ rcpPK;0;0 ð9Þ

k0 þ r2 þ r1 þ b01p

h i
P0;p;0 ¼ l1P1;p;0 þ b2P0;p;1 þ b01pP0;1;0

ð10Þ

kn þ r2 þ r1 þ l1 þ b01p

h i
Pn;p;0

¼ kn�1Pn�1;p;0 þ l1Pnþ1;p;0 þ b2Pn;p;1

þ b01pPn;1;0; 1� n�M þ S� m ð11Þ

r2 þ b01p þ l1 þ r1

h i
PK;p;0 ¼ kK�1PK�1;p;0 þ b2PK;p;1

þ b01pPK;1;0

ð12Þ
k0 þ r1 þ b2½ �P0;0;1 ¼ l2P1;0;1 þ b1P0;p;1 þ r2P0;0;0 ð13Þ

kn þ r1 þ b2 þ l2½ �Pn;0;1

¼ kn�1Pn�1;0;1 þ l2Pnþ1;0;1 þ b1Pn;p;1

þ r2Pn;0;0; 1� n�M þ S� m ð14Þ

r1 þ b2 þ l2½ �PK;0;1 ¼ kK�1PK�1;0;1 þ b1PK;p;1 þ r2PK;1;0

ð15Þ

k0 þ r1 þ r2 þ rc þ rcpð Þp0;0;0
¼ b01pp0;p;0 þ b1p0;0;1 þ b2p0;0;1 þ bcp0;1;1 þ bcpp0;p;1

ð16Þ

kn þ r1 þ r2 þ rc þ rcpð Þpn;0;0
¼ kn�1pn�1;0;0 þ b01ppn;p;0 þ b1pn;0;1 þ b2pn;0;1

þ bcpn;1;1 þ bcppn;p;1; 1� n�M þ S� m ð17Þ

r1 þ r2 þ rc þ rcpð ÞpK;0;0 ¼ kK�1pK�1;0;0 þ b01ppK;p;0
þ b1pK;0;1 þ b2pK;0;1
þ bcpK;1;1 þ bcppK;p;1 ð18Þ

The steady-state difference equations constructed in

previous section can be put in the form AX = B i.e. the

matrix form of the system of linear equations. This system

of linear equations has been solved using the numerical

technique successive over relaxation (SOR) method. This

technique is an extrapolation to Gauss–Seidal method,

which accelerates the convergence rate by taking the re-

laxation parameter w[ 1 (more specifically w ¼ 1:25)

which is unity in case of Gauss–Seidal method.

Some performance indices

For the efficient machining system, the designers/devel-

opers chalk out the plan of maintainability and redundancy

based on the performance analysis. For the performance

prediction of machining system, it is important to provide

the expressions for key indices including the queue length.

The queue length in the machine repair problem refers the

total number of failed machines waiting for repair in the

queue including those which are in the process of repair

with the server. Now we provide the explicit results in

terms of probabilities for some performance measures as

follows:

• The expected number of failed machines in the queue is

EðnÞ ¼
XMþS�mþ1

i¼0

i Pi;1;1 þ Pi;1;0 þ Pi;p;1 þ Pi;p;0 þ Pi;0;1

� �

ð19Þ

• The probability that both servers are in working state is

given by

PðwÞ ¼
XMþS�mþ1

i¼0

Pi;1;1 ð20Þ

• The probability that both servers are in breakdown state

is given by

PðbÞ ¼
XMþS�mþ1

i¼0

Pi;0;0 ð21Þ

• The probability that the first server is in working state

but secondary server is in breakdown state, is

Pðs1Þ ¼
XMþS�mþ1

i¼0

Pi;1;0 ð22Þ
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• The probability that the secondary server is in

working state but primary server is in breakdown

state is

Pðs2Þ ¼
XMþS�mþ1

i¼0

Pi;0;1 ð23Þ

• Throughput is obtained as

T pð Þ ¼ l2
XMþS�mþ1

i¼1

Pi;0;1 þ Pi;p;1

� �

þl1
XMþS�mþ1

i¼1

Pi;1;0 þ Pi;1;1 þ P1;p;0

� �
ð24Þ

• Expected waiting time of failed units in the system is

determined using Little formula given by

E Wð Þ ¼ E nð Þ=keff ; ð25Þ

where keff ¼
XMþS�m

i¼0

ki Pi;1;1 þ Pi;1;0 þ Pi;p;1 þ Pi;p;0 þ Pi;0;1

� �
:

