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Abstract
Data envelopment analysis (DEA) is one of the most efficient tools for efficiency measurement which can be employed as a

benchmarking method with multiple inputs and outputs. However, DEA does not provide any suggestions for improving

efficient units, nor does it provide any benchmark or reference point for these efficient units. Impracticability of these

benchmarks under environmental conditions is another challenge of benchmarking by DEA. The current study attempts to

extend basic models for benchmarking of efficient units under practical conditions. To this end, we construct the practical

production possibility set (PPPS) by employing the concept of artificial decision-making units and adding these decision-

making units to the production possibility set (PPS) such that these artificial units satisfy all environmental constraints.

Then, the theorems related to PPPS and their proofs are provided. Moreover, as a secondary result of this study, efficient

units can be ranked according to their practical efficiency scores.

Keywords Artificial DMU � Benchmarking � Practical production possibility set

Introduction

Benchmarking first developed as an important business

technique in computer industry in 1962. And it was in 1979

when the Xerox Company greatly improved benchmarking.

In this year, the production sector of Xerox Company

started assessing the technical features of its products such

as its assembly line, accessories in order to compare them

with those of its competitors, a practice that later came to

be labeled as competitor benchmarking (Anderson and

Peterson 1993). The phrase competitor benchmarking

became quite popular in other sectors of organizations and

factories such as design, engineering and sales and

marketing.

This technique was also largely used as an influential

tool for surviving in contemporary competitive markets not

only in manufacturing companies but also in service sec-

tors. Pickering and Chambers (1991) presented the chief

five categories of the gap analysis among the expected and

levels of performance. Such categories consisted of com-

petitor benchmarking, functional benchmarking, generic

benchmarking and consumer benchmarking. Among all the

different types of benchmarking, it seems that competitor

benchmarking which aims at appraising the current status

of a company with that of its competitors is the most

prevalent kind.

Tata (2000) in another definition, benchmarking is seen

as an assessment and imitation process of products, pro-

cesses and systems of bests in industry. Benchmarking is

also used as a tool for assessing and comparing the best

methods for the improvement of business processes

(Keehley et al. 1997). During recent years, it has been

considered by strategic managers as one of the most

influential methods of continuous improvement (Lai et al.

2011). Elmuti et al. (1997) mentioned that the advantages

of benchmarking are performance evaluation, performance

enhancing and enhanced learning.
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Despite this, benchmarking and an attempt in finding

efficient benchmarks in business have their own chal-

lenges, which will be discussed later in this paper. The

current research tries to investigate the question of

benchmarking by data envelopment analysis and chal-

lenges related to it. The structure of the paper is like the

following. The first section of the paper tries to give a

general framework of the definition of benchmarking in

competitive environments; the second section will study

concepts related to the benchmarking in data envelopment

analysis. The third section will deal with practical bench-

marking. And the fourth section will give an illustrative

example in order to show the applicability of benchmark-

ing. And finally the last section will conclude the paper.

Benchmarking in data envelopment analysis

Different procedures and approaches have been developed

to achieve efficiency measurement of economic enter-

prises. One of the most common and efficient models is

data envelopment analysis (DEA). Data envelopment

analysis is a nonparametric approach that is used in effi-

ciency analysis. This model is an efficiency evaluation

model that is capable of being used in systems that have

multiple inputs and outputs. The concept of DEA was for

the first time introduced by Charnes et al. (1978). After the

introduction of the model, researchers developed different

models for measuring efficiency evaluation.

Benchmarking in DEA

DEA offers two beneficial sets of information. The first

group is related to the efficiency scores of units, and the

second group is related to benchmarking information. In

this way, the score for one unit is measured according to its

distance from the reference units. As a result, the less the

distance, the more the efficiency score of the unit under

evaluation. The vector form of envelopment CCR–DEA

model is as follows (Copper et al. 2007):

MinEo ¼ h

s.t. hXo � kX

Yo � kY

k� 0

ð1Þ

Such that, in Model (1), h ¼ 1 indicates the associated

DMU is efficient, and h\1 denotes the inefficiency of the

DMU. The optimal coefficients of the envelopment model

k�j ; j ¼ 1; 2; . . .; n; can be used in benchmarking and

deriving the reference set Ro ¼ DMUjjk�j [ 0
n o

of DMUo.

