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Abstract
Humanitarian organizations pre-position relief items in pre-disaster and distribute them to the affected areas in post-disaster. 
Improper planning of emergency operations causes more deaths in post-disaster. In this paper, the problem of relief item 
pre-positioning and multi-period distribution planning is addressed considering lateral transhipment among distribution 
centres to improve the efficiency of the humanitarian relief chain. The proposed model not only improves cost efficiency of 
the relief chain, but also enhances the equity and fairness. Therefore, a multi-objective two-stage stochastic programming, 
which involves imprecise parameters, is developed to address the problem. Moreover, TH method is utilized to solve the 
proposed multi-objective programming and efficient possibilistic programming is adopted to deal with the imprecise input 
parameters. Applicability of the proposed model and the effectiveness of the solutions are examined through a numerical 
analysis. Finally, sensitivity analyses are conducted on key input parameters to extract managerial insights.

Keywords Relief supply chain · Pre-positioning · Lateral transhipment · Multi-period · Emergency operations

Introduction

Over the past decade, the number of natural disasters, 
such as tornados, floods, forest fires, and extreme cold, has 
increased and affected millions of people’s lives and cities, 
leaving a lot of their assets and resources damaged. Due to 
the growth of the population and the development of the 
cities, the number of people who are at risk has increased in 
recent years (Bozorgi-Amiri et al. 2013). According to Bas-
kaya et al. (2017), 106,654 people died and more than 216 
million have been affected by natural disasters from 2003 to 

2012. In addition, it is estimated that the financial damage 
during these years has been around $157 billion.

Here, it is revealed that how humanitarian relief supply 
chain in disaster management is important to control the 
flow of resources to provide the affected people with relief. 
Determining the appropriate location for storing the relief 
items before a disaster and planning the distribution of pre-
positioned relief items in post-disaster are two challeng-
ing issues. Besides, considering cost, time, and quality as 
essential criteria increases the complexity and importance 
of managing disaster in the point of operation management 
(Bozorgi-amiri et al. 2013). Demands for relief items, such 
as water, food, and blanket, normally increase after a disaster 
strikes. Providing these relief items in sufficient quantity 
and at the right time is vital to save human lives. Prepared-
ness planning includes purchasing items and pre-positioning 
them. The response planning includes delivering supplies 
to the demand points and purchasing extra supplies (Prad-
hananga et al. 2016).

Disaster management usually consists of four parts: miti-
gation, preparedness, relief, and recovery. Mitigation is the 
effort taken to save the human life including understanding 
the consequences of risks and organization of resources. Pre-
paredness is the set of operations performed to get prepared 
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before a disaster, and consequently the risks reduce. Prepar-
edness efforts include the improvement in response opera-
tion, by training people, and preparedness planning. Disaster 
management often encounters conflicting objectives such as 
maximizing the efficiency of emergency aids and minimiz-
ing the costs of logistic activities. Thus, the problem is much 
complicated with respect to the existence of high degrees of 
uncertainty.

Distributing relief items to the affected areas is one of the 
most important steps in humanitarian operations, which can 
be disrupted because of total/partial damage to warehouses’ 
capacity, distribution centres, suppliers, and infrastructures. 
This could result in unmet relief item demands and finally 
death in the affected areas (Çelik 2016). Thus, it is vital to 
consider the humanitarian logistic network vulnerability to 
diminish the risk of disruption when a disaster strikes. In this 
paper, we have formulated a multi-objective two-stage sto-
chastic programming in order to design a humanitarian relief 
supply chain including relief suppliers, central warehouses 
(CWs), local distribution centres (LDCs), and affected areas. 
CWs and LDCs should be established and located in pre-
disaster. Generally, LDCs can be considered reliable and 
unreliable. A disaster might affect unreliable LDCs, and they 
might lose some portions of their capacity (Ransikarbum 
and Mason 2016). On the contrary, reliable LDCs are safe 
in disasters, but their establishment cost is much higher than 
unreliable ones. The proposed model selected the location 
of CWs and reliable and unreliable LDCs among the candi-
date locations. Moreover, it determined the quantity of relief 
items pre-positioned in them by suppliers in pre-disaster. 
Also, the proposed model, in post-disaster, determines the 
quantity of relief items purchased from the suppliers and 
relief items sent from reliable LDCs to unreliable LDCs. 
Another feature of this model is considering the follow-
ing factors: appropriate multi-period planning for the dis-
tribution of relief items in the response phase of the relief 
chain, uncertainties about the demands in the affected areas 
(Tabrizi and Razmi 2013), cost parameters, and transpor-
tation time. The costs in this study include the fixed cost 
of establishing local and central distribution warehouses, 
the cost of transporting relief items between the local and 
central distribution warehouses, the cost of transporting 
relief items from local or central distribution warehouses to 
the demand points, penalty costs for the unmet demands in 
the affected areas, and the cost of transporting relief items 
between local distribution centres (lateral transhipment). To 
cope with the imprecise parameters in the present model, 
we applied a method that was proposed by Jiménez et al. 
(2007). The remainder of this paper is presented as follows. 
The literature review is presented in “Literature review” 
section. “Problem description” section addresses the prob-
lem description and the model development. The solution 
procedures including multi-objective programming (MOP) 