ð26Þ

Numerical results

Numerical results based on numerical simulation can pro-

vide quantitative assessment of understanding of the per-

formance indices. The effect of different parameters on the

performance indices can also be explored by numerical

simulation. In this section, the sensitivity analysis has been

carried out to analyze the trend of the system descriptors as

detailed below.

To compute the numerical results, we consider the il-

lustration of power plant as described in the introduction.

The power plant consists of M = 6 operating nuclear tur-

bine generators and S1 = 2 and S2 = 3 standby gas turbine

generators of type 1 and 2 having same failure character-

istics. The failure rate of operating nuclear turbine gen-

erators is k ¼ 0:3, and failure rates of standby gas turbine

generators of type 1 and 2 are a1 ¼ 0:9 and a2 ¼ 0:9, re-

spectively. For computational purpose, the program has

been coded in MATLAB software for other default pa-

rameters chosen as b1 = b2 = 0.5, ac ¼ 0:0 and

r1 = r2 = r = 1.3. The expected queue length E(n) against

failure rate (k) of operating units by varying different pa-

rameters such as number of operating units (M), minimum

number of operating units (m), number of warm standbys

(S), repair rate (r), failure rate of standbys (a) and server’s

breakdown rate (b) has been displayed in Fig. 2a–f,

respectively.

1. Effect of failure rate (k, a) and repair rate (r)

Figure 2a–f reveal the effect of k on the queue length

for the variation of different parameters. It is noticed that

on increasing k, the queue length of failed units in the

system increases. Figure 2e demonstrates the effect of

failure rate (a) of the standby units on the queue length, an

increasing pattern of the queue length with respect a
matches with our expectation.

2. Effect of repair rate (r)

In Fig. 2d, the expected number of failed units in the

system seems to decrease as we increase the repair rate (r).

By improving the repair facility in terms of faster repair,

one may improve the system availability as there will be

reduction in the number of failed units in the system.

3. Effect of number of operating units (M) and minimum

required operating units (m)

In Fig. 2a and b, the effect of the number of operating unit

(M) and minimum required operating units (m) on the queue

length are shown. As we expect, in both figures, the queue

length increases with the increase inM and m. This is due to

the fact that as the number of operating units in the system is

large, the system has more units as such the number of failed

units will increase. It is seen in Fig. 2a that the increment in

the queue length with respect to M is more remarkable for

higher values of k due to increase in traffic load.

4. Effect of number of warm standbys (S)

Figure 2c displays the effect of increment in the number

of spares (S) on the queue length. It is found that the queue

length increases slowly by the increment in S for starting

values of k, however, for the higher values of k, a more

significant increment in the queue length is found. The

reason behind the adverse effect of S on the queue length is

attributed to the increase in population size of the total

number of units in the system.

5. Effect of server’s breakdown rate (b)

The adverse effect of server breakdown rate (b) on the

queue length is clear from Fig. 2f where we notice the

increasing trend of queue length with the increase in

b. This shows that due to the server breakdown, the repair

of failed units is adversely affected.

Overall, we conclude that

• By increasing the number of units required for normal

operation or least number of units required for

operation, we see the increment in the queue length.

• Frequent breakdown of the server also results in higher

queue length; however, the queue size comes down by

increasing the repair rate. These patterns tally with the

realistic situations.
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Conclusion

In many industries the operation can be interrupted because

of the occurrence of failure of machines and breakdown in

the repair facility. In this investigation, we have developed

a finite population queueing model of multi-component

machine repair system wherein individual component

failure and common-cause failure may occur. It is essential

for the smooth running of any machining system to control

the system failure by employing the suitable repair and

spare part support strategy. To cope up with the failure and

to achieve the goal of high performance of machining

system, the provision of a repair crew having two dis-

similar unreliable servers and spare part support are taken

into consideration. The provision of single type spare units

is common to ensure smooth running of the system, but we

have considered the mixed warm standbys; the reason be-

hind this feature is some physical constraints such as vol-

ume, weight, cost, wait-space, etc. which limits in

providing single type of spare units. Various performance

characteristics established for the concerned system with

two types of spares give insights for more versatile situa-

tions of real time systems operating in multi-component

environment and subject to component failures, common-

cause failures and server failures. The numerical simulation

and sensitivity analysis performed may be helpful to vi-

sualize the effect of different parameters on the perfor-

mance measures. The model can be further extended by

including the concepts of group failure and switching

failure.