It is such that all reference units are efficient and dominate

the efficiency of the unit under assessment. These reference

units can be used as the benchmarks of inefficient units to

get a higher level of efficiency. Thus, the efficient frontier

introduced by DEA can also be used as the benchmarking

frontier. Cook et al. (2004) developed some models to take

benchmarking in DEA.

Benchmarking challenges in data envelopment
analysis

Data envelopment analysis is actually a technique that is

based on mathematical programming in order to find the

inefficient units in a collection of decision-making units

(DMUs). This means that they look for weights for the best

performance of the unit under evaluation, and therefore, if

there are no weights which make its performance better

than the others, then it is inefficient. In vector form, it is as

follows:

� 9 U;Vð Þ[ 0; 81� j�N
UXp

VYp
� UXj

VYj

� �

where Xp, Yp are the inputs and outputs of DMU under

evaluation and the (U,V) are the weight vector of inputs

and outputs and the (Xj, Yj) are the inputs and outputs of jth

DMU in observation set. In such situation, the unit studied

with any weight will show the following:

8 U;Vð Þ[ 0; 9j; UXp

VYp
� UXj

VYj

And thus an assessment carried out by any person,

organization or model will be labeled as inefficient. But if a

unit is recognized as efficient by the model, then it means:

9 U;Vð Þ[ 0; 8j; UXp

VYp
� UXj

VYj

In such case, the pth DMU is relatively efficient with

respect to these weights; i.e., there may be other combi-

nations of weights U;Vð Þ[ 0 that may have lower effi-

ciency and be inefficient. In sum, they may prove to be less

efficient or inefficient when assessed by other people or

models. Therefore, data envelopment analysis studies

efficiency in the best of circumstances. And as such, it

would be better to claim that the pth DMU is in the best

working condition and that we have no information

regarding the efficiency of the other models that use the

different weights. It can be safely claimed that the amount

of efficiency calculated by data envelopment analysis is an

overestimate of the amount of efficiency. Therefore, it is

possible to consider an improvement in units that are

efficient by DEA. Actually, it may be possible to introduce

benchmark units for strongly efficient units.

The second reason for presenting a benchmark for effi-

cient units is to stimulate motivation as well as
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competitiveness and a continual efficiency. Giving

improvement suggestions to inefficient units in order to

help them reach an efficient frontier, it is likely that effi-

cient frontiers are improved by inefficient units, and if such

a thing happens, efficient units that have had no improve-

ment in their performance will become inefficient in the

next period. In other words, there is no guarantee that the

efficient unit of tth period can prove to be as efficient as it

was before.

The third reason for developing a model to generate

improvement suggestion and benchmarks for efficient

DMUs is related to total quality management (TQM) phi-

losophy and continuous improvement. TQM presents a set

of principles and concepts that lay emphasis on continuous

improvement, consumer satisfaction and competitive

benchmarking (Crosby 1984; Juran 1992). Process

improvement concentrates on activities that are continu-

ously involved with value creation in an organization.

Therefore, in contemporary competitive environments, the

issue of continuous improvement is vitally important. And

thus, if strongly efficient units are introduced as some of

the most efficient units in a group of homogeneous ones,

they will still need to have help and advice in achieving a

high level of efficiency.

The last challenge in benchmarking through data

envelopment analysis deals with the practicality of

improvement suggestions of reference benchmarks.