and the possibilistic programming method are discussed in 
“Possibilistic programming” section. Numerical examples 
are presented in “Multi-objective programming” section. 
Computational results and sensitivity analyses are presented 
in “Numerical experiments” section. Managerial insights are 
developed in “Case study” section. Finally, the conclusion 
and further research are presented in “Managerial insights” 
section.

Literature review

The most relevant literature corresponding to the current 
work is reviewed in this section with focusing on humanitar-
ian relief chain (HRC) published work.

Mete and Zabinsky (2010) proposed a two-stage sto-
chastic programme which accounts for determining storage 
locations of medical supplies and their required inventory 
levels in the first stage (i.e., pre-disaster) and distributing 
pre-positioned medical supplies to the affected areas in 
the second stage (i.e., post-disaster). Rawls and Turnquist 
(2010) proposed a two-stage stochastic mixed-integer model 
in order to pre-position relief items in pre-disaster. They 
examined a real-world case study for the hurricane threat 
located at Gulf Coast area of the USA and developed an 
L-shaped method to solve some big problems. Rawls and 
Turnquist (2011) developed their previous model (Rawls 
and Turnquist 2010) by considering the service quality 
constraints to ensure that the unmet demands would be at 
their minimum level. Bozorgi-Amiri et al. (2013) proposed 
a multi-objective robust stochastic programming in order to 
optimize humanitarian relief operations in both the prepar-
edness (e.g., pre-positioning) and response phases simulta-
neously (and distribution). Tirado et al. (2014) proposed the 
lexicographical dynamic flow model to solve the problem 
of relief item distribution in a humanitarian logistic supply 
chain. They tried to involve the criteria that were related 
to cost, time, and equity to obtain a better response in dis-
asters. Barzinpour and Esmaeili (2014) proposed a multi-
objective two-echelon HRC for the preparedness phase of 
HRC. They proposed some objectives for maximizing the 
covered demand and minimizing the total facility location 
costs and minimizing storing, transportation, and shortage 
costs. Azad et al. (2014) designed a robust reliable HRC 
network considering random disruptions for distribution 
centres and transportation modes. They assumed that a dis-
ruption might partially disrupt the capacity of supply facili-
ties. Thus, they divided the distribution centres into reliable 
and unreliable facilities whose capacity might be affected 
by the disruption. Camacho-Vallejo et al. (2015) proposed a 
bi-level mathematical programming for distributing interna-
tional aid in post-disaster and minimizing the shipping costs 
of the relief items that are received by foreign countries and 
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non-profit international organizations. Tofighi et al. (2016) 
presented a two-stage stochastic model for pre-positioning 
the relief items in pre-disaster and distributing them in post-
disaster considering the fuzziness and randomness nature 
of the disaster. Ahmadi et al. (2015) proposed a two-stage 
stochastic mixed-integer linear model to determine the loca-
tion of distribution centres in the first stage and the location 
of local distribution centres and the vehicle routing strategy 
in the second stage, considering possible scenarios of road 
destruction.