(a) (b)

(c) (d)

(e) (f)

0

1

2

3

4

5

6

0.5 0.6 0.7 0.8 0.9 1.0

λ
E
(n
)

M=6 M=7 M=8

0

1

2
3

4

5

6
7

8

9

1.0 1.1 1.2 1.3 1.4 1.5

λ

E
(n
)

m=2 m=3 m=4

1

2

3

4

5

6

7

0.5 0.6 0.7 0.8 0.9 1.0

λ

E
(n
)

S=3 S=4 S=5

0

2

4

6

8

10

12

0.5 0.6 0.7 0.8 0.9 1.0

λ

E
(n
)

r=2.1 r=2.3 r=2.5

3

4

5

6

7

8

9

10

0.5 0.6 0.7 0.8 0.9 1.0
λ

E
(n
)

α=1.2 α=1.3 α=1.4

1

2

3

4

5

6

7

8

9

10

0.6 0.7 0.8 0.9 1.0 1.1

λ

E
(n
)

b=.5 b=.7 b=.9

Fig. 2 Queue length E(n) vs

failure rate of operating units for

different values of a M b m c S

d r e a f b

J Ind Eng Int (2015) 11:171–178 177

123



Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://

creativecommons.org/licenses/by/4.0/), which permits unrestricted

use, distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

References

El-Damcese MA (2009) Analysis of warm standby systems subject to

common-cause failures with time varying failure and repair

rates. Appl Math Sci 3(18):853–860

Gupta SM (1997) Machine interference problem with warm spares,

server vacations and exhaustive service. Perf Eval 23(3):

195–211

Haque L, Armstrong MJ (2007) A survey of the machine interference

problem. Euro J Oper Res 179(2):469–482

Ilavsky J, Rastocny K, Zdansky J (2013) Common-cause failures as

major issue in safety of control systems. Int Safety Reliab Syst

11(2):86–93

Jain M (1997) An (m, M) machine repair problem with spares and

state dependent rates: a diffusion process approach. Microelec-

tron Reliab 37(6):929–933

Jain M (2013) Transient analysis of machining systems with service

interruption, mixed standbys and priority. Int J Math Oper Res

5(5):604–625

Jain M, Ghimire RP (1997) Reliability of Kr-out-of N: G system

subject to random, common cause failure. Perf Eval 29:213–218

Jain M, Mishra A (2006) Multistage degraded machining system with

common cause shocks failure, state dependent rates. J Raj Acad

Phys Sci 5(3):251–262

Jain M, Maheshwari S, Rakhee (2002) Study of loading policies for

K-r-out of N:G system subject to common cause failure. R and D

Quality Quest 4(2):15–23

Jain M, Sharma GC, Singh M (2003) M/M/R machine interference

model with balking, reneging, spares, two modes of failure.

OPSEARCH 40(1):24–41

Jain M, Singh M, Rakhee (2004) Bilevel control of degraded

machining system with warm standbys, setup and vacation. Appl

Math Model 28(3):1015–1026

Jain M, Sharma GC, Sharma R (2008) Performance modeling of state

dependent system with mixed standbys, two modes of failure.