Although these proposals and improvements have the

chance to be produced in production possibility set (PPS),

it is possible that the existence of different environmental

constraints in the system and decision-making bodies

makes it impractical and impossible to do. In other words,

one of the main problems related to data envelopment

analysis is the ignorance shown to environmental con-

straints in production possibility set. As an instance of such

constraints, one can make mention of the relation that

exists between teachers, employees and students of a uni-

versity; in such an environment and supervisional regula-

tions, the proportion between the teacher and the student

(as the inputs of an academic system) should stay and

happen within one interval. And hence such a university

cannot be taken as a practical benchmark if it does not

possess this virtual proportion. Other examples are those of

physicians and nurses (inputs of a hospital) budget con-

straints of a production unit. Therefore, there is a high

possibility that, in practice, we will always face such

environmental and systemic constraints. Such conditions

can in return damage the feasibility of improvement advice

and reference benchmarks by the classic models of data

envelopment analysis.

Literature review

Considering the challenges that were talked over in the

reference benchmark section and suggestions for

improvement related to classical data envelopment analy-

sis, this section of the paper will attempt to shed more light

on the following.

Kao (1994) presented a modified DEA model consid-

ering the allowed changes in inputs and outputs of the unit

under study. The results and improvement suggestions

obtained by this modified model were practical. In another

study, Sowlati and Paradi (2004) presented a practical

efficient frontier using the concept of artificial DMUs.

Artificial units were first used by Thanasssoulis and Allen

(1998). They employed the concept of artificial unit as an

alternative to the weight restrictions in DEA. However, the

concept used in Sowlati and Paradi (2004) was different

from that used by Thanasssoulis and Allen (1998). The

artificial units in Thanasssoulis and Allen (1998) had def-

inite values for inputs and outputs, but these values were

not observed in practice; rather, they were obtained based

on the inputs and outputs of other units. The concept used

in Sowlati and Paradi (2004) had indefinite input and

output vectors, whose values are obtained from a multiplier

form of CCR model.

Also the relevance of benchmarking information by

Sapienza et al. (2004) was investigated. Shokrollahpour

et al. (2016) proposed a new methodology for efficiency

benchmarking in DEA by using ANN approach. In another

research, Yi et al. (2003) studied the similarity and prox-

imity between two benchmarks using Euclidean distances

in two benchmarks. Rödder et al. (2017) proposed an

interactive DEA model for measuring the return to scale of

DMUs. Bogetoft and Hougaard (1998) believed that the

nearest benchmark to the unit under evaluation should be

used as the main example for benchmark. Post and Spronk

(1999) developed the interactive model using the expert’s

opinions of the system. The improved model was an iter-

ative and integrated model based on data envelopment

analysis and goal programming. In this model it is tried to

dwindle the distances between suggestions made—this

continues until the suggestions reach an optimal level and

can satisfy the experts of the systems and can also be

feasible. Baek and Lee (2009) continued with the work of

Halme et al. (1999) and presented a model in order to have

the best and the most disciplined model using the least

distance. Unlike previous models (that only presented

models), it studies and measures the efficiency of the units.

Ziari and Raissi (2016) developed a new model for ranking

of strongly efficient DMUs in DEA by solving the infea-

sibility and unbounded difficulties of existing models.

Esmaeilzadeh and Hadi-Vencheh (2015) proposed a
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procedure for complete ranking of DMUs in DEA. Izadi-

khah and Saen (2015) also developed a new model for

ranking DMUs in DEA.

Proposed methodology

In this section a methodology is to be represented for a

practical production possibility set (PPPS) which can

guarantee the practicability of the benchmarking

suggestions.

Theoretical preliminaries of proposed
methodology

The main purpose of extending this model in this section is

to obtain a practical benchmarking model using the concept

of artificial units used by Sowlati and Paradi (2004). The

model is based upon the extension of the PPS using arti-

ficial DMUs, such that the inputs and outputs of artificial

units satisfy the environmental conditions and known

constraints such as the inputs and outputs variation interval

of each unit as well as the linear relations among inputs and

outputs.

For this purpose, we assume that the model includes N

real DMUj; j ¼ 1; 2; . . .;N with known input and output

vectors Xj; Yj
� �

. The first step is to identify efficient units.