To investigate the benefits of transhipment opportuni-
ties into HRC, Baskaya et al. (2017) developed three math-
ematical models: direct shipment model, lateral tranship-
ment model, and maritime lateral transhipment model. They 
concluded that considering lateral transhipment could sig-
nificantly increase the efficiency of the HRC. To address 
uncertainties in some important parameters, such as demand, 
supply, and all the cost parameters, Zokaee et al. (2016) pre-
sented a robust three-echelon relief chain model consisting 
of suppliers, distribution centres, and demand points. The 
proposed model selects the appropriate locations for locat-
ing relief centres and determines optimal distribution flows 
of the relief items. Their presented objective functions set 
to minimize operating costs and maximizing equity among 
demand points. He and Zhuang (2016) proposed a robust 
model for balancing pre- and post-disaster operations to 
improve the cost efficiency while enhancing fairness among 
beneficiaries. Cavdur et al. (2016) developed a two-stage sto-
chastic programming for the facility location in the response 
phase which minimizes the total travelled distance, unmet 
demands, and the total number of facilities. Rezaei-Malek 
et al. (2016a, b) presented a multi-objective mixed-integer 
programming to determine the right decisions for select-
ing the location of warehouses, distributing commodities 
to the affected people, ordering policies for renewing the 
perishable stocks, and pre-positioning the quantity of medi-
cal commodities. Alem et al. (2016) proposed a two-stage 
stochastic network flow model to minimize the total cost of 
pre-positioning stocks and minimizing the unmet demands. 
Decisions such as pre-positioning relief items and fleet siz-
ing are made in the first stage. Accordingly, budget alloca-
tions to provide the required relief items are addressed in the 
second stage. Bozorgi-Amiri and Khorsi (2016) proposed 
a scenario-based two-stage multi-objective multi-period 
model in order to integrate pre- and post-disaster emergency 
operations. Determining the facility location and pre-posi-
tioning the relief items are modelled through the first stage. 
In addition, vehicle routing for distributing pre-positioned 
relief items is considered in the second stage. The developed 
model consists of three objectives: minimizing the shortages, 
transportation time, and all the operation costs. Rodríguez-
Espíndola et al. (2017) utilized geographical information 
systems (GISs) to develop a multi-objective optimization 

model. They aimed to determine the optimal location of 
emergency relief facilities and the quantity of relief items, 
which need to be pre-positioned. In addition, they consid-
ered the relief item distribution problem in their model with 
the aim of minimizing all the operation costs. Haghi et al. 
(2017) proposed a robust multi-objective programming 
model for pre- and post-disaster. In relief item distribution 
centres and health centres, the quantity of goods should be 
calculated in pre-disaster. In addition, planning for the dis-
tribution of relief items and casualty transfer to the medical 
centres are the other aspects of their work. Manopiniwes and 
Irohara (2017) developed a multi-objective stochastic linear 
mixed-integer model in order to integrate the emergency 
operations in both pre- and post-disaster phases. Facility 
location and pre-positioning relief items in pre-disaster and 
distributing stocks, vehicle routing, and evacuation planning 
are all noticed in post-disaster decisions. Mohammadi and 
Yaghobi (2017) proposed a bi-objective stochastic model 
to design an emergency medical service logistic network 
with the aim of minimizing the total transportation time by 
considering route’s disruptions and transportation costs. 
The proposed mathematical model tries to determine the 
appropriate locations for transfer points, medical supplies, 
distribution centres and to make decisions related to the 
allocation strategy between facilities and the flow of medi-
cal supplies. Fereiduni and Shahanaghi (2017) proposed a 
two-stage multi-period robust model to design a HRC. The 
first stage decisions include selecting proper suppliers for 
supplying relief items and determining the location of cen-
tral and local warehouse and pre-positioning levels. Also, 
the second-stage decisions consist of determining the relief 
item flows among central and local warehouses, determining 
relief item flows from local warehouse to demand points, 
and quantity of relief items which are sent from suppliers to 
demand points. Condexia et al. (2017) developed a two-stage 
stochastic model considering managing risk in humanitarian 
operations. The first stage of the proposed model determines 
the location of distribution centres and pre-positioning lev-
els, and the second stage associates with distributing relief 
items to demand points. Also, Elci and Noyan (2018) devel-
oped a chance-constrained two-stage stochastic program-
ming model with considering risk management in order to 
design a HRC. The proposed model determines capacity and 
location of supply facilities and finds pre-positioning levels 
by incorporating risk measures. Yahyaei and Bozorgi-Amiri 
(2018) proposed a mixed-integer linear model to design a 
reliable HRC. Remarkably, they divided the supply facilities 
into reliable and unreliable warehouses. The facility location 
and distribution planning is formulated through a robust pro-
gramming. Rezaei-Malek et al. (2016a, b) developed a HRC 
network design associated with the facility location, pre-
positioning, and distributing relief items in the preparedness 
and response phases. They utilized a two-stage stochastic 
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programming to model the inherited uncertainty existing in 
some input parameters.

