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Abstract Industrial forecasting is a top-echelon research

domain, which has over the past several years experienced

highly provocative research discussions. The scope of this

research domain continues to expand due to the continuous

knowledge ignition motivated by scholars in the area. So,

more intelligent and intellectual contributions on current

research issues in the accident domain will potentially spark

more lively academic, value-added discussions that will be of

practical significance to members of the safety community. In

this communication, a new grey–fuzzy–Markov time series

model, developed from nondifferential grey interval analyti-

cal framework has been presented for the first time. This

instrument forecasts future accident occurrences under time-

invariance assumption. The actual contribution made in the

article is to recognise accident occurrence patterns and

decompose them into grey state principal pattern components.

The architectural framework of the developed grey–fuzzy–

Markov pattern recognition (GFMAPR) model has four

stages: fuzzification, smoothening, defuzzification and

whitenisation. The results of application of the developed

novel model signify that forecasting could be effectively

carried out under uncertain conditions and hence, positions the

model as a distinctly superior tool for accident forecasting

investigations. The novelty of thework lies in the capability of

themodel inmaking highly accurate predictions and forecasts

based on the availability of small or incomplete accident data.

Keywords Forecasting � Manufacturing � Accidents �
Fuzzy–grey–Markov � Pattern recognition

Introduction

An industrial accident refers to an undesirable, unantici-

pated and uncontrollable event potentially capable of pro-

ducing injuries, losses of lives, asset destruction, and

disturbance to social as well as economic activities or even

leading to degradation of the environment in an industrial

system. An accident is an occurrence triggered by human

or non-human (i.e. entities, materials or emissions) in

which the worker engaged in service to the industry may be

injured. Every year, numerous literature reports are given,

which declare an increasing number of industrial accidents

globally. As a result of concerns to control accident

occurrences, accident investigations are now a vital part of

scientific reporting and a requirement by government

agencies to all industrial organisations worldwide.

Government policy stipulates proper reporting of accidents,

its control and management. Hence globally, industrial

managers are taking advantage of sound scientific studies

to adopt models for their industries bearing in mind that an

improperly planned accident control scheme could lead to

substantial monetary losses due to accident claims.

For some years now, employing industrial forecasting

models in accident forecasting relying on multiple factors has

been justified by the fact that causal factors of accidents are

attributed to human, equipment and managerial deficiencies
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(Cooke and Rohleder, 2006; Mohaghegh et al. 2009; Rath-

nayaka et al. 2011). Although proponents of models further

justify the use of multiple causal factors, they also acknowl-

edge that their degrees of interactions are also complex

(Qureshi 2008; Stringfellow 2010). Unfortunately, since the

institution of multivariate scales in the prediction and fore-

casting of industrial accidents, there has been a broad-spec-

trum of criticisms regarding the existence of unsatisfactory

results. The problems of multivariate models are due to (1)

inability to thoroughly capture the levels of interactions; (2)

uncertainties; (3) randomness (Mao and Sun 2011); and (4)

imprecision (Zheng and Liu 2009) inherent in accident causes

and occurrences. In the sense of solving the problems

attributed to multivariate models, the classical univariate

prediction models (UPMs) were developed. UPMs are clas-

sical predictive models such as auto-regression and integrated

moving average (ARIMA), exponential smoothing (ESM)

and moving average (MA) adapted and applied in industrial

accident forecasting (Kim et al. 2011; Kang et al. 2012;

Aidoo and Eshun 2012). Scholars, however, also significantly

criticised UPMs, in recent times. According to the literature,

these mentioned models have not been entirely accurate in

their applications to forecasting industrial accident occur-

rences. The drawbacks attributed to these models are as fol-

lows: take the case of MA, a constant mean of occurrence is

assumed. However, this may not be true in practical instances

of real-time occurrences. Another weakness of UPMs may be

picked from the ARIMA model. It requires the availability of

extensive data sizes to be able to make dependable predic-

tions (Brockwell and Davis 2002). But this requirement of a

large data size in the industrial world characterised by rapid

information changes is a luxury that may be difficult to attain.

In addition, accessing information in less industrially devel-

oped economies is quite challenging and such models may

not be applicable in such environments.

Thus, for the aforementioned issues, we consider both

UPMs and multivariate prediction models inappropriate for

industrial accident forecasting. Yet there must be progress

in the field. As the world experiences breakthrough in

research on soft computing tool, more areas in science and

technology are adopting these tools in their areas. There-

fore, more recently, there has been a huge shift in focus

towards accident occurrence prediction using non-tradi-

tional artificial intelligence (NTAI) forecasting approaches.

With NTAI, new knowledge frontiers have been given

birth to, expected to radically explode to benefit members

of the industrial accident community. Models such as the

artificial neural network (ANN) (Zheng and Liu 2009;

Oraee et al. 2011), genetic algorithm (GA) (Farahat and

Talaat 2012); grey (GM) (Jiang 2007; Lan and Ying 2014),

grey–Markov model (Zhang 2010; Mao and Sun 2011;

Huang et al. 2012a, b) and fuzzy time series models

(FTSMS) (Khev and Yerpude 2015) have been employed

in their original or modified forms for forecasting accidents

which occur during mining, construction, transportation

and processing activities. The results obtained from these

model applications in industrial accident forecasting have

also been very encouraging.

The organisation of the current work is as follows: the

motivation and study objectives are stated in Sect. 1. A review

of the literature is presented in Sect. 2. Sections 3, 4, 5, 6, and 7

are devoted to discussing the methodology of the proposed

model. Model tests and validation results and discussion are

given in Sect. 8. Conclusions concerning the model are shown

in Sect. 9 alongside related future research directions.

Related literature

The application of grey, fuzzy and Markov principles in

forecasting, as single concepts or merged together in dif-

ferent combination formats has begun to gain increasing

popularity in recent years. In this section, a review of lit-

erature is given. Grey–fuzzy–Markov (GFM) forecasting

technique is a hybrid model which combines the charac-

teristics of the grey, fuzzy and Markov models. GFM

models have been developed based on the understanding

that hybrid models have greater forecasting potentials than

single evaluation models (Li and Li 2015). GFMs have

found applications in areas such as electrical load analysis

(Asrari et al. 2012) and biofuel production (Geng et al.

2015). The grey aspect of the GFM has its major focus on

uncertainty inherent in sparsely available information (Deng

1982; Liu 2011). The model has been deeply explored for

forecasting purposes and is evident by the development of

several forms of it. Generally, a grey system can be math-

ematically expressed as

a0� 2 a
_
; a
^

h i
ð1Þ

a0� is a crisp value or an interval and exist as a component

of a base set or interval ½a_; a^�. Basic arithmetic, properties

such as addition and multiplication as well as associative

and commutative properties also apply in grey systems

analysis (Hickey et al. 2001; Arroyo et al. 2011).

Two general forms of grey models, namely differential

transfer function-based models (DTFM) and interval

arithmetic-based models (IAM) have been mainly

employed in areas such as energy consumption, finance and

equipment degradation for crisp value forecasting (Kaya-

can et al. 2010; Tangkuman and Yang 2011; Mostafaei and

Kardooni 2012) and interval forecasting (Garcia-Ascanio

and Mate 2010; Zhao et al. 2014), respectively. DTFM

involves the use of sequence operators (Liu et al. 2016) and

unique mathematical representations to describe inputs and

outputs under the assumption of exponential data
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behaviour. The most popularly employed grey model is the

GM(1,1). It has been used in its pure form (Zhao et al.

2014; Tong 2016) or modified forms (Mao and Chirwa

2006; Jiang 2007; Zhang 2010; Mao and Sun 2011) for

accident forecasting. The IAM involves the application of

mathematical operations on grey intervals created from

data to produce degeneration or interval forecast. The

presence of the grey component, GFM, enables it to make

accurate forecasts in the presence of limited and incom-

plete data, the fuzzy component of the model functions to

eliminate the problem of vagueness and uncertainty in data

(Chen and Hsu 2004; Kher and Yerpude 2015), while the

Markov component deals with problems concerning fluc-

tuating and random occurrences (Geng et al. 2015).

Generally, the procedure of GFM forecasting using the

GM(1,1) as part of its component involves three major

stages (Huang et al. 2012a, b; Li and Li 2015).

Stage 1: Building the grey model

This involves:

1. The creation of a time sequence for the set of available

collection of industrial accident data

xo ¼ ðxo1; xo2; xo3; . . .; xonÞ ð2Þ

2. Passage of the created sequence into an accumulated

generating operation (AGO).

A modified sequence is obtained in the process

x
0 ¼ ðx0

1; x
0

2; x
0

3; . . .; xnÞ ð3Þ

x
0

i ¼
Xi
k¼1

x
0

kfk ¼ 1; 2; 3; . . .; ng ð4Þ

3. Establishment of a grey differential equation

dx
0
i

dt
ax

0

iðtÞ � b ¼ 0 ð5Þ

4. Solving to obtain the grey parameters a and b, GM(1,1)

forecast is then obtained as

xGkþ1 ¼ ðxo1 � ðb=aÞlakÞ ð6Þ

Stage 2: Fuzzy classification of grey model errors.

This involves the linguistic classification of the per-

centage errors ek of each model forecast into j number of

classes carried out under the assumption of time invariance

data behaviour (Sullivan and Woodward 1994). By the use

of membership functions, the membership of ek in each

fuzzy class m lðek;mÞ;m : 1:2:3; . . .; j½ � is established.

Huang et al. (2012a, b) and Li and Li (2015) employed the

maximum membership principle max lðek;mÞ½ � to estab-

lish the actual fuzzy class in which ek belongs.

Stage 3: Markov state transition

On the assumption that m m : 1; 2; 3; . . .; jð Þ exist as a

Markov chain of states sm bounded by ðsmL; smUÞ, a Markov

transition matrix which shows the probability of transition

of the state in which ek belongs is sðekÞ, from its current

state y to another state z ðPyzÞ in t stepwise time order is set

up:

Pt

Pt
11 Pt

12 Pt
13 Pt

1j

Pt
21 Pt

22 Pt
23 Pt

2j

Pt
31 Pt

32 Pt
33 Pt

3j

. . . . . . . . . . . .
Pt
j1 Pt

j2 Pt
j3 Pt

jj

2
66664

3
77775
; ð7Þ

where

Pt
yz ¼

Mt
yz

Pj
z¼1

Mt
yz

ð8Þ

where Mt
yz is the number of transitions from state y to state

z.

Stage 4: GFM model forecast

1. Based on the redistribution of fuzzy errors from the

Markov transition technique, the fuzzified form of the

forecast error lðenþ1;mÞ is then obtained as

lðenþ1;mÞ ¼ Plðek;mÞ ð9Þ

2. Subsequent defuzzification of lðenþ1;mÞ produces the
crisp value of the forecast error enþ1

enþt ¼ 0:5
Xj

m¼1

lðenþt;mÞðsmL þ smUÞ ð10Þ

3. The GFM forecast for time step t is finally obtained as

Ynþt ¼
xGnþt

ð1� enþtÞ
ð11Þ

Using this technique, Huang et al. (2012a, b) employed

a dynamic grey model in detecting the dynamic trend of

accident fatalities in the construction industry. Li and Li

(2015) used an unbiased GM (1,1) based GMF in also

forecasting construction accidents.

This technique has been shown to improve on GM(1,1)

and grey–Markov model prediction accuracies. However,

the degree of prediction accuracies is limited. This is

because the technique is actually directed at grey model

prediction correction and as such, their prediction accura-

cies are directly dependent on the prediction accuracy of

the grey model base. Thus, situations may exist in which

GFM variants may not make be able to make forecasts that

show significant improvement over those of the GM(1,1)

base component.

In addition, Markov-chain transition analysis using the

classical Markov state probability matrices and relations

only provide general information on data dynamics. This is

because the approach requires the availability of specific
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pre-existing states having similar characteristics to the

current state occurrences. Thus, in using the technique, it

may be difficult to detect sudden and previously non-ex-

isting changes in data behaviour. This is most obvious

in situations of increased randomness and fluctuation in

accident occurrences as well as limited availability of

historical data. This renders the model incapable of pro-

viding satisfactory future transition probabilities in such

situations.

This paper develops a grey–fuzzy–Markov industrial

accidents forecast model for small or incomplete accident

data availability situations using non-differential function

grey interval analysis, fuzzy logic, variation conditioning

and a state transition approach which aims to capture

unique accident occurrence characteristics. The aim of the

work is to create a standalone GFM model capable of

making accurate industrial accidents forecasts.

The model’s development is founded on its ability to

recognise accident occurrence variation patterns. These

patterns are then decomposed into certain principal pattern

components identified in this paper. The results obtained

from this knowledge is passed through a fuzzification

process and rigorously treated to minimise noise in the

fuzzy data. A decomposed state transition approach

(DSTA) analogous to the classical Markov state transition

approach is subsequently developed and used in detecting

future accident vibrations and forecasts are then made in

the process.

The validation of the model’s existing value and future

accident prediction capabilities is done using the in-fit-

sample and out-of-sample performance evaluation tech-

niques, respectively. It is believed that this novel approach

to industrial accident forecasting will aid proper anticipa-

tion, planning, control and management of future accident

occurrences in industrial organisations on the one hand,

and also provide a promising alternative tool to forecasting

under uncertain conditions on the other.

The current paper makes a major contribution to the

creation of a unique accident occurrence pattern recogni-

tion technique based on GFM inferences which acknowl-

edge the significance of uncertainties. As such, the current

paper contributes to the discussion on accident uncertain-

ties, which has the interest of accident scholars and also

grey–Markov–fuzzy theorists generally.

Industrial accidents forecasting, as argued in this paper,

is central to the attainment of industry’s stability and a

guarantee to survive in the long run since litigation fees

resulting from accidents could be reduced to the barest

minimum through the adoption of a merit-driven fore-

casting technique. Nevertheless, the grey–fuzzy–Markov

pattern recognition model has rarely been employed to

improve forecasting and prediction of industrial accidents

in industrial organisations. The authors found a number of

papers applying only grey–fuzzy–Markov (Asrari et al.

2012; Geng et al. 2015) in the scientific literature with

limited applications to the analysis of electrical and biofuel

production, for instance. Industrial accident forecasting has

not been tackled in grey–fuzzy–Markov literature. A key

issue is that pattern recognition has been under-researched.

This shows that the development of grey–fuzzy–Markov

pattern recognition framework and the philosophical theory

behind it in the context of industrial accidents is a sure gap

filled in accident literature.

Methodology

The motivation for the creation of the grey–fuzzy–Markov

pattern recognition prediction (GFMAPR) model arose from

the observation on preliminary analysis that randomly

summative and multiplicative relationships existed between

industrial accidents data at different points within an existing

data set. The need for the use of fuzzy logic was obvious as

it was clearly difficult in employing classical mathematical

approaches in understanding such data relationship.

Acronyms, notations and model assumptions

Acronyms

CPI Comparative performance index

CPS Cumulative pattern swing

CVSM Cumulative variation swing magnitude

DSTA Decomposed state transition approach

FAC Forecast acceptability criterion

GFMAPR Grey–fuzzy–Markov pattern recognition

MDR Multiplicative data relationship

SDR Summative data relationship

PE Performance evaluation

VPCPS Variation principal component pattern swing

FGM Fuzzy–grey–Markov

Notations

x Available historical data

d First-level historical data variation

z Cumulative sum of d

s Markov states for periodic z values

sL Lower Markov state bound

su Upper Markov state bound

r Markov states partitioning index

x First-level variation Markov state width

l Fuzzy membership value for Markov states

x̂ SDR analysis forecast
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d Periodic change in historical data variation
�D Second-level variation class

rLj Future second-level variation value for r pattern

swing

qðqÞ Polarity of variable q

qiðqÞ Variable q of positive or negative polarity i

kmax Maximum number of Markov states

EC
cur

Current escalation cumulative swing magnitude

UC
cur

Current closure-lag cumulative swing magnitude

C Proximity score index

k Cumulative variation pattern swing magnitude

:¼ Equal by definition

$ Same as

l Not the same as

# Cardinality of set

i; j; k;m Various subscripts representing the periodic

state, condition or value of any described

variable

� Superscript which denotes variables of MDR

analysis

Model assumptions

1. Available historical data are randomly occurring and

of non-stagnant pattern occurrence feature.