To achieve this, Model (2) is used. After implementing

Model (2), we can specify all the efficient units. Let us

suppose that X ¼ jjDMUj is efficient
� �

is the set of

indexes of all efficient units and Xj j ¼ K to be the number

of efficient units. In the envelopment CCR model under

constant returns to scale, the inefficient and even weakly

efficient units do not contribute to the formation of the

PPS, and their elimination does not change the shape of

PPS. Also inefficient units are never introduced as refer-

ence units or benchmarks to other units. So we omit them

from the observation set. But as it was mentioned in the

first part, the main objective of the issue is to obtain the

practical efficiency and benchmarking for the strongly

efficient units, since improvement of efficiency even for

strongly efficient units in DEA will lead to achievement of

competitive advantages in the contemporary complex and

rapidly changing environments.

The modified PPS (after the elimination of inefficient

and weak efficient units) should meet some practical cri-

teria, for instance, some constraints regarding the inputs

and outputs variation interval of efficient units [i.e., Sowlati

and Paradi’s (2004)], and the relationships among the

inputs and outputs of an efficient unit. For example, the

ratio of specialists to nurses in a hospital should lie within a

certain interval. These relations can be obtained both

through the study of the system and management opinion

as well.

Artificial DMU

We introduce the artificial gDMUk corresponding to the kth

efficient unit k ¼ 1; 2; . . .;K and the matrix of Ak as the

matrix of technical coefficients of the identified constraints

among the inputs and outputs of this artificial unit:

Ak

~Xk

~Yk

� �
� bk

where, ~Xk; ~Yk
� �

is the vector of unknown inputs and outputs

of kth artificial unit. Now, we define:

Sk ¼ X; Yð Þ Ak
X

Y

� �
� bk

����
	 


as the set of all feasible units in the set of the kth con-

straints corresponding to the kth artificial unit.

Real and artificial units formation

In this step, we form the set of all real and artificial units

which should undergo benchmarking process (i.e., revised

observation set). Moreover, the constraints obtained from

the previous stage should be also added to PPS to construct

the PPPS. In this manner, the set of (PPPS) is obtained

which includes the K efficient units and K artificial units

corresponding to those efficient units. Artificial units

should satisfy the following constraints:

~Xk; ~Yk
� �

2 Sk; k ¼ 1; 2; . . .;K ð2Þ

Benchmarking with respect to PPPS

In this step, each of the efficient units undergoes bench-

marking with respect to PPPS. The following model is an

envelopment model based on (PPPS):

E0
o ¼ Min h0

s:t: h0X0; Yoð Þ� PPPS
ð3Þ

which leads to this nonlinear model:

E
0

o ¼ Min h0

h0X0 �
X
j2X

kjXj þ
XK
k¼1

k0k ~Xk

Yo �
X
j2X

kjYj þ
XK
k¼1

k0k ~Yk

Ak

~Xk

~Yk

 !
� bk; kj; k

0
k � 0; k ¼ 1; 2; . . .;K; j 2 X

ð4Þ
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where k
0

k is the coefficient of kth artificial DMU. Consid-

ering the purpose of the statement, Model (4) is performed

only for efficient units, because the conventional DEA

presents some improvement suggestions and benchmarks

for inefficient units. Model (4) has some differences with

that of conventional model (2). Model (4) has new vari-

ables of k0k; ~xik; ~yrk; k ¼ 1; 2; . . .;K; i ¼ 1; 2; . . .;m; r ¼
1; 2; . . .; s and also new constraints. Model (4) with regard

to the existence of k0k ~Xk and k
0

k
~Yk is nonlinear and should be

converted into linear state by using appropriate

conversions.

We put k0k~yrk ¼ qrk and k0k~xik ¼ pik; i ¼ 1; 2; . . .;m; r ¼
1; 2; . . .; s; k ¼ 1; 2; . . .;K, so Model (4) is converted to

this linear form:

E0
o ¼ Minh0

h0X0 �
X
j2X

kjXj þ
XK
k¼1

Pk

Yo �
X
j2X

kjYj þ
XK
k¼1

Qk

Ak

Pk

Qk

� �
� k0kbk; kj; k

0
k � 0; k ¼ 1; 2; . . .;K; j 2 X

ð5Þ

where Pk ¼ p1k; p2k; . . .; pmkð Þ and Qk ¼ q1k; q2k; . . .; qskð Þ.
The above model is a linear model which can be easily

solved by using linear programming software. In the con-

tinuation, we will deal with proving the theorems related to

Model (5).