In this paper, we propose a two-stage stochastic program-
ming for integrating relief pre-positioning and distribution 
planning, considering the lateral transhipment and disrup-
tion in supply facilities. Hereby, humanitarian organizations 
can mitigate the impact of relief items scarcity. Another 
significant point of this work is designing the post-disaster 
operations in multi-periods and in a dynamic way by which 
humanitarian organizations can find an optimal distribution 
plan in the first 72 h after a disaster strikes.

In brief, the main contributions of this paper are as 
follows:

• Involving disruptions while designing the HRC;
• Enhancing the responsiveness of HRC, considering lat-

eral transhipment;
• Designing the dynamic (i.e., multi-period) post-disaster 

operations;
• Dealing with possibilistic and stochastic uncertainties;
• Implementing the proposed model for a case study.

Problem description

In the aftermath of a disaster and in the early stages (i.e., the 
first 72 h), pre-positioned relief items should be distributed 
to the affected areas in order to save lives and mitigate the 
negative impacts of the disaster. On the other hand, lack of 
resources such as pre-positioned relief items might cause 
some difficulties. Therefore, it is essential to plan an efficient 
and effective emergency response considering the distribu-
tion of relief items in multi-periods, because the new infor-
mation can be used for future periods once it is known. This 
viewpoint can help humanitarian organizations to increase 
the relief chain responsiveness and deal with the uncertain-
ties properly in post-disaster.

A typical relief supply chain includes relief suppliers, cen-
tral warehouses (CWs), and local distribution centres (LDCs). 
Suppliers’ capacity is limited, and they can provide humani-
tarian organizations with relief items in short lead-time in pre- 
and post-disaster. CW and LDCs’ locations should be chosen, 
among candidate locations, in pre-disaster. To account supply 
disruptions, LDCs can be divided into reliable and unreliable 
facilities. A disaster might affect unreliable LDCs and dam-
age some portions of their capacity (Ransikarbum and Mason 
2016). On the other hand, reliable LDCs are safe in disasters, 
but their establishment costs are higher than unreliable ones. 
In pre-disaster, humanitarian organizations pre-position the 
required relief items in CWs and LDCs using suppliers. After 
a disaster, pre-positioned relief items are sent from CWs to 
LDCs and from LDCs to the demand points (i.e., the affected 
areas). CWs must be opened with large storage capacities, 
and they play a strategic role in the relief supply chain. Hence, 
they must be safe. In addition, LDCs should be located close 
to the potential demand points because their responsibility is 
sending the relief items to the demand points.

As the scarcity of relief items might result in death and 
increase the number of injured people, it is vital to estimate 
the proper inventory level of CWs and LDCs for pre-posi-
tioning relief items. On the other hand, since the severity of 
future disasters is not predictable, two-stage stochastic pro-
gramming can be utilized to solve such problems (Tofighi 
et al. 2016). Notably, unmet demands might exist in post-
disaster due to the lack of relief items (Bozorgi-amiri et al. 
2013). For overcoming this difficulty, humanitarian organiza-
tions can exploit the lateral transhipment among LDCs. Thus, 
an LDC can provide more relief items from other LDCs and 
in this way reduce the unmet demands remarkably. Therefore, 
using lateral transhipment can enhance the responsiveness of 
a relief supply chain and reduce the overall unsatisfied relief 
demands. Figure 1 shows the proposed HRC.