2. Information available for analysis is unique to that

system and different in characteristics and behaviour to

that of other systems.

3. There is always a summative or multiplicative varia-

tion relationship or both existing within any available

historical dataset.

4. Second-level variations process has strictly non-static

characteristics.

5. A time invariance nature of data exists (Sullivan and

Woodward 1994).

GFMAPR: the concept

To be able to develop GFMAPR, two grey–fuzzy–Markov

analysis methods, namely summative data relationship

(SDR) analysis and multiplicative data relationship

(MDR) analysis were carried out on two differently pre-

pared versions of historical data. Grey probable forecasts

were subsequently generated from the SDR forecast

interval and cross-checked with MDR forecast interval

expectations. Based on a set criterion of acceptability,

probable forecasts which fell within SDR and MDR

interval intersection space were further analysed using a

whitenisation procedure to produce the crisp forecast. An

outline of the GFMAPR concept is presented in Fig. 1.

The procedure for determining the SDR and MDR will be

discussed independently in subsequent sections of this

paper.

Procedure for the SDR determination

The analysis to determine the SDR is discussed in this

section using the outline in Fig. 1.

SDR preparation

Data preparation is the first stage in the SDR process. This

stage involves the application of the AGO. At this stage,

available historical data xð1;nÞfxi : i ¼ 1; 2; 3; . . .; ng were

converted into a set of values zifi ¼ 1; 2; 3; . . .; ng by a

cumulative summation of their variations. This is the first-

level variation analysis.

zi ¼
zi�1 þ d fi ¼ 2; 3; . . .; ng
di fotherwiseg

�
ð12Þ

di ¼
xi � xi�1 fi ¼ 2; 3; . . .; ng
0 fotherwiseg

�
ð13Þ

Creation of summative variation states

Based on results obtained, a set of grey states sk was cre-

ated to accommodate zi. In creating sk, consideration was

given to the dynamic nature of xi evidenced in zi To be able

to reflect the current characteristics of data, a position

influenced state interval x, assumed uniform for all states

was created

x ¼
Pn�1

i¼1

p2jzi � ziþ1j
� �,

r
Pn�1

i�1

p2 ð14Þ

where x is the parameter which is used to adequately

express the relationship between xi and xiþ1. Thus, the

accuracy of GFMAPR is strongly dependent on x.
Obtaining this value requires that two values p and r must

be supplied in Eq. (14). p indicates the position charac-

teristic of xi in the data set and r is the set partitioning

index. p and r have to be determined.

Following preliminary investigation of some industrial

accident occurrence data, p was taken in this work as a

constant and fixed as

p ¼ i2 ð15Þ

r was considered a variable and arbitrarily fixed at an

initial value of 4. sk were thus created as follows:

sk :¼ ðsLk ; sUk Þ ð16Þ

sk :¼
ðz1; z1 þ xÞ fk ¼ 1g

ðsk�1; sk�1 þ xÞ fotherwiseg

�
ð17Þ

The state creation procedure is terminated at kmax given

that sUk �maxðziÞ: To reduce the problem of overestimating

the terminal state, s � ½s� ¼ skðk ¼ kmaxÞ�
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is defined as

s� :¼ ðsLk ;maxðziÞÞ k ¼ kmax; ðmaxðziÞ � sLk Þ
�
x

� �
[0:75

n o

ð18Þ

sL1 ; s
U
k ðk ¼ kmaxÞ

� 	
was adopted as the initial universe of

discourse in this work. At this stage r ¼ 4 is not considered

as the value that provides the most satisfactory interval

width x. The procedure that modifies the universe of dis-

course by searching for the most satisfactory x was

undertaken. This is discussed later.

Fuzzification and reclassification of summative

variations

The need to locate zi more precisely within sk necessitated

the fuzzification of zi. Due to its simplicity and ease of use,

the triangular fuzzy membership function was adopted for

the fuzzification procedure in this work. Membership

functions for derived sk membership classes are presented

in the following equations:

where lðzi; kÞ represents the fuzzy membership values of zi
in sk and ak are the midpoints of fuzzy sets

sk i ¼ 1; 2; 3; . . .; n; k ¼ 1; 2; 3; . . .; kmaxð Þ:

Historical data

Whitenisation procedure
Screening to obtain FGMaPR multiple points 
forecast based on an acceptable SDR and MDR grey 
state space intersection criterion

FGMaPR crisp value forecast determination

Multiplicative data relationship (MDR) 
analysis 

Summative data relationship (SDR) analysis

First level variation (FLV) analysis: Cumulative 
Summative variation determination 

Grey states FLV classification and fuzzification 

Fuzzy SLV forecast(s) defuzzification 

First level variation (FLV) analysis: Comparative 
historical data variations determination 

Determination and fuzzification of second level 
variations (SLV) 

Transition analysis to obtain fuzzy SLV 
forecast(s)

Fuzzy forecast FLV state (s) determination

Fuzzy forecast FLV state (s) defuzzification

Grey states FLV classification and fuzzification 

Determination and fuzzification of second level 
variations (SLV) 

Transition based analysis to obtain fuzzy SLV 
forecast(s)

Fuzzy SLV forecast(s) defuzzification 

Fuzzy forecast FLV state (s) determination

Fuzzy forecast FLV state (s) defuzzification

Fig. 1 Outline of the FGMaPR

forecast concept

lðzi; kÞ ¼
1 fzi\ak; k ¼ 1g
ðzi þ 0:25ak � 1:25akþ1Þð1:25½ak � akþ1�Þ�1 fak 	 zi 	 akþ1; 1	 k	 kmax � 1g
0 fotherwiseg

8<
: ð19Þ

lðzi; k þ 1Þ ¼
0 fotherwiseg
ðak � ziÞð1:25½ak � akþ1 �Þ�1 fak 	 zi 	 akþ1; 1	 k	 kmax � 1g
1 fzi [ ak; k ¼ kmaxg

8<
: ð20Þ
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The actual state in which zk belongs after fuzzification

was subsequently relocated as

s
;
i ¼ sk½maxðlðzi; kÞÞ� ð21Þ

In-fit-sample forecasts produced by this state classifi-

cation procedure was then obtained using the following

equation:

x̂i ¼
�s;i þ xi fi ¼ 1g
�s;i � �s;i�1 þ x̂i�1 fotherwiseg

�
ð22Þ

where �s;i is the midpoint value of s
;
i.

Equation (22) expresses the summative relationship

which exists within any given set of historical data related

to their variations.

Although the approach establishes that a relationship for

a historical data set existing within period n, it cannot be

directly employed in forecasting for periods existing out-

side the historical data window due to the time-invariant

data assumption made. The rest of the work is directed at

the analysis of the time-invariant model towards obtaining

GFMAPR future value forecasts.

Second-level variation analysis and classification

of degree of variation

Let variation of zi from its current state s
;
i of state number

kðsk ¼ s
;
iÞ to its terminal state s

;
iþ1 of number kðsk ¼ s

;
iþ1Þ

be represented by di;iþ1. That is,

di;iþ1 ¼ kðsk ¼ s
;
iÞ � kðsk ¼ s

;
iþ1Þ fi ¼ 1; 2; 3; . . .; n� 1g

ð23Þ

di;iþ1 indicates the periodic change in first-level variation

within data. Subsequently, the relationship that exists

within di;iþ1 was investigated.

Fuzzy classification of the second-level variations

Preliminary investigation led the classification of the sec-

ond-level variation (change in the first level) variation

di;iþ1 into four fuzzy classes Cb ðb ¼ 1; 2; 3; 4Þ namely:

small-level variation (SV), small to medium level variation

(SMV), medium to large level variation (MLV) and large

level variation (LV). Fuzzy classes based on a trapezoidal

membership function di;iþ1Z were created for these lin-

guistic classes.

l di;iþ1



 

;C1

� �

¼

1 di;iþ1



 

	 h1m
 �

�10
di;iþ1



 


m

� �
� h1

� �
þ 1 h1m\ di;iþ1



 

	ðh1 þ 0:1Þm
 �

0 fotherwiseg

8
>>><
>>>:

ð24Þ

lð di;iþ1



 

;Cb½b ¼ 2; 3�Þ

¼

10 di;iþ1



 

=m� 	
� hb � 1

� �
fhb�1; di;iþ1



 

	ðhb�1 þ 0:1Þmg
1 ðhb�1 þ 0:1Þm\ di;iþ1



 

	 hbm
 �

�10 di;iþ1



 

=m� 	
� hb

� �
þ 1 hbm\ di;iþ1



 

	ðhb þ 0:1Þm
 �

0 fotherwiseg

8>>>><
>>>>:

ð25Þ

lð di;iþ1



 

;C4Þ

¼
10 di;iþ1



 

=m� 	
� h3

� �
h3m\ di;iþ1



 

	ðh3 þ 0:1Þm


1 di;iþ1



 

[ h3 þ 0:1Þ
 �

0 fotherwiseg

8><
>:

ð26Þ
hb ¼ 0:25b ð27Þ

m ¼ max di;iþ1



 

�min di;iþ1



 

 fdi;iþ1 6¼ 0g ð28Þ

In addition, employing the maximum membership

principle, the actual fuzzy class in which di;iþ1



 

 belongs
was obtained as

C di;iþ1



 

� �
¼ max l di;iþ1



 

;Cb

� �� �
ð29Þ

Employing Eq. (29), crisp representatives, Dðdi;iþ1Þ of

C di;iþ1



 

� �
were subsequently employed for further

analysis.

�D ¼
b di;iþ1



 

� �
¼ C�

b; di;iþ1 [ 0
 �

�b di;iþ1



 

� �
¼ C�

b; di;iþ1\0
 �

0 fotherwiseg

8<
: ð30Þ

C�
1 ¼

C1f g #C1 [ 0f g
fC2g fotherwiseg

�
ð31Þ

C�
t ¼

Ct #fCt; t ¼ 2; 3g[ 0f g
Ct�1 [ Ctþ1 fotherwise t ¼ 2; 3g

�
ð32Þ

C�
4 ¼

C4f g #C4 [ 0f g
fC3g fotherwiseg

�
ð33Þ

Expressions (31), (32) and (33) were developed to

account for situations of shock occurrences. In such cases,

it is possible for intermediate variation classes to be non-

existent, in the presence of higher variation classes. The

relations function in smoothening variation levels.

It can be observed that although the SLV was fuzzified,

crisp values were employed as the representation of each

linguistic class or interval. Thiswasmade necessary due to the

need to undertake grey analysis on the set of fuzzy classes.

Treatment of data to account for static second-level

non-variation situations

The non-static SLV assumption employed in this study

allows consideration to be given only to non-zero di;iþ1 as

can be observed in expressions (28). However, situations in
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which di;iþ1 ¼ 0 do occur and non-zero �D di;iþ1

� �
equiva-

lents must exist for such situations. To surmount this

challenge, smoothing procedures for three different sec-

ond-level non-variation scenarios were introduced. These

are presented in ‘‘Appendix A’’.

At the end of the smoothing procedure, let the

smoothened values of �Dj be represented by �D
00

j .

Pattern principal component analysis

This stage of the SDR analysis was undertaken in five sub-

stages, namely (i) identification of variation principal

component pattern swing (VPCPSs) from the grey form of

the fuzzy data obtained from previous analysis. (ii)

Determination of directions for expected future VPCSPS

swings. (iii) VPCSPS swing value adjustments. (iv)

Determination of expected future VPCSP values. (v) Veri-

fication and adjustment of expected future VPCSPs values.

These are treated in this section.

Note that the term ‘‘pattern swing’’ will be used inter-

changeably with VPCSPs in the course of this discussion.

Identification of data variation principal component

pattern swings

Based on the preliminary analysis of several industrial

accidents historical data and information, the observation

that industrial accidents mostly exhibit randomly trending

or fluctuating characteristics or a combination of both were

made. Another major feature also observed was that of the

presence of various degree randomly occurring shocks

within data. Figure 2 shows a cross section of real-time

industrial accident occurrences.

Employing these observations, five unique fuzzy

VPCPSs which exist in any characteristic variation curve

were identified as open (OL), escalation (EL), exact-closure

(CL), closure-lag UL½ � and closure-lead VLð Þ. Letting each
�D;;
j be the periodic swing magnitude for all periods j the

various VPCPSs are defined below:

1. Open pattern swing: This is taken in this work as the

next variation swing in the time j given that the

previous cumulative variation swing magnitude

(CVSM)kj�1 is equal to zero. OL can exist at variation

curve points occurring immediately after two swings of

equal magnitude and opposite poles have offset each

other. It can also occur as the sum of swing magnitudes

�D
00

j and kj�1 given that both have opposing poles and

the latter is of lesser absolute magnitude.

OL
j ¼

�D
00

j fkj�1 ¼ 0g
VL
j kj�1



 

	 �D
00

j








; kj�1 6¼ 0;A

n o

0 fotherwiseg

8><
>:

ð34Þ

2. Escalation swing: this is a type of variation swing �D
00

j

that occurs when kj�1 6¼ 0 with both having the same

polarity.

EL
J ¼

�D
00

j

0

fkj�1 6¼ 0;Bg
fotherwiseg

(
ð35Þ

3. Exact-closure swing: this is expressed as the value of

�D
00

j with magnitude equal to kj�1 but opposite in

polarity.

CL
j ¼ �kj�1 f kj�1



 

	 �D
00

j








; kj�1 6¼ 0;A

0 fotherwiseg

(
ð36Þ

4. Closure-lag swing: this is the value of �D
00

j with

magnitude less than kj�1 but opposite in polarity.

UL
j ¼

�D
00

j f kj�1



 

[ �D
00

j








; kj�1 6¼ 0;A

0 fotherwiseg

(
ð37Þ

5. Closure-lead swing: this is the value of �D
00

j with

magnitude greater than kj�1 but opposite in polarity

VL
j ¼ kj�1 þ �D

00

j

� �
f kj�1



 

\ �D
00

j








; kj�1 6¼ 0;A

fotherwiseg

(
:

ð38Þ

Simultaneously, pattern swing occurrence indicators

F rLj

n o
were obtained as

F rLj

n o
¼ 1 rLj 6¼ 0

n o

0 fotherwiseg

(
ð39Þ

where; A ¼ qð �D00

j Þ l qðkj�1Þ ð40Þ

B ¼ qð �D00

j Þ $ qðkj�1Þ ð41Þ

kj ¼
Xj

k¼1

�D
00

k ð42ÞFig. 2 Cross section of real-time industrial accidents occurrence

patterns Sources: (Kher and Yerpude 2015; Okoh and Haugen 2014;

Shin 2013; Docstoc 2013)
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j ¼ 1; 2; 3; . . .; n; r 
 O;E;U;V

Determination of future pattern swing direction

Variation patterns in this work are generally considered to

swing along increasing and decreasing directions.

Increasing and decreasing pattern swing directions can be

positive or negative at any time depending on current

opening pattern swing properties. What is important to note

is that while some patterns may swing in a certain direc-

tion, others may produce reverse swings. On the basis of

this understanding, VPCPSs were then grouped according

to the similarity in their ability to swing in the same

direction given their presence in data. For example, if the

most current swing is in the positive direction and favours

an escalating pattern, then if a closing-lag pattern is

anticipated as an expected future occurrence, its swing

polarity must be in the direction opposite to the escalating

pattern and its magnitude must result in a decrease in the

current CVSM. Table 1 shows the grouping of pattern

swings according to the effect of their swing values on the

CVSM.

The expected future pattern swing values and directions

are dependent on the magnitude and direction of the current

CVSM (kcur), the current cumulative pattern swing(CPS)

value Pcur and pattern swing impulses rIcur; r
I
min and rImax:.

kIcur and Pcur were, respectively, obtained as

kcur ¼
Xn
j¼1

�D00
k ð43Þ

Pcur ¼
Xp

j¼n

rLj F rLn
 �

¼ 1; q rLj

� �
$ q rLj�1

� �n o
ð44Þ

p ¼ j q rLj

� �
l q rLjþ1

� �n o
ð45Þ

kcur values are given primary consideration in the

determination of future variations swings. When kcur = 0,

then a future open pattern swing is expected. Pcur and

related impulses are employed for future variation swing

determination analysis when kcur 6¼ 0.