Theorem 1 Model (5) is always feasible.

Proof First we show that Model (5) is feasible for

benchmarking of efficient units.

Let us assume o 2 X and set ko ¼ 1, h0 ¼ 1 and the rest

of variables as equal to zero:

S0 ¼ h0 ¼ 1; k0 ¼ 1; kj ¼ 0 for ðj 2 X ^ j 6¼ o; k0 ¼ 0;
�

P ¼ 0; Q ¼ 0Þ

where P ¼
p11 � � � p1K

..

. . .
. ..

.

pm1 � � � pmK

2
64

3
75; Q ¼

q11 � � � q1K

..

. . .
. ..

.

qs1 � � � qsK

2
64

3
75

and k0 ¼ k
0

1; k
0

2; . . .; k
0

K

� �
. It is clear that S0 is a feasible

solution to Model (5) with objective function value

E0
o ¼ h0 ¼ 1. h

Now assumed that o 62 X; means the benchmarking to

be performed for an inefficient unit. S ¼ h�; k�ð Þ is the

optimal solution of Model (2) for deriving the efficiency of

DMUo. It is clear that h
�\1 and coefficient of none of the

inefficient units (k�j ) is positive; if j 62 X, then k�j ¼ 0 or in

the other word, if k�j [ 0, then j 2 X. Now we put:

S0 ¼ h0 ¼ h�; k�; k0 ¼ 0;P ¼ 0;Q ¼ 0ð Þ

Hence, the omission of inefficient units has no impact on

the possibility of Model (5), because the coefficient of none

of inefficient units in Model (2) will be positive. In other

words, none of the inefficient units can be part of reference

units. So that, Model (5) will be feasible in the assessment

and benchmarking of all units.

Theorem 2 The optimal value of Model (2) is larger or

equal to the optimal value of Model (5) ðE0
o �EoÞ

Proof Let us suppose S ¼ h�; k�ð Þ to be the optimal

solution corresponding to Eo in Model (2). Now we put.

S0 ¼ h0 ¼ h�; k�j [ 0; k0 ¼ 0;P ¼ 0;Q ¼ 0
� �

It is clear that S0 is a feasible solution for Model (5) and the

value of its objective function is h�, so due to the fact that

E
0

o is the optimal solution to Model (5), E0
o � h� ¼ Eo: h

Corollary 1 E0 � 1 for the efficient units and E0\1 for

inefficient units.

So, if a unit under Model (2) is inefficient, it will be

inefficient by using Model (5) as well and the quantity of E0
o

cannot be more than 1 and satisfies the definition of

relative efficiency.

Eventually, after solving Model (5), we will reach to the

following states:

1. E0
o ¼ Eo ¼ 1

In this state, the unit under benchmarking will be

practically efficient too and there is no possibility for

the efficiency improvement with regard to PPPS. So,

maintaining the existing status is the best strategy for

that. In this state, k0�k ¼ 0; k ¼ 1; 2; . . .;K. So it is not

possible to reach any benchmark. Because the trans-

formations used to convert the model to linear form are

not reversible.

2. E0
o\1 and Eo ¼ 1

whichwewill show that in this state, k0�k [ 0 for some

of artificial DMUs. So it is possible to get some of the

artificial units with known vectors ~Xk ¼ Pk

k0�k
; ~Yk ¼ Qk

k0�k

which can be used as the practical benchmarks of that

efficient unit to reach the higher level of efficiency.

Theorem 3 If E0
o\1 and Eo ¼ 1, then 9k; k0k [ 0:

Proof By contradiction, we suppose k0�k ¼ 0; k ¼
1; 2; . . .;K and S0 ¼ h0�; k�j ; k

0� ¼ 0;P� ¼ 0;Q� ¼ 0
� �

the

optimal solution corresponding to E
0

o.