Coping with uncertainties is another important part 
while configuring relief supply chains. As input parameters 
might be imprecise due to the unavailability of historical 

Fig. 1  General schema of the 
considered HRC
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data, possibilistic programming is a proper method to deal 
with fuzzy parameters. Also, some parameters may have a 
stochastic nature which might have been inherited from the 
randomness of events. The historical data are sufficiently 
available for such parameters. In this paper, to deal with 
the fuzzy parameters, such as the cost of establishing ware-
houses, transportation costs between CWs and LDCs, etc., 
possibilistic approaches are used. Also, to estimate possi-
ble future scenarios in post-disaster a two-stage stochastic 
approach is used.

Related assumptions considered in this paper are provided 
in “Assumptions” section.

Assumptions

• The costs related to the relief item shortages have been 
considered in post-disaster.

• Transportation costs are relief item-dependent and sce-
nario-dependent.

• Transhipments among LDCs are permitted. Relief items 
can be sent from reliable LDCs to unreliable ones in the 
case of a shortage (lateral transhipments.)

• Distribution of relief items in the response phase has 
been assumed multi-period.

• Suppliers can supply relief items in the post-disaster and 
distribute them to the LDCs.

• Lateral transhipments between LDCs and the procure-
ment of relief items from suppliers are not allowed in the 
first period of response phase.

Indices

I The index of a supplier
J The index of a candidate location for CWs
K The index of a candidate location for the reliable LDCs
L The index of a candidate location for the unreliable LDCs
M The index of LDCs
D The index of demand points
C The index of relief items
S The index of disaster scenarios
T The index of time periods

Parameters

g̃j The fixed cost of establishing a CW in the location j

f̃rk
The fixed cost of establishing a reliable LDC in the location k

f̃ul
The fixed cost of establishing an unreliable LDC in the loca-

tion l

ãqc The unit inventory holding cost of the relief item c
p̃cic The supplying cost of the relief item c from the supplier i in 

pre-disaster
p̃c

s

cit
The supplying cost of the relief item c from the supplier i 

under the scenario s
t̃c

s

ij
The unit transportation cost from the supplier i to the CW j 

under the scenario s
t̃c

s

im
The unit transportation cost from the supplier i to the LDC m 

under the scenario s
t̃c

s

jm
The unit transportation cost from the CW j to the LDC m 

under the scenario s
t̃c

s

md
The unit transportation cost from the LDC m to the demand 

point d under the scenario s
t̃c

s

kl
The unit transportation cost from the LDC k to the LDC l 

under the scenario s

�̃ s
cdt

The unit penalty cost for the shortage of the relief item c in the 
period t under the scenario s

capic The capacity of the supplier i to supply the relief item c
wcm The capacity of the LDC m (m3) for the storage of the relief 

item c
Vcj The capacity of the CW j (m3) for the storage of the relief item 

c
vc The volume of the relief item c (m3)
�ms The percentage of the storage capacity of the LDC m which 

might be disrupted under the scenario s. LDCs in a reliable 
location are not affected by a disaster, then: �ks = 0 ∀k

D̃s
cdt

The demand of the relief item c in the demand point d in the 
period t under the scenario s

ps The probability of the scenario s
M A big number

Decision variables

First-stage variables:

qccij The quantity of the relief item c supplied from the supplier i 
and pre-positioned in the CW j in pre-disaster

qlcim The quantity of the relief item c procured from the supplier 
i in pre-disaster and pre-positioned in the LDC m

zrk 1 if an LDC is located in a reliable location k; otherwise 0
zul 1 if an LDC is located in an unreliable location l; otherwise 

0
�j 1 if a CW is located in the location j; otherwise 0

Second-stage variables:

Qs
cimt

The quantity of the relief item c sent from the supplier i to 
the LDC m in the period t under the scenario s

ys
cjmt

The quantity of the relief item c sent from the CW j to the 
LDC m in the period t under the scenario s

xs
cmdt

The quantity of the relief item c sent from the LDC m to the 
demand point d in the period t under the scenario s

us
cklt

The quantity of the relief item c sent from the reliable LDC k 
to the unreliable LDC l in the period t under the scenario s
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ils
cmt