Pcur is used in determining the pre-expected future

pattern swing direction for each pattern qi rf
� �

(Table 2).

For example, given Pcur EL
cur

� �
, that is, the current CPS

being an escalation, if qþ Pcurð Þ is the existing current

swing direction, then, the pre-expected future pattern

direction for a closure-lag UL
f will be the reversed polarity

of the former.

Pcur can only exist for a single VPCSPs

rLcur r : O� E � C � U � Vð Þ
� 	

. However, a situation can

occur in which CL
n and VL

n may exist within that same

period due to their overlapping characteristics. In such

situations, a preference to obtain Pcur and q Pcurð Þ from VL
j

is usually made.

Pattern swing impulses and related parameters are used

in the detecting expected future pattern swings. It is the

final stage of the future pattern swing determination. These

parameters are obtained from adjusting pattern swing val-

ues. The procedures for obtaining them differ from one

VPCPS to another. The next section is devoted to dis-

cussing this.

Pattern swing magnitude adjustments

A rigorous adjustment process was employed in preparing

pattern swing values for future swing estimation. Two

adjustment procedures were employed. One procedure was

carried out on the basis of CPS impulse and magnitude of

occurrence, while the other was undertaken on the basis of

the most frequently occurring pattern swings. The two

procedures are presented next.

SDR parametric estimation and adjustment based on

current and maximum cumulative swings After the split

of �D00
J into VPCPSs, parameters related to the duration of

swings, recognised as being important for SDR future

value analysis were obtained. These parameters are the

current CPS impulses for escalation EI
cur and closure-lag

UI
cur; the maximum and minimum variation pattern swing

impulses for escalation EI
max;E

I
min

� �
, exact-closure

Table 1 VPCPSs grouped according to similarities in swing

magnitude

Patterns rð Þ Expected swing magnitude

OL;EL Increasing absolute CVSM

UL;CL Decreasing absolute CVSM

VL Decrease to zero, then increasing absolute CVSM

Table 2 VPCPSs grouped to show future swing direction given

current swing

Direction

Current CPS Pcur rLj

� �
Expected future swing direction qi rLf

� �

Pcur rLj

� �
fr : O;E;Vg q rLf

� �
$ q Pcurð Þfr : O;E;Vg

Pcur rLj

� �
fr : O;E;Vg q rLf

� �
l q Pcurð Þfr : U;Cg

Pcur rLj

� �
fr : O;Cg q rLf

� �
$ q Pcurð Þfr : U;Cg

Pcur rLj

� �
fr : O;E;Vg q rLf

� �
l q Pcurð Þfr : O;E;Vg
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CI
max;C

I
min

� �
and closure-lag UI

max;U
I
min

� �
properties. The

relations employed for obtaining these are provided in

‘‘Appendix B’’.

In addition, parameters related to actual current and

current equivalent cumulative pattern swing magnitudes

E�L
cur;E

hL
cur, U

�L
cur and UhL

cur were also determined. Before these

were achieved EL
j and UL

j were adjusted to become E�L
j and

U�L
j . This was based on the understanding that due to the

fuzzy nature of the variation properties, there exists the

tendency for escalation and closure-lag properties to overlap

and potentially occur within respective open and closing

swings. These properties were identified and extracted from

the respective mother set patterns into their respective sub-

sets. The relations for achieving this are presented in ‘‘Ap-

pendix C’’. The current and current equivalent cumulative

swing magnitudes for the adjusted escalating and closing lag

swings were subsequently estimated (‘‘Appendix D’’).

Furthermore, there was also the need to update the

respective VPCPSs values to reflect their magnitudes in the

current period. The update was carried out as follows:

rL hj ¼ maxðjrLj jÞfj �D
00

j j[ jrLj jg
j �D00

j j

(
fr :¼ O;E�;C;U�g

ð46Þ

VL h
j ¼ max jOL

j þ VL
j j

� �
j �D00

j j[ jOL
j þ VL

j j
n o

j �D00

j j

(
ð47Þ

With all the estimated parameters and adjustments

made, future variation pattern swings were expected to

occur based on the set of logical rules presented in Table 3.

Adjustments based on most frequently occurring swing

values

All pattern swing value adjustments made on the basis of

their swing value frequencies ðr/J Þ require a similar proce-

dure. However, determining O
/
J demands a slightly modi-

fied procedure. The steps required for obtaining, E
/
f ,C

/
f ,U

/
f

and V
/
f are outlined below followed by the modified form of

the procedure developed for obtaining O
/
j .

a. Procedure for obtaining any of E
/
f ,C

/
f ,U

/
f and V

/
f

Step1: identify qi rLf

� �
.

Step 2: employ qi rLf

� �
in obtaining rLmax

rLmax ¼
max r

Lb
j

� �
r
Lb
j [ 0; qþ rLf

� �n o

� max jrLbj j
� �� �

r
Lb
j \0; q� rLf

� �n o
8<
: : ð48Þ

Step 3: replace all r
Lb
j values having polarities in reverse

of qi rLf

� �
and convert data into absolute values.

r
�Lb
j ¼

jrLmaxj q r
Lb
j

� �
l q rLf

� �n o

jrLbj j q r
Lb
j

� �
l q rLf

� �n o
8<
: : ð49Þ

Step 4: identify the values of r
�Lb
j which account for 75%

of the set on the basis of the most frequent swing magnitude

values. Let the set for which the required data exist be fS75g
and bifi ¼ 1; . . .; i�g be the members of fS75g.

Step 5: update r
�Lb
j to eliminate swing values that do not

belong in fS75g

r
/
j ¼

r
�Lb
j r

�Lb
j 2 fS75g

n o

bi min jr�Lbj � bij
� �h i

otherwisef g

8<
: : ð50Þ

Step 6: determination of future pattern swing.

This is the final stage of this procedure. The techniques

developed and used for estimating rLj is discussed in the

next subsection.

b. Procedure for obtaining O
/
j

Notice from Table 3 that when the swing existing in the

most current period results in a cumulative swing magni-

tude of zero, then the expected future swing automatically

becomes an open swing. In such a situation, the implication

is that there is no certainty on the direction of the next

variation in swing. In respect of this, step 1 of the above

Table 3 Logical rules guiding

type of future variation pattern

occurrence

Expected future pattern occurrence Conditions favouring pattern occurrence

OL
f

kcur ¼ 0

EL
f kcur 6¼ 0 ;A; ðEI

cur þ 1	EI
maxÞ � ðEhL

cur [ jE�L
curjÞ

CL
f ;U

L
f ;V

L
f

kcur 6¼ 0;A;B

UL
f kcur 6¼ 0 ;A; ðUI

cur þ 1	UI
maxÞ � ðUhL

cur [ jU�L
curjÞ

A 
 9r : FðrLj Þ ¼ 1 q rLj

� �
$ q rLf

� �n o
ðr :¼ O;E;C;V ;UÞ

B 
 CI
min � 1� 0 CI

min 6¼ 0
 �
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adjustment procedure loses its relevance. Determination of

rLmax in step 2 is modified thus,

OL
max ¼ max jOLb

j j
� �

ð51Þ

Step 3 to step 6 of the previous procedure is maintained

and applied as previously discussed.

Future pattern estimation using decomposed state

transition approach (DSTA)

The DSTA involves the creation of various transition pat-

terns. If any of the created patterns are dominant within r
/
j

then it is most likely that r/cur will transit from its current

state to a future state rLf via the dominant pattern.

Four different pattern transition techniques were devel-

oped for this purpose. The techniques are (i) same state

pattern switch, SSPS a1ð Þ; (ii) cross state pattern switches

CSPS a2ð Þ; (iii) pattern span measure, PSM a3ð Þ, and (iv)

static dominant patterns, SDP a4ð Þ. Only one of the first

three techniques can be employed during any SDR analy-

sis, while a4 is an inclusive technique adopted for detecting
overwhelming static pattern occurrences that cannot be

detected by the other three. We proceed to discuss how the

methods are developed, the procedure employed in

choosing the most appropriate technique for determining rLf
and the application of the chosen technique.

Application of the concept of Markov transition

in developing the DSTA

The four future VPCPS determination techniques were

derived by investigating series of swing patterns chains

produced by periodic changes in r
/
j values. Let r

/
j exist as a

Markov chain. Also, let cj;jþ1 be the link chain produced by

r
/
j ! r

/
jþ1, while cj;jþ1 ! ccur�1;cur is the link chain pro-

duced by r
/
j ! r

/
jþ1 ! r

/
jþ2 ! � � � ! r/curr. With respect to

the future swing pattern estimation techniques, the fol-

lowing link chains were considered in this study:

cj;jþ1 ! cj;jþ2

If investigating for a1 and a2 ; j ¼ 1; 2; 3; . . .; n� 3f g
ð52Þ

cj;jþ1

If investigating for a3 and a4 ; j ¼ 1; 2; 3; . . .; n� 2f g
ð53Þ

Each periodic link chain investigated revealed a type of

swing pattern existing within it subject to certain confir-

matory conditions. The frequency of swing pattern occur-

rence Fd within each link was subsequently computed for

the four techniques developed. Finally, the probability of

VPCPS transition from its most current period to the future

period was determined by computing the pattern occur-

rence strength index Id using the link chain analysis. The

developed pattern recognition methods are fuzzified com-

ponent elements of the Markov transition technique and

function by determining the next transition state from the

previous (only a single step transition was considered in

this work). The methods and procedure for achieving this

are outlined next.

Methods and procedure for obtaining the most dominant r
/
j

transition technique

1. Split r
/
j into two new sets Wa and Wb

r
/
j 2 Wa r

/
j ¼ 1

� �
� r

/
j ¼ 2

� �n o

Wb otherwisef g

(
ð54Þ

Inferences were obtained using r
/
j , W

a and Wb

2. Investigate the order of pattern swing occurrence,

r
/
j ! r

/
jþ1 ! r

/
jþ2

for a1 and a2 ; j ¼ 1; 2; 3; . . .; n� 3f g
ð55Þ

r
/
j ! r

/
jþ1 for a3 and a24; j ¼ 1; 2; 3; . . .; n� 2f g

ð56Þ

3. Obtain the frequency of occurrences Fd for all

techniques d.

Fd ¼
Xh�
h¼1

sdfhg ð57Þ

sdfhg ¼ 1 ð58Þ
h h ¼ 1; 2; . . .; h�

Table 4 Conditions necessary for obtaining order of pattern occur-

rences frequencies

Desired pattern

occurrence

frequency

Necessary conditions

sa1aðhÞ r
/
j ; r

/
jþ1; r

/
jþ2 2 Wa; r/j 6¼ r

/
jþ1; r

/
jþ1 6¼ r

/
jþ2

sa1a hð Þ r
/
j ; r

/
jþ1; r

/
jþ2 2 Wb; r/j 6¼ r

/
jþ1; r

/
jþ1 6¼ r

/
jþ2

sa2ðhÞ r
/
j 2 Wb

� �
� r

/
j 2 Wa

� �
; r

/
jþ1 2 Wa

� �

� r
/
jþ1 2 Wb

� �
; r

/
jþ2 2 Wb

� �
� r

/
jþ2 2 Wa

� �

sa3ðhÞ r
/
j 6¼ r

/
jþ1

sa4aðhÞ r
/
j ¼ r

/
jþ1; r

/
j ; r

/
jþ1 2 Wa

sa4bðhÞ r
/
j ¼ r

/
jþ1; r

/
j ; r

/
jþ1 2 Wb
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represents the terminal points of the pattern swing

chain investigated for which the conditions necessary

for sdfhg to exist are fulfilled. These conditions are

presented in Table 4.

4. Determine pattern occurrence strength index Id
� �

Id ¼
Fd�

n� 2 d : a3; a4a; a4bf g
Fd�

n� 3 d : a1a; a1b; a2f g

(
ð59Þ

a1; a2; and a3 were set in order of preference such that

if any of its equivalent Id � 0:75, then such a technique is

considered the most appropriate for determining rLf , while

other techniques not yet explored are ignored. Figure 3 is a

chart which shows this order of preference

Determination of rLf
At the end of the future pattern swing value estimation

technique determination procedure, given that the desired

pattern technique(s) had been detected, the following

relations were subsequently employed to obtain rLf .

1. SSPS

rLf ðqÞ ¼
A r/n ðqÞ ¼ B

 �
B r/n ðqÞ ¼ A

 �
�

A;B 2 Wq; Ia1q � 0:75
 �

ð60Þ

2. CSPS

rLf fq;gg¼
Ag fBg;r

/
n 2Wq;Ag 62Wqg

Bg fAg;r
/
n 2Wq;Bg 62Wqg

�
fIa2q�0:75g

ð61Þ

3. SDP

rLf fq; gg ¼ Ag Ia4qfAgg� 0:3;Ag 2 Wq
 �

ð62Þ

q: = a,b; g: = all pattern swing values of different

magnitudes belonging to set Wq

4. PSM

rLf determination by PMS involved some steps. First, the

weighted mean ratio of r
/
j occurrence was obtained.

�a3 ¼
Xn�2

j¼1

j

 !�1Xn�2

j¼1

j maxðr/j ; r
/
jþ1Þ
.
minðr/j ; r

/
jþ1Þ

� �

ð63Þ

Employing �a3 two possible rLf integer values A and B

will exist. That is

A ¼ r/n
�
�a3 ð64Þ

B ¼ r/n � �a3 ð65Þ

From these

rLf ¼ A fA 2 R;B 62 Rg
B fB 2 R;A 62 Rg

�
ð66Þ

R is the interval bound by min r
/
j

� �
;max r

/
j

� �h i
:

Situations in which A;B 2 R were also observed to exist.

In such cases, five rules were created and used in obtaining

rLf from A and B. The rules and relations for obtaining

future pattern values are presented in ‘‘Appendix E’’.

Having obtained rLf ðiÞfi ¼ 1; . . .; i� : 1	 i� 	 n� 1g,
two situations of note is pointed out.

1. The analysis just carried out concerns situations of

qþ rLf

� �
. For the situations involving q� rLf

� �
, all rLf ðiÞ

obtained was converted to their negative equivalent.

2. Recall that in situations kcur ¼ 0 the predictability of the

next direction of swing cannot be out rightly ascertained

in thiswork. To account for this degree of uncertainty, the

future pattern swingOf at this stage was analysed in both

the forward and backward direction. Thus, the future

values for an expected open swing became the union of its

future values in the positive and negative directions.

O�L
f ¼ fOL

f ;�OL
f g ð67Þ

Verification expected future pattern swing values

Two activities were adopted in assessing rLf ðiÞ to control

and reduce overestimation of SDR forecasts. The activities

involve verification to establish maximum pattern swing

conformity and conformation to swing time packet limits.

Fig. 3 Chart for obtaining the most appropriate technique for future

pattern determination
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1. Verification of rLf ðiÞ for maximum pattern swing

conformity

This activity involves a comparison of rLf ðiÞ values

against rLmax. This comparison was necessitated by the need

to ensure that rLf ðiÞ does not exceed its maximum allowable

swing.

rL̂f ðiÞ ¼
rLmax rLf ðiÞ








[ rLmax



 

; i ¼ 1; . . .; i�; r ¼ O�;E;U;V
n o

rLf ðiÞ fotherwiseg

(

ð68Þ

2. Verification of rL̂f ðiÞ for pattern swing time packet limit

conformity

This verification procedure was undertaken on the out-

come of the first stage verification. Here, rL̂f ðiÞ values were
compared against currently existing variation characteris-

tics to ensure that they did not exceed the existing maxi-

mum time packet value limits. To achieve this, there was a

need to revert kcur to its time packet values. Let vz be a

vector in which the time packet values exist. Then the

break-up of kcur into its time packet components vz is

expressed as:

vz ¼ Gt fz ¼ 1; 2; . . .; z�; t ¼ t�; t� � 1; . . .; 1g ð69Þ

Gt ¼
�Dj k�t�1



 

[ �Dj



 

; q k�t�1

� �
$ q �Dj

� � �
k�t�1 k�t�1



 

	 �Dj



 

; q k�t�1

� �
$ q �Dj

� � �
�

ð70Þ

k�t ¼ k�t�1 � Gt k�t�1



 

[ Gtj j
 �

ð71Þ

k�0 ¼ kcur ð72Þ

t ¼ 1; 2; 3. . .; t� t� ¼ t Gt ¼ k�t�1

� �� 	
;

j ¼ 1; 2; 3; . . .; j� jðGt ¼ k�t�1Þ
� 	

The time packet value limit verification process is

unique to different VPCPS type. ‘‘Appendix F’’ presents

the relations necessary for verifying rL̂f ðiÞ to become

r�Lf ðiÞ. This second stage verification is not applicable to

future patterns obtained from expected open pattern

swings.