Since k0� ¼ 0 for all k ¼ 1; 2; . . .;K and k0k~yrk ¼
qrk; k

0
k~xik ¼ pik implies that P� ¼ 0;Q� ¼ 0: Now we put

S ¼ h0�; k�j ; j 2 X; kj ¼ 0; j 62 X
� �

; it is clear that S is a
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feasible solution to Model (2) whose objective function is

h0�\1 ¼ h� ¼ Eo, which is in contradiction to the opti-

mality of Eo to Model (2). h

In summary, it can be stated that under Model (5), some

of the efficient artificial units can be obtained which could

be used as the practical benchmarks of efficient units. If

such artificial units are impossible, then the efficient unit is

practically efficient too.

Illustrative example

In this section, a numerical example is represented to

illustrate the proposed methodology. In order to illustrate

the PPS and Farrell’s frontier using classical and proposed

practical models graphically, an example with two inputs

and one output is used. The example provided in this

section is adopted from the literature (Esmaeilzadeh and

Hadi-Vencheh 2015). Some conversions have been made

on inputs and outputs to be able to present the concept of

model and outlined goals in a better way. The mentioned

example is related to the assessment of 7 Health Units

(Hospitals). These hospitals assumed to have 2 inputs as

the number of specialized physicians (I1) and number of

nurses (I2) and one output as medical services to patients

(O). Table 1 demonstrates the input and output values of

each hospital and their CCR efficiency score.

The first step in the implementation of the model is

identifying efficient units. As it was described in the

methodology, the model is only applied to efficient units.

The mentioned CCR model evaluates seven DMUs each

with two inputs and one output. Units A, B and D are

distinguished. Therefore, set X will be X ¼ fA;B;Dg.
Moreover, the PPS relating to these seven units and Far-

rell’s frontier is presented in Fig. 1. As can be observed,

the three units A, B and D lie on Farrell’s frontier and are

(strongly) efficient. As mentioned, inefficient units F, C,

E and G do not have any role in the formation of the

efficient set and Farrell’s frontier, and their elimination

does not change the shape of efficient set and Farrell’s

frontier. In the next step, we only deal with efficient units

A, B and D for practical benchmarking since these units

have the chance to be used as benchmarks for other units.

The next step in implementing the model is obtaining the

set of environmental and system constraints of each of the

units identified as efficient. This part is the most important

and also the most challenging part of the study, because all

environmental and internal system constraints should be

identified and designed.

Of the most important and common constraints men-

tioned in the studies carried out by Sowlati and Paradi

(2004) and Kao (1994) are the upper and lower bounds of

variation in inputs and outputs; such that each of the inputs

or outputs can assume values only within an interval defined

by management. Lower bounds of each variable are more

important for inputs, since improvement suggestions indi-

cate decrease in inputs. Therefore, specifying a lower bound

for input variables makes improvement suggestions prac-

tical. However, upper bounds can also be applied, but as the

model is seeking efficiency increase, it will adopt inputs at

the lowest possible level. In contrast, upper bounds are

important for outputs, i.e., to what extent the increase in

outputs of each unit is possible. From the practical point of

view, it is obvious that the output of a unit cannot be

increased infinitely. Thus, following variation intervals are

derived for each of the efficient units A, B and D by ana-

lyzing the system or hospital manager’s opinions:

~x1a � 15; ~x1b � 15; ~x1d � 20

~x2a � 145; ~x2b � 125; ~x2d � 160

Also we have:

~ya � 210; ~yb � 205; ~yd � 280

For example, ~x1a � 15 means that the first input of hospital

A cannot be less than 15 physicians.