Appl Math Model 32:712–724

Jain M, Sharma GC, Pundhir RS (2010) Some perspectives of

machine repair problems. Int J Eng Trans B Appli 23(3 and

4):253–268

Ke JC, Lin CH (2008) Sensitivity analysis of machine repair problem

in manufacturing systems with service interruption. Appl Math

Model 32(10):2087–2105

Ke JC, Wang KH (2007) Vacation policies for machine repair

problem with two type spares. Appl Math Model 31(5):880–894

Ke JC, Wu CH (2012) Multi-server machine repair model with

standbys, synchronous multiple vacation. Comp Indust Eng

62(1):296–305

Ke JC, Lin CH, Zhang ZG (2011) An algorithmic analysis of multi-

server vacation model with service interruptions. Comp Indust

Eng 61(4):1302–1308

Ke JC, Hsu YL, Liu TH, Zhang ZG (2013) Computational analysis of

machine repair problem with unreliable multi-repairmen.

J Comp Oper Res 40(3):848–855

Kumar K, Jain M (2013) Threshold N-policy for (M, m) degraded

machining system with heterogeneous servers, standby switching

failure and multiple vacation. Int J Math Oper Res 5(4):423–445

Mishra A, Jain M (2013) Maintainability policy for deteriorating

system with inspection, common cause failure. Int J Eng Trans C

Basics 26(6):371–380

Mosleh A (1991) Common cause failure: an analysis methodology,

examples. Reliab Eng 34(3):249–292

Pan Z, Nonaka Y (1995) Importance analysis for the systems with

common cause failures. Reliab Eng Syst Safet 50(3):297–300

Platz O (1984) A Markov model for common cause failure. Reliab

Eng 9:25–31

Reddy CR (1993) Optimization of K-out of—n systems subject to

common cause failure with repair provision. Microelectron

Reliab 33(2):175–183

Sharma GC, Jain M, Baghel KPS (2004) Performance modeling of

machining system with mixed standby component balking

reneging. Int J Eng 17(2):169–180

Shawky AI (1997) The single server machine interference model with

balking reneging an additional server for longer queues.

Microelectron Reliab 37(2):355–357

Shawky AI (2000) The machine interference model M/M/C/K/N with

balking, reneging, spares. OPSEARCH 37(1):25–35

Sivazlian BD, Wang KH (1989) Economic analysis of the M/M/R

machine repair problem with warm standby. Microelectron

Reliab 29(5):9829–9840

Wang KH (1995) An approach to cost analysis of the machine repair

problem with two types of spares, service rates. Microelectron

Reliab 35(11):1433–1436

Wang KH, Chang YC (2002) Cost analysis of finite M/M/R queueing

system with balking, reneging, server breakdowns. Math Meth

Oper Res 56:169–180

Wang KH, Ke JC (2003) Probability analysis of a repairable system

with warm standbys plus balking, reneging. Appl Math Model

27(4):327–336

Wang KH, Kuo CC (2000) Cost, probabilistic analysis of series

system with mixed standby components. Appl Math Model

24:957–967

Wang KH, Hsieh CH, Liou CH (2006) Cost benefit analysis of series

systems with cold standby components, a repairable service

station. Qual Technol Quant Manage 3(1):77–92

Wang KH, Chen WL, Yang DY (2009) Optimal management of the

machine repair problem with working vacation: Newton’s

method. J Comp Appl Math 233(2):449–458

Wang KH, Liou YC, Yang DY (2011) Cost optimization, sensitivity
analysis of the machine repair problem with variable servers,

balking. Proc Soc Behav Sci 25(1):178–188

Wang KH, Liou CD, Lin YH (2013) Comparative analysis of the

machine repair problem with imperfect coverage, service

pressure condition. Appl Math Model 410(1):1–37

Yang T, Lee RS, Chen MC, Chen P (2005) Queueing network model

for a single-operator machine interference problem with external

operations. Euro J Oper Res 67(1):163–178

Yuan L, Meng XY (2011) Reliability analysis of a warm standby

repairable system with priority in use. Appl Math Model

35(9):4295–4303

Yue D, Yue W, Yu J, Tian R (2009) A heterogeneous two-server

queuing system with balking, server breakdowns. Eight Int

Sympo Oper Res Appl 3:230–244

178 J Ind Eng Int (2015) 11:171–178

123


	(m, M) Machining system with two unreliable servers, mixed spares and common-cause failure
	Abstract
	Introduction
	Model description and assumptions
	Steady state equations
	Some performance indices
	Numerical results
	Conclusion
	Open Access
	References