SDR reversal, defuzzification and GFMAPR

forecast span generation

At the end of the SDR fuzzification and future pattern

determination analysis, r�Lf ðiÞ were reversed and used in

generating GFMAPR forecast intervals. This section

undertakes a discussion on the interval generation proce-

dure which was carried out in three phases.

Phase1: SDR reversal

The reversal process involved the declassification of the

SLV classes into their component fuzzy variation states.

Let Z be a set consisting of the union of

r�Lf ðiÞ r :¼ O;E;U;Vf g, having elements q�

q� ¼ #Z ð73Þ

df
bðjÞ ¼

di;iþ1 Zq ¼ �Dj; di;iþ1 2 �Dj; qþ Zq
� � �

�di;iþ1 Zq ¼ �Dj



 

; di;iþ1



 

 2 �Dj; q� Zq
� � �

�

ð74Þ
j ¼ 1; 2; 3; 4; i ¼ 1; 2; . . .; n� 1; q ¼ 1; 2; . . .; q�;f
b ¼ 1; 2; 3; . . .; b�ðb� ¼ iqÞg

Phase 2: Determination of fuzzified forecast states and

subsequent defuzzification

Employing the forecast SLV span dfb

b ¼ 1; 2; 3; . . .;
P4
j¼1

bðjÞ
( )

the forecast FLV state numbers

k
f
b were subsequently obtained as:

k
f
b ¼ kðs0cur ¼ skÞ þ dfb ð75Þ

b number of SDR forecast intervals were obtained or

generated (as the case may be) by locating the FLV fore-

cast state s
f
b using k

f
b. The forecast FLV states s

f
b or

s
f ½LB�
b ; s

f ½UB�
b

� �
was then obtained from the dfb as:

s
f ½LB�
b ; s

f ½uB�
b

� �
:¼

ðs0Lcur þ xDk; s0Ucur þ xDk qþ dfb

� �n o

ðs0Lcur � xDk; s0Ucur � xDk q� dfb

� �n o
8<
:

ð76Þ

The fuzzy FLV states were then de-fuzzified into actual

forecast intervals x̂
f
b using a modified form of Eq. (22), the

interval bounds were obtained as:

x̂
f ½LB�
b ¼ s

f ½LB�
B � �s

0

cur þ x̂n ð77Þ

x̂
f ½UB�
b ¼ s

f ½UB�
B � �s

0

cur þ x̂n ð78Þ

Phase 3: SDR forecast interval generation

This phase is an extension of the second phase. It con-

siders two major characteristics of industrial accident

occurrences. These are steady trends and fluctuations.

GFMAPR was created from two interval variants which

give consideration to these characteristics. The two interval

variants are the unbound generated interval (UBGInt) and

the bound generated interval (BGInt). Equations (77) and

(78) are employed for generating the intervals for both

variants. Prior to obtaining BGInt some adjustments are

made to x̂
f
b such that,

s
f ½LB�
b ¼ s1 s

f ½LB�
b \s1

n o
ð79Þ

s
f ½UB�
b ¼ s� s

f ½UB�
b [ s�

n o
ð80Þ
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Notice that BGInt limits forecast strictly to the initial

universe of discourse. The use of BGInt for GFMAPR

prediction will strongly favour fluctuating situations, while

UBGint is created to adapt well to trend occurrences where

future values are expected to exist outside a non-pre-

empted universe of discourse. A combination of these two

adaptations makes up the GFMAPR.

Procedure for the multiplicative data relationship
determination

The SDR future value predictions are intervals values and

thus cannot be unitarily employed to obtain point value

forecasts. To be able to determine actual accident forecasts,

a complementary approach which is the MDR is also

developed. The MDR employs a procedure somewhat

similar to the SDR but the method differs. The discussion

of the procedure is carried out in relation to the outline in

Fig. 1.

MDR preparation

The input data for the MDR were obtained from indices

resulting from a comparative variation analysis of histori-

cal data.

z�i ¼ xiþ1=xifi ¼ 1; 2; 3; . . .; n� 1g ð81Þ

Based on the above, the width of change in variation is

expressed as

x� ¼
min XU;X^� �

XU;X^ 6¼ 0
 �

max XU;X^� �
XU ¼ 0
 �

� X^ ¼ 0
� � �

min H
^
b

� �
fotherwiseg

8><
>:

ð82Þ

Xm ¼
XQðmÞ�1

j¼1

XQðmÞ

t¼jþ1

Hm
j � Hm

t










� �

,
2
XQðmÞ�1

j¼1

X
QðmÞ � jð Þj fj ¼ 1; 2; 3; . . .;QðmÞ � 1g

ð83Þ

HX
a ¼ Z�

i fZ�
i [ 1g ð84Þ

H^
b ¼ z�i fz�i 	 1g ð85Þ

m : U;^;QðUÞ þ Qð^Þ ¼ n� 1f g

s�k was then obtained using expression (17) with zi and x
replaced by z�i and x� i ¼ 1; 2; 3; . . .; n� 1f g, respectively.
Note that the boundary adjustment for the SDR initial

universe of discuss (expression (18)) is not applicable here.

With zi and ak duly replaced in relations (19) and (20),

fuzzification and location of z�i in s�k was also undertaken.

MDR second level variations d
�

i;iþ1 i ¼ 1; 2; 3; . . .; n� 2f g
and fuzzy class and representations �D�

j were also obtained

using relations (23)–(30).

With respect to �D�
j , an exceptional consideration was

given to situations where, n ¼ 4 #�D�
j ¼ 1 and

#�D�
j ¼ 0 fj 6¼ 1g. In such circumstances, the single ele-

ment in �D�
j with value ej j was adjusted by creating other

values between 1 and ej j to exist as elements in �D�
j (ex-

pression (86)).

�D��
j ¼ 1	 e�m



 

	Gj fj ¼ 1g
Gj�1\ e�m



 

	Gj fj[ 1g

�
ð86Þ

Gj ¼ j� ej j=4ð Þ ð87Þ

e�m


 

 are various elements in �D��

j with the maximum

number of elements in each set dictated by the conditions

presented in relation (87). It should be noted that e�m


 

 must

exist as integers. Thus, decimal forms must be rounded up

to their corresponding nearest integer values.

Creating this exceptional procedure was necessary

because of the availability of a single variation packet

having the possibility of a large variation space existing

within it. Thus, we endeavoured to glean as much infor-

mation as possible given such situations by exhaustively

investigating the major regions within this variation

space.

Determination of MDR second-level variation future

values

This is undertaken in two steps, namely (i) investigation of z�i
to ascertain its most dominant variation characteristics and

(ii) determination of future variation values on the basis of z�i
most dominant trend or fluctuating characteristics. Before

proceeding, let b�i ¼ d�i;iþ1fi� 1; 2; 3; . . .; n� 2g:
b�Tf is the set of MDR future value forecasts obtained

from trend dominant b�t .

b�Ff is the set of MDR future value forecasts obtained

from fluctuation dominant b�t .

Determination of data variation characteristics

Two major characteristics were investigated, namely trend

and fluctuations. In estimating the degree of trending gT ,
and fluctuating gF properties of z�i ; the relation below was

employed:

gT ¼ NT=Nd ð88Þ

gF ¼ 1� gT ð89Þ

The quad-point data characteristic trace (Edem et al.

2016) was employed to determine the number of trend
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chains existing in z�i (N
T ) and the total number of z�i quad-

points (Nd). gT and gF were subsequently employed as b�i
control parameters for the determination rf fr : bTf ; b

�F
f g.

Future second-level variation value based on more

dominant data variation characteristic

The procedure for obtaining b�Tf ðqÞ differs from that used

in obtaining b�Tf ðq0 Þ. Both procedures are discussed

exclusively.

Procedure for determining b�Tf ðqÞ If gT � 0:75, then the

following applies:

1. Determine from b�i fi ¼ 2; . . .; n� 3g the most current

trend chain T�
w: w ¼ 1; 2; . . .;w�f g. This is achieved by

obtaining T�
tðyÞ which are various sets of elements in b�i

having similar polarities.

T�
tðyÞ ¼ b�t�1 fA� Bg ð90Þ

T�
t�ðyÞ ¼ b�i fBg ð91Þ

A ¼ q b�i�1 $ q b�i
� �

$ q b�iþ1

� �� �
ð92Þ

B ¼ q b�i�1

� �
$ q b�i

� �
l q b�iþ1

� �
ð93Þ

vi ¼
1 fi ¼ 2g

y� þ 1 fotherwiseg

�
ð94Þ

y� ¼ y q b�i�1

� �
$ q b�i

� �
l q b�iþ1

� � �
ð95Þ

tðyÞ ¼ 1; 2; . . .; t�ðyÞ; y ¼ 1; 2. . .; y��; 1\y�� 	 n� 1

t�ðyÞ ¼ tðyÞ þ 1 ¼ q b�k�1

� �
$ q b�k

� �
l q b�kþ1

� � �
ð96Þ

T�
w ¼ T�

tðy¼maxðyÞÞ #T�
tðyÞ [ 0

n o
ð97Þ

2. Investigate T�
w w ¼ 1; 2; . . .;w� � 1ð Þ such that

bT�f qð Þ ¼ T�
w fT�

w ¼ T�
w�g ð98Þ

3. If #bT�f ¼ 0 at the end of step 2, then apply the

concept developed in Sect. 4.5.4 to obtain bT�f ðqÞ.

Procedure for determining bT�f values

The determination of bT�f ðqÞ from fluctuating variation

characteristics involved a combination of two Markov

transition based techniques. Before proceeding, three major

required parameters are defined. Let B�
i be a dynamic

universal interval of any period i with the most positive

bound B
�½LB�
i and most negative bound B

�½UB�
i for which all

fluctuating transitions take place (no transition swing value

can exceed B�
i ).

B�
i :¼ B

�½LB�
i ;B

�½UB�
i

� �
ð99Þ

The difference between B
�½LB�
i and B

�½UB�
i is always

constant and equal to the variation sway magnitude cð Þ.
v : is the most current pattern swing variation position.

Given that gT\0:75, analysis on b�i was carried out to

obtain B�
n�2 cn�2 and vn�2 as a prerequisite to determining

the future sway direction b�Fgf . Equations (100), (101) and

Table 5 Various B�
i boundary for varying requisite parameter conditions

B
� LB½ �
i value Conditions that favour B

� LB½ �
i value B

� UB½ �
i value Conditions that favour B

� UB½ �
i value

0 qþ b�1
� �

; i ¼ 1 0 q� b�1
� �

; i ¼ 1

b�1 q� b�1
� �

; i ¼ 1 b�1 qþ b�1
� �

; i ¼ 1

mi vi\B
� LB½ �
i�1 ; i[ 1 mi vi [B

� UB½ �
i�1 ; i[ 1

B
� LB½ �
i�1 vi �B

� LB½ �
i�1 ; B

� LB½ �
i � B

� LB½ �
i�1

� �
	 ci; i[ 1 B

� LB½ �
i�1 vi 	B

� UB½ �
i�1 ; B

� LB½ �
i � B

� LB½ �
i�1

� �
	 ci; i[ 1

B
� UB½ �
i � ci vi �B

� LB½ �
i�1 ; B

� UB½ �
i � B

� LB½ �
i�1

� �
[ ci;

q� bið Þ; i[ 1

B
� LB½ �
i � ci vi 	B

� UB½ �
i�1 ; B

� UB½ �
i � B

� LB½ �
i�1

� �
	 ci;

qþ bið Þ; i[ 1

Table 6 Some industrial accidents data employed in the development of the GFMAPR search mechanism. Sources: Type 1: Jiang 2007; Type 2

and Type 3: Huang et al. (2012a, b)

Type1 140280 142326 179955 189185 216784 258315 254811 252704

Type 2 217 571 674 847 992 925 990 812 918 961 876

Type 3 108 81 87 59 69 55 67 56 58 77 82 113
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Table 5 show the relations used in obtaining the required

requisite parameters (Table 6).

vi ¼
Xt
t¼1

b�t ð100Þ

ci ¼
max b�i



 

� �
currently unsteady patternf g

�b� currently steady patternf g

�
ð101Þ

�b� ¼
Pn�6

i¼n�2

jðiÞ� b�i


 


,

Pn�6

i¼n�2

jðiÞ ð102Þ

jðiÞ ¼ 5 i ¼ n� 2f g
jðiþ 1Þ � 1 fotherwiseg

�
ð103Þ

Determination of the steadiness in current pattern

involved an investigation of b�1 i ¼ n� 2; n� 3;f
. . .; n� 6g. If more than eighty percent of b�1 belong to

exclusively to either the lower variation class (1, 2) or

upper variation class (3, 4) then b�1 was adjudged to be

currently steady, else the pattern was considered currently

unsteady. If i\5, b�1 is also taken to be currently unsteady.

The technique for obtaining B�
n�2; cn�2 and vn�2

involved investigating b�1 from progressively from i ¼ 1

and steadily adjusting and obtaining B�
i ; ci and mi until the

point i ¼ n� 2 was attained. Based on the obtained

parameters, b�Fgf g :¼ þ;�f g were determined from the

two techniques earlier mentioned.

a. First technique for b�Fgf1 determination

This method assumes that vn�2 is a position within B�
n�2.

The distances between vn�2 and B
� LB½ �
n�2 as well as vn�2 and

B
� UB½ �
n�2 represent the maximum transition magnitude of

pattern swing variation from the most current position to

the expected future position. Transitions made from v can

be made in the forward b�Fþf1

� �
, backward b�F�f1

� �
direc-

tion or in both directions. Transitions made from vn�2

towards any ends of the universal bound are constrained or

limited by cn�2.b
�Fg
f1 was obtained using the equation

below:

b�Fgf1 ¼ B
� M½ �
n¼2 � vn�2 ð104Þ

M :¼ UB;LB; g :¼ þ;�

b. Second technique for b�Fgf2 determination

The second method gives stronger consideration to a

highly fluctuating pattern in which vn�2 does not exhibit

huge deviation from cn�2:B
�
n�2 was not given consideration

in this method. b�Fgf2 values were obtained from the fol-

lowing relations:

b�Fþf2 ¼
0 qþ vn�2ð Þ; vn�2\cn�2f g
cn�2 � vn�2 qþ vn�2ð Þ; vn�2 � cn�2f g
cn�2 � jb�F�f2 j q� vn�2ð Þ; jvn�2j\cn�2f g
cn�2 q� vn�2ð Þ; jvn�2j � cn�2f g

8>><
>>:

ð105Þ

b�Fþf2 ¼

0 q� vn�2ð Þ; jvn�2j � cn�2f g
jvn�2j � cn�2 q� vn�2ð Þ; jvn�2j\cn�2f g
b�Fþf2 � cn�2 qþ vn�2ð Þ; vn�2\cn�2f g
�cn�2 qþ vn�2ð Þ; vn�2 � cn�2f g

8>><
>>:

ð106Þ

The desired future forward and backward variation

values were subsequently obtained as

b�Fþf ¼ max b�Fþf1 ; b�Fþf2

� �
ð107Þ

b�F�f ¼ min b�F�f1 ; b�F�f2

� �
ð108Þ

The intention of carrying out the MDR analysis was to

determine a region for which SDR forecast interval could

intersect its forecast interval. As a result, F
�g
f point values

were considered in addition to all regions before it. Thus,

the forward and backward future MDR variation forecasts

are expressed as

b�Fþf hð Þ h ¼ 1; 2; . . .; bf g and

b�F�f h0ð Þ h0 ¼ �1;�2; . . .; b�F�f

n o
respectively:

b�f q0ð Þ ¼ b�Fþf hð Þ [ b�F�f h0ð Þ

Before proceeding to discuss the defuzzification stage of the

SDR, let b�f ðg0Þ be the set which contains all MDR future

variation values b�f g0ð Þ¼bT�f qð Þ[b�f q0ð Þ;g0¼1;2;3;...;q0�
n o

g0� ¼ qþ q0 ð109Þ

Defuzzification procedure for the MDR

At the end of the MDR future variation determination

procedure, a defuzzification procedure involving a two-

stage process was carried out.