Another practical constraint for a hospital can be the

ratio of specialists to nurses. As there is a certain ratio of

students to faculty members specified in educational cen-

ters, also there is usually a ratio of physicians to nurses

specified in medical centers. For instance, it is assumed that

for each efficient hospital, the ratio of specialists to nurses

lies within the following interval:

0:14� ~x1k
~x2k

� 0:16; for k 2 X

which can be rewritten as the following two linear

inequalities:

0:14~x2k � ~x1k � 0; k 2 X

~x1k � 0:16~x2k � 0; k 2 X

Here, it should be noted that if there is no practical con-

straint for inputs and outputs of efficient units except the

upper and lower bounds, it can be simply shown that

Table 1 Inputs, outputs and CCR efficiency

Unit Doctors (I1) Nurses (I2) Patients (O) CCR efficiency

A 18 151 210 1

B 19 131 205 1

C 25 160 215 0.8205

D 27 168 280 1

E 22 158 160 0.6637

F 55 255 320 0.7529

G 33 235 315 0.8739
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gDMUk ¼ lik; urkð Þ is the ideal or standard unit of the kth

efficient unit which dominates the kth real efficient unit.

Thus, pursuing the model is not sensible since an ideal

benchmark for the kth efficient unit can easily be intro-

duced. However, the presence of other environmental and

systemic constraints forces the inputs not to adopt their

lower bounds and the outputs not to adopt their upper

bounds. Hence, the unknown values of efficient benchmark

units (if present) should be obtained by solving the model.

Nevertheless, such constraints always exist in practical

tasks.

For simplicity, it is assumed that the constraints of the

system are only these two constraints. However, other

constraints such as hospital budget, as a sum of the revenue

paid to specialists and nurses, and other issues can also be

considered.

The next step in the implementation of the model is

obtaining the values E0 [using Model (5)] for efficient units

A, B and D. For instance, for efficient unit A and the value

E0
a, we have:

E0
a ¼ minh0a

s.t. h0axia �
X
j2X

kjxij þ
XK
k¼1

pik; i ¼ 1; 2;

ya �
X
j2X

kjyj þ
XK
k¼1

qk; kj; k
0
k � 0

� p13 þ 20k03 � 0; �p11 þ 15k01 � 0; �p12 þ 15k02 � 0

� p23 þ 160k03 � 0; �p21 þ 145k01 � 0; �p22 þ 125k02 � 0

q3 � 280k03 � 0; q1 � 210k01 � 0; q2 � 205k02 � 0

p13 � 0:16p23 � 0; p11 � 0:16p21 � 0; p12 � 0:16p22 � 0

� p13 þ 0:14p23 � 0; �p11 þ 0:14p21 � 0;

� p12 þ 0:14p22 � 0

The second group of above constraints is those relating

to upper and lower bounds of input and output variables,

which have been derived using transformations;

k0k~yrk ¼ qrk; k
0
k~xik ¼ pik. Similarly, the third group of con-

straints is transformations of the second group of con-

straints of the system. The optimal solution of the above

model is as follows:

E0
a ¼ h0�a ¼ 0:933; p13 ¼ 16:8; p23 ¼ 120; q3 ¼ 210;
k0�3 ¼ 0:75

Other variables are equal to zero. Since k0�3 , the trans-

formations used for linearization of the model are rever-

sible, and the values of ~X3 and ~Y3 can be obtained as

follows:

~x13 ¼ 22:4; ~x23 ¼ 160 and ~y3 ¼ 280

Since E0
a\1, the efficient unit A is not practically effi-

cient and it is possible for this unit (hospital) to consider

the artificial unit with known vector gDMU3a ¼
22:4; 160; 280ð Þ as its benchmark and achieve a higher

level of practical efficiency. Now, by identifying the inputs

and outputs of the virtual unit, the PPPS can be obtained as

shown in Fig. 2.

As can be seen in Fig. 2, by adding the artificial unit

gDMU3 all efficient units A, B and D lie within the frontier

and are not efficient any more. Also, it can be observed in

the figure that PPPS envelopes PPS, and the practical

efficiency scores cannot exceed CCR efficiency scores.