The determination of the future SLV values is the first

process. This was achieved by identifying various d�i;iþ1

values belonging to different �D�
j classes given that �D�

j or

� �D�
j exist in b

�
f g0ð Þ. Point values of d�i;iþ1 for each

�D�
j found

in b�f gð Þ were then obtained using the weighted average

technique.

d��fj ¼
d�fj qþ b�f g0ð Þ

� �n o

�d�fj otherwisef g

(
ð110Þ

where

470 J Ind Eng Int (2018) 14:455–489

123



d�fj ¼
Pn�2

i¼1

id�i;iþ1

,
Pn�2

i¼1

i d�i;iþ1 2 �D�
j ; �D

�
j ¼ jb�f g0ð Þj

n o

ð111Þ

Recall that an exceptional fuzzification procedure was

undertaken for situations involving n ¼ 4. The corre-

sponding first-stage defuzzification relations are

d��fj ¼

e� e� 2 �D�
j ; q

þ b�Lf

� �
;#�D�

j ¼ 1
n o

�e� e� 2 �D�
j ; q

� b�Lf

� �
;#�D�

j ¼ 1
n o

max e�m
� �

þmin e�m
� �� �

=2 e�m 2 �D�
j ; q

þ b�Lf

� �
;#�D�

j [ 1
n o

� max e�m
� �

þmin e�m
� �� �

=2 e�m 2 �D�
j ; q

� b�Lf

� �
;#�D�

j [ 1
n o

8>>>>>><
>>>>>>:

ð112Þ

The second and final stage of the defuzzification pro-

cedure was the determination of the future first-level

variation fuzzified state number k
�f
j using d��j .

k
�f
j ¼ k s0

�

cur ¼ s
�

k

� �
þ d��fj ð113Þ

Finally, defuzzified MDR FLV values z
�f
j were obtained

from corresponding i
�f
j as:

z
�f
j ¼ �s�t þ �s�t � �s�tþ1

� �
t � k

�f
j

� �h i
ð114Þ

t ¼ k min k � k
�f
j

� �h i
k\k

�f
j

n o
ð115Þ

k ¼ 1; 2; 3; . . .; kmaxf g

where

�s� ¼ �s�L þ �s�U
� �

=2: ð116Þ

GFMAPR forecasting from whitenisation of SDR
and MDR future outcomes

GFMAPR forecasting is achieved by a whitenisation pro-

cess developed in this work. This involves the comparison

and adoption of the intersection of grey SDR and MDR

future forecast possibilities based on the satisfaction of a

fixed intersection criterion. First, SDR future values are re-

formed to exist in the same orientation as MDR outcomes.

This is treated in the first part of this section. The second

part discusses the development of the intersection criterion.

The final part of the section covers the use of the satisfied

and unsatisfied criterion situations for undertaking

GFMAPR forecasts.

SDR point future values: creation and reformation

It will be recalled that SDR future possibilities were

obtained as a set of grey intervals x̂
f
b b ¼ 1; 2; 3; . . .; b�f g

(Sect. 4.6). At this stage, each x̂
f
b was split into three point

values namely x̂
f LB½ �
b ; x̂

f UB½ �
b and the mean value of the

former two. Let M
f
d d ¼ 1; 2; 3; . . .; d� d� ¼ 3b� � Að Þf g be

the set in which the split values exist as elements provided

that x̂
f UB½ �
b 6¼ x̂

f LB½ �
bþ1 .

A ¼
Xb��1

b¼1

Nb x̂
f UB½ �
b ¼ x̂

f LB½ �
bþ1

n o
ð117Þ

Nb ¼ 1 ð118Þ

M
f
d was subsequently reformed as M

�f
d so that M

f
d would

have the same orientation as z
�f
j

M
�f
d ¼ M

f
d=xn ð119Þ

A comparison of the degree of deviation of M
�f
d from z

�f
j

was then investigated.

Rjd ¼ z
�f
j �M

�f
d

j ¼ 1; 2; . . .; j � 1	 j � 	 4ð Þ; d ¼ 1; 2; 3; . . .; d�f g
ð120Þ

Development of the forecast acceptability criterion

(FAC)

The purpose of determining Rjd was to ascertain the

closeness of forecasts produced via the SDR and MDR

analyses. Thus, M
f
d values for which corresponding M

�f
d

values had very close proximities to those of z
�f
j were

adopted into the set of accepted GFMAPR potential fore-

casts subject to the accuracy of the method used in fixing

the acceptable proximity conditions for screening all pos-

sible forecasts.

In this work, a proximity score method was employed in

establishing the FAC. Equation (120) infers that a perfect fit

between SDR andMDR forecasts will produce zero width of

deviation. An initial score was chosen for this forecast sce-

nario. The scoringmethod for other scenarios was developed

from the understanding that z
�f
j is also a fuzzy value even

though its parent state has not been established. z
�f
j was

assumed to exist as the midpoint value of a pseudo-state. The

regions bounding the pseudo-state were taken as being equal

to the state width value x�. Any Rjd value within

�2x� 	Rjd 	 2x� was awarded a score ejd within the range

0	 ejd 	 10. Subsequently, it was expected that any Rjd

existing within �2gx�; 2gx�ð Þ g[ 1f g will possess score

values in the range 10\ejd 	1:
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Employing these assumptions and adoptions, a general

equation obtained from the interpolation of the identified

points and equivalent fixed scores was developed for

computing ejd for all Rjd :

ejd ¼ 10½1� ð2x�½1� Rjd�Þ� ð121Þ

Notice that although x� was our assumed state width

from z
�f
j 2x

� was employed instead. This was necessary to

account for uncertainties and model inadequacies.

For the least deviating forecast to accrue the highest

score and the most deviating forecast the least, the

outcome from Eq. (121) was employed such that

minðRjdÞ was given the score of maxðejdÞ while minðejdÞ
was awarded maxðRjdÞ. The entire score for Rjd was then

recomputed.

e�jd ¼ minðejdÞ � ½½ðmaxðRjdÞ � RjdÞ=ðmaxðRjdÞ
�minðRjdÞÞ�ðminðejdÞ �maxðejdÞÞ� ð122Þ

GFMAPR single value forecast analysis

The analysis to obtain x
f
nþ1ðx

f
nþ1 ¼ xf ðx1;nÞÞ is the final

stage of the GFMAPR forecast analysis. Two methods used

exclusive of each other for obtaining x
f
nþ1 were employed.

The first and more prioritised method considered a situa-

tion in which the FAC analysis revealed that

9Rjd : �2x� 	Rjd 	 2x�. The second method applied

when the first condition was violated, that is,

8Rjd : ðRjd \� 2x�Þ � ðRjd [ 2x�Þ. A procedure which

shows how x
f
nþ1 was determined using the methods is

outlined below.

Procedure for GFMAPR forecast determination

i. Set initial value of jðj ¼ 1Þ
ii. Obtain Rjdfd ¼ 1; 2; 3; . . .; d�g.
iii. Apply the FAC criterion. Determine max ejd

� �
. Also,

obtain corresponding M
f
d max ejd

� �� �
. Test to see if

9Rjd : �2x� 	Rjd 	 2x�. If this condition does not

exist go to vi.

iv. Compute the proximity score index Cjd for all ejd

Cjd ¼ 100� max ejd
� �

� ejd


 

� ��

min max ejd
� �

; ejd
� �h i

ð123Þ

v. If Cjd 	 10, accept M
f
d into the set of GFMAPR

potential forecast X.

Let corresponding ejd also be an element in Y

vi. If j\j� increase j by a unit value and return to ii.

vii. If j ¼ j� then,

a. If

b. 9Rjd : �2x� 	Rjd 	 2x�, obtain xf as,

x
f
nþ1 ¼

Xi�

i¼1

Xi
Yi

,
Pi�
i¼1

Yi

 !
f1	 i� 	 j�d�g ð124Þ

8Rjd : �2x� [Rjd [ 2x�; obtain xf as,

x
f
nþ1 ¼

Xd�

d¼1

M
f
d

maxðe�jdÞ
,
Pd�
d¼1

maxðe�jdÞ

 !

ð125Þ

viii. End procedure

It is worth noting that: x
f
nþ1 ¼ 0 f8Mf

d : Mf
d\0g

Search procedure for improving GFMAPR
forecast

A preliminary investigation was undertaken to observe the

accuracies of GFMAPR forecasts with respect to varying

SDR sets. To this end, the set partitioning index r in

Eq. (14) was replaced with ri ¼ fi ¼ 1; 2; 3; . . .;1g;
where

ri ¼ i ð126Þ

The investigation led to the observation that GFMAPR

forecast accuracy had the potential to improve at different

r values other than r ¼ 4. Further experimental investi-

gation of model performances on application to different

industrial fire accident data evaluated on the basis of the

MAPE showed that better GFMAPR performances could

be obtained from the number of created SDR sets related to

x�
r

x�
r ¼ x�

=ar ð127Þ

ar ¼ r ð128Þ

r ¼ 1 fri ¼ r�g
ar�1 þ 1 fri ¼ r�ar�1g

�
ð129Þ

x� is the value of x for which one of the set partition

indices r�, obtained from an initial search using ri ¼ fi ¼
1; 2; 3; . . .; qg produces the best GFMAPR performance,

measured using some performance evaluation approach. ar
is a multiplier for r� employed for an extended search for
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better GFMAPR performances within regions covered by

multiples of r�.
As an example of how r� was determined in this work,

GFMAPR out-of-sample forecasts were carried out at

various set partition index values using three industrial

accidents occurrences from three literature sources. This

was achieved by obtaining the best model MAPE perfor-

mance at ri ¼ fi ¼ 1; 2; 3; . . .; 5g. ri for which model best

forecast was obtained was recorded as r̂. Subsequently, the
search for improved model performances was widened by

further applying the model to obtain forecasts for set par-

tition index values of vr̂� i fi ¼ 1; 2; . . .; br � 1g. v is an

integer which represents multiples of r̂ v� 1f g. r� ¼ vr̂.
Figure 4 shows the points of troughs p which indicate

model best forecast performances at set partition index

regions r� þ i ¼ f1	 i\rig (Table 7).

Two observations were made from Fig. 4. The first is that

although the regions where GFMAPR produced relatively

high-accurate forecast did not exist as r� multiples,

nonetheless a search around the region of r�ar showed

potential to improve GFMAPR performances. Second, it

was also observed from Type 2 and Type 3 data analysis that

the strict use of r ¼ 4 did not always guarantee the best

forecast performance of GFMAPR. The need to improve

model performances for all types of industrial accidents data

based on these observations justified our interest in devel-

oping the GFMAPR search (S-GFMAPR) model. Subse-

quently, the GFMAPR variant in which r ¼ 4 is referred to

as the GFMAPR non-search (NS-GFMAPR) model.

Development of the comparative performance index

for detecting best S-GFMAPR forecasts

To obtain S-GFMAPR forecasts that are not strictly hinged

on a single performance evaluation measure, a comparative

performance index (CPI) was developed. The CPI is

developed by combining GFMAPR out-of-sample results.

This result was determined by the use of a single horizon

Fig. 4 A plot of GFMAPR (MAPE) performances for a set partition

index range of 1–25 using data presented in Table 6
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recursive rolling forecast approach (see Sect. 8.2) which

was used in computing model MAPE, MAE and MSE

result determined during the search process. It was used to

distinguish between S-GFMAPR performances computed

using two most closely following set partition indices. The

superior S-GFMAPR performance was taken as that which

produced a lower CPI when any two sets of performances

determined within a search region (r) were compared with

each other.

For each round of comparison trftr ¼ 1; 2; 3; 4; . . .; t�r g
the superior performance evaluation index CPI� trð Þ was

obtained as

CPI�ðtÞ ¼
min CPIðt � 1Þ;CPIðtÞð Þ fNðtÞ ¼ 2g
min CPI�ðt � 1Þ;CPIðtÞð Þ fNðtÞ ¼ 2g

(

ð130Þ

CPIðbÞ ¼ MAPEðbÞ
,
Ptr
tr�1

MAPEðbÞ

0
@

1
A

þ MAEðbÞ
,
Ptr
tr�1

MAPEðbÞ

0
@

1
A

þ MSEðbÞ
,
Ptr
tr�1

MAPEðbÞ

0
@

1
A ð131Þ

MAPEðbÞ ¼
Xn�4

i¼5

100 xi � xf xð1;i¼1Þ
� �

 



,
xi

 !,
n� 4

ð132Þ

MAEðbÞ ¼
Xn�4

i¼5

xi � xf xð1;i¼1Þ
� �

 



 !,
n� 4 ð133Þ

MSEðbÞ ¼
Xn�4

i¼5

xi � xf xð1;i¼1Þ
� �� �2

,
n� 4 ð134Þ

ðb :¼ tr � 1; trÞ

tr : is the current period within r region in which

GFMAPR results have been evaluated.

tr � 1 : is the previous period within r in which

GFMAPR results have been evaluated.

N trð Þ : is the number of periods/rounds available for

search investigation.

CPI� trð Þ : is the lower CPI value obtained after com-

parison in the period tr.

As a result of the limitation placed on the minimum

data size requirement for GFMAPR, the out-of-sample

performance index which can be obtained from Eq. (131)

can only be computed if an available number of histor-

ical data is greater than four. In situations where the

historical data number available is equal to the minimum,

the S-GFMAPR approach cannot be employed. The NS-

GFMAPR becomes useful for forecasting in such

situations.

Algorithm for undertaking S-GFMAPR forecasting

Based on conclusions drawn from our preliminary inves-

tigation, a procedure for carrying out the search GFMAPR

forecasting was developed. The procedure is outlined

below using the following steps.

Step 1: Initialise the set partition region search index:

r ¼ 0

Initialise procedure termination signal (PTS) value:

PTS ¼ 0

Step 2: Investigate GFMAPR performances and deter-

mine corresponding CPIðt0Þ and x
f
nþ1ðt0Þ for SDR set

partition width xðt0Þ obtained using initial set partition

width regions rðt0Þft0 ¼ 1; 2; 3; . . .; t�0g. In this work, the

maximum initial search region value was limited to t�0 ¼ 5

Step 3: Obtain r� : r� ¼ r CPI�ðr ¼ 0Þð Þ:CPI�ðr ¼ 0Þ
¼ min CPI�ðt0Þð Þ.

Also, obtain corresponding x
f
nþ1 CPI�ðt0Þð Þ. Then set

CPI��ðrÞ ¼ CPI�ðrÞ ð135Þ

x
f
nþ1 CPI�� rð Þð Þ ¼ x

f
nþ1 CPI� rð Þð Þ ð136Þ

Step 4: Increase r and PTS, respectively, by 1. Obtain

r�arðtrÞ; ðtr ¼ 1; 2; . . .; 5Þ which represents all search

regions within the proximity of r�ar (Table 8 provides the

values for r�arðtrÞ).Carry out GFMAPR forecasts using

x r�arðtrÞð Þ.
Step 5: Determine CPI�ðrÞ. CPI�ðrÞ ¼ min CPIðtrÞð Þ.

Also, obtain corresponding x
f
nþ1 CPI�rð Þ

Step 6: Update CPI��ðrÞ and obtain corresponding

x
f
nþ1 CPI�� rð Þð Þ
CPI�� rð Þ ¼ min CPI�� r � 1ð Þ;CPI� rð Þð Þ ð137Þ

Step 7: If CPI�� rð Þ ¼ CPI� r � 1ð Þ, increase PTS value

by 1. Otherwise, if CPI�� rð Þ ¼ CPI� rð Þ, reset PTS ¼ 0

Step 8: If PTS ¼ 4 then GFMAPR forecast x
f
nþ1 at the

end of the search procedure is

x
f
nþ1 ¼ x

f
nþ1 CPI�� rð Þð Þ: ð138Þ

Table 8 Values of set partition indices at multiplier values greater or

equal to one

tr 1 2 3 4 5

r�arðtrÞ r�ar r�ar þ 1 r�ar þ 2 r�ar � 1 r�ar � 2
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Otherwise, if PTS\4 return to step 4 and continue the

procedure.

Results and discussion

The GFMAPR forecasting procedure could be cumbersome

and time consuming to undertake manually. In this regard,

a Visual Basic.Net program was created to execute the

multiple procedures contained in the model.

Model performances were investigated on two fronts,

namely accuracy of the developed set creation and

partitioning method which was measured using the in-

sample (trained model) prediction evaluation, and the

forecast capability of the model which was investigated

using the out-of-sample forecast method.

GFMAPR data set partitioning accuracy in model

training

In-sample fitted results obtained using the GFMAPR

(SDR) set partitioning technique was compared using two

industrial accident data (Zheng and Liu 2009; Kher and

Yerpude 2015) and one traffic accident data (Arutchelvan

et al. 2010) The traffic accident data were adopted on the

Table 9 Comparison of underground coal mine fatal accidents predictions between GFMAPR performances and the Kher and Yerpude (2015)

FTSM Data source: Kher and Yerpude 2015

Year Number of Fatal

accidents

Kher and

Yerpude

NS-

GFMAPR

S-

GFMAPR

Year Number of Fatal

accidents

Kher and

Yerpude

NS-

GFMAPR

S-

GFMAPR

1990 91 – – – 2002 48 48 48 48

1991 80 – 80 80 2003 46 47 46 45.5

1992 107 – 106 107 2004 49 49 48 49

1993 101 100 100 100.5 2005 50 51 50 50

1994 93 94 92 93 2006 44 45 44 44

1995 91 91 90 91 2007 25 26 24 25

1996 75 76 74 75 2008 32 33 32 31.5

1997 94 95 94 94 2009 39 40 38 39

1998 80 81 80 80 2010 41 42 40 40.5

1999 74 75 74 73.5 2011 23 24 24 23.5

2000 62 62 62 62 2012 25 26 24 25

2001 67 68 66 67 2013 27 28 26 27

2014 Forecast – 29 31

Table 10 GFMAPR in-fit sample performances compared with established models for the underground coal mine fatal accident data

Model Grey model ARIMA ESM Mao and Sun (2011) Kher and Yerpude (2015) NS-GFMAPR S-GFMAPR

Method GM(1,1) (0,1,0) Holt Grey–Markov FTSM FGM FGM

MAE 9.40 8.73 7.748 1.17 0.81 0.583 0.125

MSE 88.43 0.81 0.88 3.43 0.81 0.583 0.063

MAPE 14.14 17.87 14.98 2.87 1.87 1.30 0.30

Table 11 Model results for number of fatalities in yearly traffic accidents from 1974 to 2004 in Belgium Data source: Arutchelvan et al. (2010)

Model GM

(1,1)

ARIMA ESM Lee

et al.

(2007)

Jilani and

Bur-ney

(2008)

Egrioglu

(2012)

Kamal and

Gihan

(2013)

Arutchelvan

et al. (2010)

Mao and

Sun

(2011)

NS-

GFMAPR

S-

GFMAPR

Method Grey (0,1,0) Simple Fuzzy Fuzzy Fuzzy-

GA

GA/Fuzzy

clustering

Fuzzy Grey–

Markov

GFM GFM

MAE 95.62 76.72 75.58 72.57 70.54 28.36 16.07 7.61 8.43 6.24 2.21

MSE 9.14E3 7.10E3 7.29E3 6.85E3 6.91E3 978 445 275.77 190.5 52.9 7.22

MAPE 5.86 5.72 5.9 5.07 5.06 2.17 1.28 0.66 0.593 0.47 0.17
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basis that traffic accident occurrences also exhibit random

and uncertain patterns. In addition, the traffic accident data

have been employed in the analysis of several set parti-

tioning models (Lee et al. 2007; Jilani and Burney 2008;

Egrioglu 2012; Kamal and Gihan 2013). Table 9 shows

actual in-sample (trained model) predictions for one of the

accident occurrence data that were analysed, while

Tables 10, 11 and 12 show the NS-GFMAPR and

S-GFMAPR prediction fitness to data used in building the

model in comparison with results obtained by the estab-

lished models previously mentioned.

It can be observed from the presented results that the set

partitioning technique developed in the GFMAPR model

produces the best fit to data when compared to various

results obtained from commonly employed models

employed for accidents prediction.

Forecast capability of GFMAPR

It can be observed from Table 9 that the apart from

predicting trained data outputs, the developed model can

also be employed for making future predictions (referred

to in this paper as forecasts). However, the model is

limited to making forecasts for single horizon (one step

ahead) only. That is, given an available dataset of

n fn� 4g occurrences, GFMAPR can only forecast acci-

dent occurrences for the period nþ 1 and not beyond

that. Thus, the model may not be suitable for making

multiple horizons forecasting or model out-of sample tests

except in situations where bootstrapping methods are

utilised. As a fallout of this limitation, splitting a dataset

into model training and testing portions become unnec-

essary. Thus, for a given dataset of n occurrences, n

number of data points are also required for training

GFMAPR. This property of the model imposes a

restriction on proper model validation with respect to the

out-of-sample prediction or forecast capability of

GFMAPR. In overcoming these shortcomings, the out-of-

sample forecast evaluation method was adopted for model

evaluation and validation.

The out-of-sample forecast evaluation exploits the sin-

gle forecast horizon capability of GFMAPR using a

recursive rolling mechanism. This means that for any data

sample of size n with occurrences in horizon

k xðkÞ k ¼ 1; 2; 3; . . .; nf g½ �, the forecast xf ðkÞ was obtained
for a trained split data set xð1;kÞ ðk ¼ 4Þ and tested against

xð1;kÞ. The split data set was subsequently increased by a

single data point and the training and single horizon fore-

cast (testing) process repeated for k ¼ 5; 6; 7; . . .;
k ¼ n� 1.

The PE indices ðPEmijÞ for GFMAPR mð Þ in terms of the

absolute error (AE), absolute percentage error (APE) and

square error (SE) were determined using xf ðiÞ and

xiþ1fi ¼ k; k þ 1; k þ 2; . . .; n� 1 : k� 4g. PEoos
mij for

each model variant was then obtained as,

PEoos
mij ¼

Xn�1

i¼k

PEmij

,
ðn� 4Þ fj 2 Jg ð139Þ

J : fAE,APE,SEg

The capability of the GFMAPR variants for single

horizon forecasting was subsequently investigated by

comparing their forecast performances with results pro-

duced by six forecasting models with forecasting capability

commonly used or designed for use in industrial accidents

forecasting. The established models employed for the

analysis were namely: ARIMA, ESM, a three-point M.A

model, GM (1,1), Grey–Markov model (Mao and Sun

2011) and DPEWTA (Edem et al. 2016).

The model validation and evaluation involve a com-

parison of the results of the GFMAPR model variants with

those of the mentioned models on their application to some

industrial accidents data using the out-of-sample forecast-

ing approach previously discussed.

In carrying the evaluation, a PE weight index -m was

created by converting the MAPE, MSE and MAE values

obtained for all the models into relative weight values Cmj

(Eq. 141). The sum of these relative weights was then

deployed as the PE index for the model variants as well as

the compared models.

-m ¼
XNðJÞ

j¼1

Cmj fm ¼ 1; 2; 3; . . .;N Mð Þg ð140Þ

Cmj ¼ PEoos
mij

,XNðMÞ

j¼1

PEoos
mij

 !�1

fm ¼ 1; 2; 3; . . .;N Mð Þ; j ¼ 1; 2; . . .;N Jð Þg
ð141Þ

Table 12 GFMAPR data in-fit results compared with those of established methods using a chemical plant accident occurrence data Data source:

Zheng and Liu (2009)

Model ARIMA Regression ESM Grey ANN Grey–Markov NS-GFMAPR S-GFMAPR

MAE 40.25 35.22 30.67 29.48 14.57 6.0 1.25 0.50

MSE 3.42E3 2.39E3 1.79E3 1.42E3 4.67E2 69.69 4.38 0.25

MAPE 24.19 16.96 19.57 18.67 10.07 3.83 1.59 0.417
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NðMÞ is the number of models employed for compara-

tive analysis}

NðJÞ is the number of performance evaluation methods

employed for comparative analysis}

This approach was necessary as a result of the need to

utilise a single PE index which exhibited the combined

characteristics of the MAPE, MSE and MAE in the eval-

uation of the models.

Using the out-of-sample forecast evaluation approach,

the forecasts made by the developed and compared models

when applied on the three accidents historical data sets

previously employed in Sect. 8.1 were obtained. The out-of

sample forecasts for the three industrial accidents data

employed in this work are as shown in Tables 13, 15 and

17. The forecast performance evaluation results obtained

from the three accidents historical data sets using this

technique are shown in Tables 14, 16 and 18.

Table 13 Developed and compared model forecasts of the underground coal mine fatal accidents

Year Number of accidents Compared models Developed model variants

ARIMA ESM MA DPEWTA Grey Grey–Markov NS-GFMAPR S-GFMAPR

1990 91 – – – – – – – –

1991 80 – – – – – – – –

1992 107 – – – – – – – –

1993 101 – – – – – – – –

1994 93 94 97 96 100 118 124 94 94

1995 91 95 93 95 97 103 106 101 85

1996 75 94 92 98 90 97 96 89 88

1997 94 91 89 86 67 84 86 75 74

1998 80 91 93 92 84 87 88 98 97

1999 74 91 89 92 88 83 84 79 77

2000 62 87 86 83 76 78 77 77 76

2001 67 76 70 72 58 71 66 68 67

2002 48 75 67 68 68 67 66 64 64

2003 46 44 57 59 59 60 48 48 47

2004 49 43 38 47 48 55 50 48 47

2005 50 46 49 48 50 51 47 54 56

2006 44 47 44 50 50 48 49 52 46

2007 25 41 40 48 48 45 42 45 41

2008 32 21 33 35 37 40 29 22 23

2009 39 29 29 29 34 37 31 33 29

2010 41 36 27 32 36 35 36 42 42

2011 23 39 26 40 41 34 38 46 40

2012 25 22 23 34 33 31 22 25 24

2013 27 24 19 24 26 29 24 31 26

2014 Future forecast 27 17 26 27 27 26 29 31

Table 14 Forecasting performance for the underground coal mine fatal accidents data

Model ARIMA ESM MA DPEWTA Grey Grey–Markov NS-GFMAPR S-GFMAPR

MAE 9.770 8.298 10.550 10.050 10.200 9.600 8.900 7.800

MSE (9 E2) 1.556 1.259 1.632 1.564 1.515 1.537 1.328 1.065

MAPE 21.993 18.918 24.455 22.749 21.504 19.760 20.784 17.606

-m 22.684 27.023 21.007 22.181 22.732 23.774 25.144 29.922

Rank 6 2 8 7 5 4 3 1

CT (s) – – 0.0020 0.0156 0.0156 0.3438 0.0469 1.3282
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It was observed from the results presented in Tables 14,

16 and 18 that in terms of the -m which combines the

accuracies of the models MAE, MSE and MAPE into a

single evaluation score (Eq. 135); S-GFMAPR produced

the best out-of-sample forecast results in all but one of the

data set analysed. In terms of the performance score,

Table 16 Forecasting performance for the number of fatalities in yearly traffic accidents from 1974 to 2004 in Belgium

Model ARIMA ESM MA DPEWTA Grey Grey–Markov NS-GFMAPR S-GFMAPR

MAE 84.000 84.296 84.556 98.482 98.482 84.185 85.074 72.37

MSE (9 E4) 8.798 9.525 9.734 13.28 13.407 9.038 9.677 8.149

MAPE 6.347 6.475 6.617 7.66 7.677 6.34 6.601 5.661

-m 25.917 25.014 45.057 20.135 20.061 25.662 24.647 28.998

Rank 4 3 6 7 8 2 5 1

CT (s) – – 0.0019 0.0156 0.0156 0.5156 0.0313 1.4495

Table 15 Developed and compared model forecasts for the number of fatalities in yearly traffic accidents from 1974 to 2004 in Belgium

Year Number of accidents Compared models Developed model variants

ARIMA ESM MA DPEWTA Grey Grey–Markov NS-GFMAPR S-GFMAPR

1974 1574 – – – – – – – –

1975 1460 – – – – – – – –

1976 1536 – – – – – – – –

1977 1597 – – – – – – – –

1978 1644 1510 1553 1567 1569 1673 1681 1656 1677

1979 1572 1593 1579 1621 1660 1718 1727 1686 1707

1980 1616 1566 1572 1562 1544 1662 1637 1622 1634

1981 1564 1584 1581 1593 1598 1665 1673 1647 1585

1982 1464 1569 1564 1570 1538 1633 1625 1616 1519

1983 1479 1536 1552 1514 1522 1565 1549 1519 1516

1984 1369 1522 1541 1472 1497 1529 1514 1498 1555

1985 1308 1349 1389 1424 1419 1464 1435 1400 1424

1986 1456 1284 1263 1339 1334 1401 1338 1325 1388

1987 1390 1446 1424 1382 1546 1400 1414 1454 1441

1988 1432 1376 1399 1423 1412 1382 1396 1384 1393

1989 1488 1422 1422 1411 1449 1380 1387 1412 1426

1990 1574 1482 1470 1460 1465 1392 1441 1486 1518

1991 1471 1574 1555 1531 1622 1423 1501 1562 1512

1992 1380 1484 1492 1523 1530 1426 1419 1463 1470

1993 1346 1424 1406 1426 1431 1408 1429 1428 1346

1994 1415 1334 1353 1363 1339 1388 1353 1418 1404

1995 1228 1407 1403 1381 1455 1384 1377 1415 1420

1996 1122 1212 1274 1322 1337 1348 1233 1207 1203

1997 1150 1101 1130 1175 1196 1301 1158 1213 1152

1998 1224 1132 1148 1136 1151 1266 1152 1164 1150

1999 1173 1209 1217 1187 1185 1247 1228 1216 1247

2000 1253 1157 1178 1199 1197 1223 1174 1183 1182

2001 1288 1241 1243 1213 1298 1214 1232 1252 1254

2002 1145 1277 1283 1271 1279 1210 1252 1349 1341

2003 1035 1130 1168 1217 1248 1189 1147 1147 1123

2004 953 1016 1038 1090 1093 1159 1026 1096 1076

2005 932 953 994 916 1123 983 974 1005
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S-GFMAPR produced the highest score in two of the three

analysed data with a minimum and maximum positive

relative score difference of about ten percent and seventy

percent, respectively.

The model, however, produced inferior results when

compared with grey and Grey–Markov models on appli-

cation to the chemical plant accidents data.

The general results obtained indicate that although

S-GFMAPR may not be suitable for forecasting all forms

of industrial accident occurrences, it does exhibit superi-

ority over other compared models when applied on data

with characteristics suitable for S-GFMAPR forecasting.