Using a similar process for the efficient unit B, we have:

E0
b ¼ h0�b ¼ 0:8942; p13 ¼ 16:99; p23 ¼ 117:143; q3
¼ 205; k0�3 ¼ 0:738

and by using the reverse conversions, we have:

a

b
d

f

c

g

e

Farrell s frontier

Fig. 1 Farrell’s frontier with

CRS
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~x13 ¼ 23:2; ~x23 ¼ 160 and ~y3 ¼ 280

Therefore, the virtual unit gDMU3b ¼ 23:2; 160; 280ð Þ
can be used as the benchmark for efficient unit B.And in

the same manner, for unit D we have:

E0
d ¼ h0�d ¼ 0:9524; p13 ¼ 16:8; p23 ¼ 120; q3 ¼ 210; k0�3
¼ 1

The virtual unit corresponding to these values is

gDMU3d ¼ 22:4; 160; 280ð Þ, and the PPPS obtained by

adding this unit is the PPPS corresponding to the efficient

unit A. Hence, units A and D have the same benchmark. So

the improvement suggestions for the efficient hospital D

based on its benchmark gDMU3d are 4.6(27 - 22.4) per-

sons decrease in the number of physicians and

8(168 - 160) persons decrease in the number of nurses to

achieve the same output (280 patients). Against the clas-

sical DEA models, these improvement suggestions are

practical because the benchmark amount of inputs and

output satisfies all the practical constraints (the variation

interval of variables and also the ratio of physicians to

nurses).

As was proved in Theorem 2 in the methodology, when

the practical efficiency score of a unit is less than one, i.e.,

E0\1, there is always a k0�k [ 0, and thus the transforma-

tions used in the linearization of the model are reversible

and the corresponding artificial unit can be obtained. This

artificial unit certainly dominates the unit under evaluation

and can be considered as a benchmark for it. As a sec-

ondary result of the study, after obtaining the practical

efficiency scores of all efficient units, one can rank efficient

units. Ranking efficient units is one of the topics of interest

in DEA, and many fundamental and applied studies have

been carried out in this field. One of the most commonly

used ranking models is AP model (Anderson and Peterson

1993), by which an efficiency score higher than one is

obtained. This model is also called the super-efficiency

model. In a comparison between the model extended in this

study and AP model, the followings can be mentioned:

1. The modified PPS for obtaining the rank of efficient

units in AP is obtained by eliminating the observed

units under evaluation. Therefore, the PPS will shrink

or will not change. However, the method employed in

this study is based on adding some virtual units, which

will certainly not lead to shrinking the PPS, i.e., the

PPS will expand or will not change. Thus, we have

PPSAP � PPS and � PPPS.

2. The efficiency scores obtained by AP model will result

in efficiency scores greater than one, but the practical

efficiency scores obtained in the current study will

never be greater than one, as was proved in Theorem 1,

and will be certainly smaller or equal to the CCR

efficiency scores. Thus, hAP � hCCR and hCCR � h0: So,
it can be observed that all processes and results

obtained in this study are opposite to those of AP

method, and this method can more appropriately be

called a minor efficiency model.

Comparing our proposed model and AP model, we find

that our model has some advantages over the latter: First,

the proposed model is always feasible; secondly, efficiency

scores are obtained under completely practical conditions

and the definition of relative efficiency still holds, since

0� h
0 � 1.

Conclusion remarks

Efficiency improvement and benchmarking have been

widely considered by researchers and practitioners. Rela-

tive efficiency measurement models such as DEA, since

always introduce some units efficient, do not offer any

improvement suggestions for those units or any bench-

mark. In this paper, a practical DEA model considering the

environmental and practical constraints was proposed by

using the concept of artificial DMUs. The proposed non-

linear model was converted to a linear one by using the

proper transformations. In comparison with the model

proposed by Sowlati and Paradi (2004), the process of

Fig. 2 PPPS corresponding to

the addition of gDMU3
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obtaining the artificial DMUs and efficiency scores of real

DMUs is simultaneous. Also as the advantages of the

model, the feasibility of the model and bounded efficiency

scores can be mentioned. Practical efficiency scores can be

used for the ranking of efficient DMUs as a proper practical

ranking method, which has some advantages in comparison

with AP model. Considering the vagueness and subject

environment of practical constraints, uncertain approaches

such as robust, fuzzy and stochastic can be applied for

further research suggestions.
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