However, the computation time (CT) for GFMAPR

models using a 2.13 GHz Intel Pentium P6200 CPU with

4 GB of RAM is generally higher compared to all other

models. Nonetheless, the CT range of 1 and 2.5 s can be

considered as acceptable tradeoffs for the models excellent

forecasting capabilities. As expected, NS-GFMAPR pro-

duced results less superior to those of S-GFMAPR. How-

ever, when compared in terms of all eight analysed models,

its general performance score point ranking fell between 3

and 4. This implies that although it is less effective than

S-GFMAPR, it can still be employed for forecasting. NS-

GFMAPR will be more suitable in situations where time

efficient forecasting is a necessity, and when available

historical data points are limited to four. To further ensure

the validity of the GFMAPR variants, the models were

applied on five more real life data related to industrial and

traffic accident obtained from literature sources (‘‘Ap-

pendix G’’). The results obtained further strengthen the

validity of NS-GFMAPR and S-GFMAPR as

Table 18 Forecasting performance for the chemical plant accident occurrence data

Model ARIMA ESM MA DPEWTA Grey Grey–Markov NS-GFMAPR S-GFMAPR

MAE 62.100 40.310 42.100 44.300 27.4 25 35.800

31.200

MSE (9 E3) 9.158 3.262 3.425 2.476 1.03 0.933 2.156

1.814

MAPE 41.969 33.605 39.531 45.831 25.5796 19.6846 35.436

30.679

-m 14.100 23.189 21.290 22.696 55.564 64.173 27.543

32.128

Rank 8 5 7 6 2 1 4

3

CT (s) – – 0.0000 0.0000 0.0000 0.3125 0.0156

0.2969

Table 17 Developed and compared model forecasts of the a chemical plant accident occurrence data

Year Number of accidents Compared models Developed model variants

ARIMA ESM MA DPEWTA Grey Grey–Markov NS-GFMAPR S-GFMAPR

2000 350 – – – – – – – –

2001 347 – – – – – – – –

2002 437 – – – – – – – –

2003 260 – – – – – – – –

2004 211 272 335 349 272 278 261 282 260

2005 215 270 299 236 238 202 192 227 211

2006 214 259 220 213 240 177 167 234 238

2007 191 251 215 215 226 165 163 236 234

2008 109 241 197 203 202 152 158 205 201

2009 109 218 124 150 52 122 102 111 117

2010 112 223 111 109 94 103 102 123 106

2011 63 214 58 111 118 90 89 125 130

2012 57 202 31 88 111 74 58 75 53

2013 40 192 11 60 61 62 49 61 55

2014 Forecast 48 0 49 34 51 37 42 40
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suitable models for forecasting fluctuating, random and

uncertain occurrences.

Investigation to ascertain GFMAPR forecast

capability given varying historical data sizes

and shocks

Although preliminary investigation showed that the

GFMAPR model possessed huge potential for more accu-

rate small data sample size forecasting, a more exhaustive

investigation was undertaken to ascertain this observation.

Consideration was given to small (4–15), medium (16–35)

and large ([ 35) sample size of data. Due to the unavail-

ability of industrial accident occurrence records of very

large sizes, simulated data were employed.

Thirty data sets, each made up of seventy periods was

simulated. To ensure that the simulated data possessed real

industrial accident occurrence characteristics, properties of

historical industrial accidents data obtained from the lit-

erature were investigated and employed for the simulation.

The properties investigated for include the degree of

shocks and the frequency of fluctuation in occurrences.

Each data set characteristic was simulated using the

information turbulence index ðhÞ and the Quad point

characteristic trace QPCT approach (Edem et al. 2016)

such that each possessed some degree of shocks within the

range of 0\h	 0:4 and fluctuation index ðgFÞ ranging

between 0\gF 	 1 (Eq. 89). The recursive rolling single

horizon out-of-sample forecasts were undertaken for

S-GFMAPR, ARIMA, ESM, MA, Grey–Markov and

DPEWTA models.

GFMAPR forecast MAPE performance relative to each

of the models employed for comparative analysis Rmdkð Þ
was then computed as

Rmdkð Þ ¼ 100� PEoos
dkj þ 1

� �
� PEoos

mdkj þ 1
� �h i.

PEoos
dkj þ 1

� �� �

ðd ¼ 1; 2; 3; . . .; 30 ; k ¼ 4; 5; 6; . . .; 70 ; m 2 MÞ
ð142Þ

where M : {All models used for comparative analysis with

GFMAPR}, j : MAPE

The constant unit value in Eq. (142) was added to the

relation to counter situations of zero MAPE values. The

mean GFMAPR-compared model performance was sub-

sequently obtained as,

�Rmdk ¼
X30
d¼1

Rmdk

 !,
30 fk ¼ 4; 5; 6; . . .; 70g ð143Þ

A graphical plot of �Rmdk against k was then undertaken

for each m.

At the end of the analysis, it was observed that

GFMAPR exhibited forecast superiority over all compared

models with respect to small data size forecasting. It also

showed superior performance over grey, grey–Markov and

DPEWTA models with respect to medium and large data

sizes. However, ARIMA and ESM exhibited superior

forecast performance over GFMAPR within data size range

between 28 and 70 (Fig. 5). Note that negative values of
�Rmdk imply superior GFMAPR performance.

Furthermore, the simulated data sets were separated into

five equal groups based on their degree of variation char-

acteristics. Their MAPE performances were also observed

as they changed with data size. The MAPE for GFMAPR

relative to each compared model showed that GFMAPR

forecasts increasingly improved with increasing degree of

variation in data. For example, Fig. 6 shows the relative

GFMAPR-ARIMA forecasts for increasing h values. It can

be easily seen from the figures that at values of h[ 0:3,

GFMAPR models become more reliable for undertaking

forecasts. A summary of the results obtained from this and

analysis is presented in Table 21.

The mean ð �FÞ and standard deviations ðrFÞ of the

GFMAPR forecast accuracies on its application to the

simulated data samples given different variations and size

of data samples are presented in Table 20. It is believed

that these results are statistically valid since thirty datasets

were simulated for each data point that makes up a sample

size class. The obtained results further strengthen the

capability of the model for accident forecasting.

It should be noted here that the all forecast results

obtained are acceptable within a single forecast horizon

which is the focus of this work.

Fig. 5 GFMAPR relative MAPE performances with respect to

increasing data size

Fig. 6 GFMAPR-ARIMA relative MAPE performances for different

degree of variation in data in the presence of increasing data size
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Application of the developed model on real-time

industrial accident occurrences

The validation of the models with respect to their capa-

bility to accurately forecast industrial accidents was also

investigated. This was achieved by the application of the

model to a case of real-time industrial accidents occurrence

data.

The historical information for the case study represents

the accidents data of a cocoa processing firm operating in

the south-west region of Nigeria. The data obtained cov-

ered operating periods within 2003–2015. The required

data for the model were collected from the vetting of

accident records of various departments operating in the

organisation. During the process of data collection, the

accidents were observed to occur from sources such as

actions and inactions related to poor housekeeping, lack of

proper communication during equipment repair and main-

tenance and delay in the elimination of identified hazards.

GFMAPR forecasts results obtained from the analysis of

the case study are presented in Table 19. Based on Lewis’s

subjective MAPE interpretations (Ofori et al. 2012), the

model variants produce MAPE results that indicate rea-

sonable forecasting. In addition, considering the data size

(14 periods) and the degree variation in occurrences

(h ¼ 0:2592) the GFMAPR forecasts evaluated in terms of

the MAPE can be considered satisfactory since it was

found to lay within an expected range of �F �
1rFð4	 k	 15; 0:2	 h	 0:3Þ (See Table 20).

The MAPE result may be deceptive due to its scale

sensitivity in the presence of a low volume of accident

occurrences which is the case of the organisation under

study. In line with Stellwagen (2011) recommendation on

the tests of model validity in such situations, the model

forecast evaluated using the MAE shows forecast accuracy

that lies within the accident occurrence range of �3 and �2

for NS-GFMAPR and S-GFMAPR, respectively. This

Table 19 Mean percentage relative superior and non-superior performance of GFMAPR to compared models for varying degree of data

variations and different data sizes

Data size 0	 h	 0:5 0:05	 h	 0:1 �3:61 0:1	 h	 0:2 0:2	 h	 0:3 0:3	 h	 0:4

Small 4	 k	 15 ARIMA -11.39 -9.54 -13.52 -9.68 -14.34

ESM -3.61 -2.48 -1.73 0.04 -6.68

MA -23.82 -21.94 -13.77 -9.16 -4.16

MSGM -20.21 -15.13 -12.23 -5.20 -15.25

DPEWTA -4.63 -6.87 -13.52 -1.25 -11.81

Medium 16	 k	 35 ARIMA 3.26 2.17 0.92 4.33 -13.83

ESM 6.06 2.12 2.24 7.65 -7.77

MA -22.34 -21.31 -13.97 -6.13 -10.51

MSGM -18.84 -27.48 -22.38 -6.34 -19.34

DPEWTA 3.16 -4.28 -7.63 2.17 -17.41

Large 36	 k	 70 ARIMA 12.38 6.29 8.81 13.24 -14.75

ESM 14.93 8.15 4.89 17.80 -16.06

MA -17.36 -21.15 -11.54 1.35 -16.23

MSGM -7.88 -41.25 -118.21 -73.33 -33.66

DPEWTA 7.91 4.10 -4.56 4.21 -25.82

Negative and positive values indicate relative superiority and inferiority, respectively, of developed model to compared model

Table 20 The mean and standard deviation GFMAPR forecast accuracies in relation accident occurrence variation and sample sizes

Data size Forecast 0	 h	 0:5 0:05	 h	 0:1 0:1	 h	 0:2 0:2	 h	 0:3 0:3	 h	 0:4

Small 4	 k	 15) Mean 2.191 5.624 14.514 27.836 38.544

Standard deviation 2.199 2.401 4.801 9.676 15.035

Medium 16	 k	 35 Mean 2.748 7.712 15.788 25.773 34.882

Standard deviation 2.865 0.714 4.074 3.871 6.410

Large 36	 k	 70 Mean 3.425 7.854 15.987 27.355 41.556

Standard deviation 3.459 0.807 2.998 2.684 8.298
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result further strengthens the accuracy of the model

(Table 21).

Advantages and disadvantages of GFMAPR

The GFMAPR model proposed in the current paper has a

number of advantages put side-by-side of earlier developed

models. Here, the GFMAPR is noted as an excellent model

in the absence of exhaustive data. In fact, it generally

exhibits superior short and medium data length forecasting

quality over all models employed for comparative analysis.

This is substantial as a merit, and one of the strongest

attributes of the model. The GFMAPR does not require

many technicalities in execution. Interestingly, GFMAPR

requires only the input information. Data pattern analysis

and detection are executed by the model. Another merit of

the model is that it does not require parametric input to

describe data characteristics. It is also noteworthy that

GFMAPR model exhibits improved forecasting ability

overall compared models when applied on data charac-

terised by strong variations.

Regrettably, even with the enormous advantages of

using the GFMAPR model over other competing ones, it

has a number of weaknesses. First, the model is incapable

of undertaking out-of-sample forecasting for periods longer

than one forecast horizon. Second, computational experi-

ence during the analysis of the model results showed that it

is difficult to execute manually without the aid of a com-

puter device. A third drawback of the model is that it is less

efficient in terms of computation time when compared with

other established models analysed in this work. It was also

observed during the model analysis that GFMAPR model

was less effective when employed for large size data

forecasting. This is a disadvantage. Nevertheless, this dis-

advantage may be ignored since the primary aim of

developing the model was hinged on the need to make

accurate forecasts in the absence of extensive data sizes.

Conclusions and future works

A fuzzy set classification based method which employs

grey, Markov and pattern recognition concepts for fore-

casting industrial accident occurrences has been devel-

oped. The in-fit-sample and out-of-sample forecast

performance of the model was investigated in compar-

ison with some forecasting models frequently employed

in the industry by their application on three real-time

industrial accidents related data. In addition, the forecast

capability of the model with regards to data sizes, vari-

ation and fluctuating characteristics were also investi-

gated with the use of simulated industrial accident

occurrence scenarios.

In this communication, our purpose is to present an

understanding of the first analysis from both the theoretical

perspective and a practical application viewpoint of the

conceived theory of grey–fuzzy–Markov pattern recogni-

tion model for accident forecasting under reasonable

assumptions. This investigation broadens the horizon on

accident forecasting in industrial settings by showing that

accident data could be read into patterns and successfully

decomposed and then using the transitional Markov

Table 21 Results obtained on

application of GFMAPR

variants on cocoa processing

firm accident occurrences

Year Historical occurrences Trained model predictions Out-of-sample forecast (rolling mechanism)

NS-GFMAPR S-GFMAPR

2004 12 12 – –

2005 9 9 – –

2006 11 11 – –

2007 16 16 – –

2008 9 9 13 13

2009 10 10 11 11

2010 12 12 11 12

2011 14 14 12 11

2012 8 8 14 13

2013 6 6 11 9

2014 6 6 8 7

2015 7 7 8 8

2016 Future forecast – 8 7

MAPE 0.000 35.377 27.416

MSE 0.000 11.000 7.750

MAE 0.000 2.750 2.250
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property to detect the possible vibrational direction of

future accidents. The GFMAPR model was developed to

enquire about the linked characteristics of grey, fuzzy,

Markov and pattern recognition.

Through several case examinations against published

literature a real-time data and, the main conclusions are as

follows:

• GFMAPR shows excellent forecast capability for data

characterised by fluctuations, variations and

randomness;

• GFMAPR is quite effective for forecasting in the

presence of small and medium sized data availability;

• GFMAPR is able to make relatively high accurate

forecasts when compared against models frequently

employment in the industry for forecasting; and

• GFMAPR is thus suitable and reliable for industrial

accident prediction.

This paper has made important contributions to

research as well as practice. On the first note, an original

method based on grey–fuzzy–Markov pattern recogni-

tion model was developed to track uncertainties,

imprecision and randomness in historical data. Secondly,

a new summative data analysis, which involves data

preparation, the creation of summative variation data

relationship (SDR), fuzzification and reclassifications of

data based on the degree of variation was developed. A

practical step in evaluating the association among data

elements was established for the first time. Similarly, the

multiplicative data relationship (MDR) analysis was

established as a first-time contribution in accident fore-

casting literature. This investigation, in search for a

procedure in enhancing GFMAPR forecast, developed a

comparative performance index for detecting the best

S-GFMAPR forecasts for the first time in literature.

Furthermore, it is the first report in literature, on accident

forecasting, to have an algorithm for understanding the

novel S-GFMAPR forecasting, and this has been clearly

detailed out in the current paper. Now, considering the

contributions of this paper, it hoped that this report will

serve as a reference document, as procedural paper that

guides further investigations in further probing the

details of the foundations and in so doing; we will have a

rich number of papers that may develop into an area in

industrial accident forecast. Consequently, this study has

a practical importance for industrial systems to work out

and execute an accident forecasting model that accounts

for uncertainties, imprecision and randomness in their

systems. Based on this, industrial organisations would

acquire the will of monitoring and planning fully for any

accidents that would occur in their systems.

Researching to unveil the potential of grey–fuzzy–

Markov models with respect to accident forecasting is

definitely a new topic in the safety arena. There are lots of

opportunities for future research on the topic. Future

investigations could be directed at improving the industrial

accidents forecast by studying how combined or hybrid

models can be developed using GFMAPR for the purpose

of producing more improved forecast performance. In

addition, further research could be made towards the use of

GFMAPR for multiple horizon forecasting. It may also be

worthwhile in finding out the performance attribute of real-

time data collected from rarely studied systems on acci-

dents such as maintenance functions as much as accidents

appear to be due to poor maintenance actions in organi-

sations probably due to inefficiency, poorly trained skilled

workers some other causes.

In this communication, theoretical results have been pro-

vided based on the attributes of the GMFAPRmodel using the

combined characteristics of grey, fuzzy, Markov and pattern

recognition. Forecast performance of theGFMAPRmodel was

comparedmodel for the varying degrees of data variation range

as 0	 h	 0:5, 0:05	 h	 0:1,0:1	 h	 0:2, 0:2	 h	 0:3

and 0:3	 h	 0:4 while the data size range according to small

4	 k	 15 medium 16	 k	 35 and large 36	 k	 70. It was

shown that forecast results using GFMAPRwere progressively

enhanced with small andmedium size data and with elevations

in the degree of fluctuation and variation attributes for the

explored data. The theoretical model outcomes were demon-

strated through scrutinising the performance of models as they

were related in comparison with GFMAPR using models as

ARIMA, ESM, MA, MSGM and DPEWTA. Thus, from the

quantitative analysis using data sets, the forecast with support

from GFMAPR are reasonable with the aforementioned

alternatives presently in vogue.
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Appendix A

Let �D di;iþ1

� �
exist as row vector

�Djfj ¼ i : i ¼ 1; 2; 3; . . .; n� 1g. Also, let the point for

which �Dj ¼ 0 be m. In addition, set the initial smoothing

cycle counter t ¼ 0 such that the vector within any pro-

cedure cycle is expressed as �DjðtÞ. The smoothing proce-

dure can be carried out as follows:
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1. Increase smoothing cycle counter by 1. Carry out a top

to bottom inspection of �Dj t� 1ð Þ

a. if point m exists, then

i. If m ¼ 1 or m ¼ n� 1

�DmðtÞ ¼
1

�1

�
qþ �Dgðt� 1Þ
� � �

q� �Dgðt� 1Þ
� � � ðA1Þ

�DgðtÞ
�Dgðt� 1Þ � 1
�Dgðt� 1Þ þ 1

�
qþ �Dgðt� 1Þ
� �

; j �Dgðt� 1Þj � 1
 �
q� �Dgðt� 1Þ
� �

; j �Dgðt� 1Þj � 1
 �

ðA2Þ
g ¼ mþ 1;mþ 2; . . .; g�; fm ¼ 1g; q �Dg�ðt� 1Þ

� �
$ q �DmðtÞð Þ

 �

g ¼ m� 1;m� 2; . . .; g�; fm ¼ n� 1g; q �Dg�ðt� 1Þ
� �

$ q �DmðtÞð Þ
 �

�Dg� ðt� 1Þ


 

� 1 ðA3Þ

Return to 1

ii. If m 6¼ 1 and m 6¼ n� 1 then If 9 �Djðt� 1Þ :
�Djðt� 1Þ


 

[ 1 Obtain �Dqðt� 1Þ and
�Dwðt� 1Þ
�Dqðt� 1Þ ¼ �Dgðt� 1Þ

�Dgðt� 1Þ[ 1; g ¼ mþ 1;mþ 2; . . .; g�


 

 �

ðA4Þ
�Dwðt� 1Þ ¼ �Dgðt� 1Þ

�Dgðt� 1Þ[ 1; g ¼ mþ 1;m� 2; . . .; g�


 

 �

ðA5Þ

Then,

�DgðtÞ ¼

1 qþ �Dgðt� 1Þ
� �

; g 6¼ qð Þ � g 6¼ wð Þ
 �

�1 q� �Dgðt� 1Þ
� �

; g 6¼ qð Þ � g 6¼ wð Þ
 �

�Dgðt� 1Þ � 1 qþ �DgðtÞ
� �

; g ¼ qð Þ � g ¼ wð Þ
 �

�Dgðt� 1Þ þ 1 q� �DgðtÞ
� �

; g ¼ qð Þ � g ¼ wð Þ
 �

8>><
>>:

ðA6Þ

g¼mþ 1;mþ 2; . . .;g�; �Dqðt� 1Þ


 

[ �Dwðt� 1Þj j

 �

g¼ m� 1;m� 2; . . .;g�; �Dqðt� 1Þ


 

	 �Dwðt� 1Þj j

 �

�Dg� ðt� 1Þ


 

 ¼ �Dwðt� 1Þ ðA7Þ

Return to 1

iii. If m 6¼ 1 and m 6¼ n� 1, then if max
�Dj t� 1ð Þ


 

� �

¼ 1 then equation (A1) is employed in

adjusting �Dm tð Þ g ¼ mþ 1;mþ 2; . . .; g�; �Dg� 6¼ 0
�Dm tð Þ. Return to 1.

b. If m does not exist, end procedure.

It is worth noting from the smoothing procedure that one

or more of these static variation scenarios can exist in �Dj

given single or multiple non-variation points. The approach

here is to employ the procedure in eliminating each non-

varying point. Thus, for T non-varying points to be elim-

inated, then T cycles of the smoothing procedure will be

applied. g� is the termination point of the procedure for one

cycle.

Appendix B

Relations for obtaining current, maximum, and minimum

variation pattern swing impulses

i. Current pattern swing impulse:

rIcur ¼
Ps
j¼n

F rLj

� �
F rLn
� �

¼ 1; q rLn
� �

$ q rLf

� �n o

0 otherwisef g

8<
:

ðB1Þ

s ¼ j rLj�1 ¼ 0
� �

� q rLj�1

� �
l q rLf

� �h in o
ðB2Þ

F rLj

� �
¼ 1 rLj 6¼ 0

n o

0 otherwisef g

(
r :¼ E;U: ðB3Þ

ii. Maximum, and minimum pattern swing impulses for

escalation and closure-lag:

rImin ¼ minðr̂iÞ:rImax ¼ maxðr̂iÞ; ðB4Þ

r̂i ¼
Pm� ið Þ

j¼m ið Þ
F rLj

� �

0 otherwisef g

8><
>:

: m ið Þ

¼ j rLj 6¼ 0; qðrLj Þ $ qðrLf Þ
n o

: ðB5Þ

m� ið Þ ¼ jþ 1 rLjþ1 ¼ 0
� �

� qðrLjþ1Þ l qðrLf Þ
� �n o

:

m�
i [mi:

ðB6Þ

F rLj

� �
¼ 1 rLj 6¼ 0

n o

0 otherwisef g

(
:

j ¼ 1; 2; 3; . . .; n� 1 r :¼ E;U:

ðB7Þ
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iii. Maximum, and minimum pattern swing impulses for

exact-closure:

CI
min ¼ minðĈiÞ:CI

max ¼ maxðĈiÞ ðB8Þ

Ĉi ¼ p ið Þ � q ið Þ � p ið Þ ¼ j F OL
j

� �
¼ 1

n o
� q ið Þ

¼ j F CL
j

� �
¼ 1

n o
: ðB9Þ

q ið Þ[ p ið Þ � p iþ 1ð Þ ¼ q ið Þ þ 1 i[ 1f g: ðB10Þ

F rLj

� �
¼

1 rLj 6¼ 0
n o

0 otherwisef g

8<
: :j ¼ 1; 2; 3; . . .; n� 1 ðB11Þ

Appendix C

Adjustment relations for escalation and closure-lag patterns

to account for overlap properties

E�L
j ¼

EL
j F EL

j

� �
¼ 1;q EL

j

� �
$ q EL

f

� �n o

O�L
j F EL

j

� �
¼ 0;F OL

j

� �
¼ 1; O�L

j








\ LEV


 

; q OL

j

� �
$ q EL

f

� �n o

V�L
j F EL

j

� �
¼ 0;F VL

j

� �
¼ 1; V�L

j








\ LEV


 

;q VL

j

� �
$ q EL

f

� �n o

LEV Pf gj Qf g

8
>>>>>>><
>>>>>>>:

ðC1Þ

U�L
j ¼

UL
j F UL

j

� �
¼ 1; q UL

j

� �
$ q UL

f

� �n o

C�L
j F UL

j

� �
¼ 0;F CL

j
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¼ 1; C�L

j








\ LU


 

; q CL

j

� �
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f
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j








� LU


 

; q CL

j

� �
$ q UL

f
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8>>>><
>>>>:

ðC2Þ

where,

�rL ¼
Pn
j¼1

j� rLj

,
Pn
j¼1

j
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@
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F rLj

� �
¼ 1; q rLj

� �
$ q rLf

� �n o
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ðC3Þ
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Table 22 Values of rhLcur
adopted for various rhLUBcur and

rhLLBcur conditions given expected

pattern future swing direction

Adopted rhLcur r 
 E;Uð Þ rhLcur boundary conditions b� condition

rhLUBcur h	 rhLUBcur ; rhLLBcur 	H; rhLUBcur 	 rhLLBcur ;qþ rLf

� �
b� [ 1

h	 rhLUBcur 	H; rhLLBcur \h
� �

� rhLLBcur [H
� �

; qþ rLf

� �

�rhLUBcur h	 rhLUBcur ; rhLLBcur 	H; rhLUBcur 	 rhLLBcur ;q� rLf

� �

h	 rhLUBcur 	H; rhLLBcur \h
� �

� rhLLBcur [H
� �

; q� rLf

� �

rhLLBcur h	 rhLUBcur ; rhLLBcur 	H; rhLUBcur [ rhLLBcur ;qþ rLf

� �

h	 rhLLBcur 	H; rhLUBcur \h
� �

� rhLUBcur [H
� �

;qþ rLf

� �

�rhLLBcur h	 rhLUBcur ; rhLLBcur 	H; rhLUBcur [ rhLLBcur ;q� rLf

� �

h	 rhLLBcur 	H; rhLUBcur \h
� �

� rhLUBcur [H
� �

;q� rLf

� �

r
wL
b� rhLUBcur ; rhLLBcur \h

� �
� rhLUBcur ; rhLLBcur [H
� �

;qþ rLf

� �

�r
wL
b� rhLUBcur ; rhLLBcur \h

� �
� rhLUBcur ; rhLLBcur [H
� �

;q� rLf

� �

0 qþ rLf

� �
q� rLf

� �
b� ¼ 1
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j

� �
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f

� �

ðC7Þ

T 
 qþ CL
j

� �
;F CL

j

� �
¼ 1;CL

j 	 �CL:

W 
 q� CL
j

� �
;F CL

j

� �
¼ 1; CL

j








	 �CL


 

 ðC8Þ

LEV ¼
max max EL

j

� �
;max VL

j

� �� �
qþ EL

f

� �n o

min min EL
j

� �
;min VL

j

� �� �
otherwisef g

8><
>:

:

LU ¼
max UL

j

� �
qþ UL

f

� �n o

min UL
j

� �
otherwisef g

8><
>:

ðC9Þ

Appendix D

Procedure for the estimation of current and equivalent

cumulative swing magnitudes for escalating and closing-

lag patterns (see Table 22)

i. Determination of E�L
cur and U�L

cur

r�Lcur ¼

Xs
j¼n

r�Lj F r�Ln
� �

¼ 1; q r�Ln
� �

$ q rLf

� �n o

0 fotherwiseg

8><
>:

ðD1Þ

s ¼ j r�Lj�1 ¼ 0
� �

� q r�Lj�1

� �
l q rLf

� �h in o
; r :¼ E;U

ðD2Þ

ii. Determination of EhL
cur andU

hL
cur :

The following steps are employed in estimating

EhL
cur andU

hL
cur is outlined below using the following steps,

Step 1: Obtain r0b from r�Lj

r0b ¼ r�Lj F r�Lj

� �
¼ 1

n o
ðD3Þ

Step 2: Using time weights, adjust absolute r0b to become

r
0w
b

r
0w
b ¼ b� r0b



 

 ðD4Þ

Step 3: Obtain H and h, respectively,

H ¼ max r
0w
b

� �
ðD5Þ

h ¼ min r
0w
b

� �
ðD6Þ

Step 4: Obtain r
0w
b variation index:

�r0wb ¼
Pb��1

b¼1

r
0w
b � r

0w
bþ1

� �,
b� � 1ð Þ ðD7Þ

rhLcur will be a value existing between (rhLUBcur and rhLLBcur ):

rhLUBcur ¼ r
0w
b� þ �r0w

� �.
b�:

rhLLBcur ¼ r
w
b� � �r0w

� �.
b� ðD8Þ

r :¼ E;U: b ¼ 1; . . .; b�: 1	 b� 	 n

Appendix E

Rules and relations employed in obtaining rLf value using

the PSM technique

S/N Method name Conditions guiding choice by

method

1 Non-static forecast

consideration rLf ¼
A A 6¼ rUn ;B ¼ rUn
 �

B B 6¼ rUn ;A ¼ rUn
 �

(

2 Minimum proximity to

swing span TP gð Þ½ � rLf ¼
A TP Að Þ\TP Bð Þf g
B TP Bð Þ\TP Að Þf g

(

3 Minimum g deviation

from rUj span based on

time-weighted average

method �P tð Þ½ �

rLf ¼
A A� �P tð Þj j\ B� �P tð Þj jf g
B B� �P tð Þj j\ A� �P tð Þj jf g

(

4 Minimum g deviation

from rUj span based on

weighted average

method �Pð Þ

rLf ¼
A A� �Pj j\ B� �Pj jf g
B B� �Pj j\ A� �Pj jf g

(

5 Use of rUn as future

pattern value

rLf ¼ rUn {all other explored

conditions have been violated}

TP gð Þ ¼
P

rUj � rUjþ1








. �P ¼

Pn�2

j¼1

j� rUj � rUjþ1










� �,
Pn�2

j¼1

j.

�P ¼
Pn�2

j¼1

rUj � rUjþ1










� �.
n� 2ð Þ. g ¼ A;B

Note that the elimination approaches are arranged in their order of

preference of use. If a more preferred method is explored and found to

be suitable for use, then the other methods are subsequently ignored.

Otherwise the next preferred method is explored.

Appendix F

Future variation pattern verification relations

1. Future escalation pattern:
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f

� �n o

min E�L
j

� �






� kcurj j otherwisef g

8<
:

ðF1Þ

2. Future closure-lag pattern:

U�L
f ið Þ ¼ UL̂

f ið Þ UL̂
f ið Þ








\ kcurj j

n o

0 otherwisef g

(
ðF2Þ

3. Future exact-closure pattern

C�L
f ið Þ

¼ CL̂
f ið Þ CL̂

f ið Þ








 ¼ kcurj j
� �

9z z�; z� � 1; . . .; 1½ � : CL̂
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� �




n o

0 otherwisef g
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ðF3Þ

4. Future closing-lead

V�L
f ið Þ ¼ V�L

fa ið Þ
� �


 V�L

fb ið Þ V�L
fa ið Þ ¼ 0

n o� �
;

V�L
fa ið Þ ¼

D A;B;C;D	Mf gj A;F; L;D\Nf g
0 otherwisef g

(
ðF4Þ

V�L
fb ið Þ ¼

D0 min D0j j � Wj j½ �ð Þ A0;B;C;D0\Mf g � A0;F; L;D0\Nf g
0 otherwisef g

(

ðF5Þ

W ¼
Pn
j¼1

jVL
j

,
Pn
j¼1

j F VL
j

� �
¼ 1;q VL

j

� �
$ q EL

f

� �n o
ðF6Þ

Table 23 Future forecasting performance for data on fire accidents occurring in PR China between 1997 and 2004 Data source: Jiang (2007)

Model ARIMA ESM MA DPEWTA Grey Grey–Markov NS-GFMAPR S-GFMAPR

MAE (9 E4) 2.212 1.874 2.728 1.988 2.513 2.304 2.291 1.515

MSE (9 E8) 8.597 6.263 11.05 4.233 9.438 8.021 6.929. 3.391

MAPE 9.32 7.75 11.15 8.16 9.93 9.23 8.90 5.89

-m 22.15 27.61 17.96 31.08 20.14 22.39 23.85 40.52

Rank 6 3 8 2 7 5 4 1

CT (s) 0.0020 0.0020 0.0341 0.0624 0.0000 0.0780 0.9652 1.5001

Table 24 Future forecasting performance for data on yearly accident injuries in Ghana for the period 1991–2011 Data Source: Ofori et al.

(2012)

Model ARIMA ESM MA DPEWTA Grey Grey–Markov NS-GFMAPR S-GFMAPR

MAE 2.64E3 2.53E3 2.08E3 2.28E3 2.51E3 2.57E3 2.19E3 1.97E3

MSE 9.38E6 8.57E6 8.85E6 7.12E6 9.45E6 8.56E6 7.67E6 5.95E6

MAPE 27.28 26.71 20.46 22.53 28.54 28.25 21.48 19.54

-m 21.40 22.33 25.92 26.05 21.21 21.83 26.15 30.48

Rank 7 5 4 3 8 6 2 1

CT (s) – – 0.0731 0.0938 0.0000 0.7032 0.9935 1.4374

Table 25 Future forecasting performance for Data on fire accident occurrences in the oil and gas industry for the period 1996–2010 Data

Source: Docstoc (2013)

Model ARIMA ESM MA DPEWTA Grey Grey–Markov NS-GFMAPR S-GFMAPR

MAE 15.89 16.32 18.00 16.91 24.18 22.55 11.18 11.18

MSE 341.25 336.27 501.27 565.27 902.91 872.73 320.64 320.64

MAPE 16.39 17.17 15.89 15.19 21.01 20.35 9.30 9.30

-m 28.37 27.98 23.71 23.62 16.17 16.93 38.56 38.56

Rank 3 4 5 6 8 7 1 1

CT (s) – – 0.0037 0.0626 0.0000 0.8594 1.0000 1.2500
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i ¼ 1; 2; . . .; i�; z ¼ 1; 2; . . .; z� ðF10Þ

Appendix G

Further results showing relative GFMAPR model perfor-

mances on application to industrial and traffic accidents

occurrence data (see Tables 23, 24, 25, 26, 27)
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