The inventory level of the relief item c available in the LDC 
m at the time period t under the scenario s

bs
cdt

The shortage of the relief item c in the demand point d in the 
period t under the scenario s

Model formulation

Objective function (1) aims to minimize the total cost of 
opening LDCs and CWs, the purchasing cost of relief items 
and storing them in the pre-disaster phase, and also the pur-
chasing and the transportation cost of relief items from a sup-
plier to the LDCs, the transhipment cost of relief items from 
the CWs to the LDCs, and from the LDCs to the demand 
points in post-disaster. Besides, the cost of lateral tranship-
ments among LDCs and the relief item shortage costs are con-
sidered in the formulation:

Equation (2) aims to maximize fairness among demand 
points. Notably, it maximizes the minimum rate of satisfied 
demands by distributing relief items to demand points dur-
ing periods:

Constraints (3), (4), and (5) represent the amount of relief 
items purchased from the suppliers for each LDC and CW in 
pre-disaster, and it should not exceed the capacity of CWs 
and LDCs, respectively.

(1)

minz =
�
j

g̃j�j +
�
l

f̃ulzul +
�
k

f̃rkzrk +
�
i

�
j

�
c

p̃cicqccij +
�
i

�
m

�
c

p̃cicqlcim

+
�
i

�
j

�
c

ãqcqccij +
�
i

�
m

�
c

ãqcqlcim+

�
s

ps

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

�
i

�
m

�
t

(p̃c
s

cit
+ t̃c

s

im
)Qs

cimt

�
j

�
m

�
c

�
t

t̃c
s

jm
ys
cjmt

+
�
m

�
d

�
c

�
t

t̃c
s

md
xs
cmdt

+
�
k

�
l

�
c

�
t

t̃c
s

kl
us
cklt

+

�
d

�
c

�
t

�̃ s
cdt
bs
cdt

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

(2)maxz2 = min
d,c,s

(∑
m

∑
t

PS

xcmdts

D̃s
cdt

)
.

(3)
∑
i

vcqccij ≤ Vcj�j ∀j, c

(4)
∑
i

vcqlcim ≤ wcmzrk ∀k,m = k, c

(5)
∑
i

vcqlcim ≤ wcmzul ∀l,m = l, c.

Constraint (6) limits the total relief items sent from a sup-
plier in the pre-disaster phase.

Constraints (7), (8), and (9) ensured the inventory balance 
limitation in reliable and unreliable LDCs. The quantity of 
relief items sent from suppliers to an LDC in the period t, and 
relief items remaining from the previous period and also the 
relief items sent through the lateral transhipment to the LDC 
should be equal to the relief items sent from the LDC to the 
demand point, relief items remaining at the end of the period 
t, in addition to the relief items sent from one LDC to another 
one.

Equation (10) is the demand constraint for relief items in 
the demand points in multi-periods.

(6)
∑
m

qlcim +
∑
j

qccij ≤ capci ∀i, c.

(7)
∑
i

qlcim +
∑
j

ys
cjmt

=
∑
d

xs
cmdt

+ ils
cmt

∀m, c, s, t = 1

(8)

∑
i

Qs
cimt

+
∑
j

ys
cjmt

+ ils
cm(t−1)

=
∑
d

xs
cmdt

+ ils
cmt

+
∑
l

us
cklt

∀k,m = k, c, t, s

(9)

∑
i

Qs
cimt

+
∑
j

ys
cjmt

+ ils
cm(t−1)

+
∑
k

us
cklt

=
∑
d

xs
cmdt

+ ils
cmt

∀l,m = l, c, t, s.

(10)
∑
m

xs
cmdt

+ bs
cdt

= D̃s
cdt

∀d, c, t, s.

(11)
∑
m

∑
t

Qs
cimt

≤ capci ∀i, c, s.
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Constraint (11) limits the total relief items sent from a 
supplier to LDCs in the response phase.

Constraint (12) shows the limitation for sending relief 
items from CWs and LDCs.

Constraints (13) and (14) ensured that relief items could 
be sent to the reliable and unreliable LDCs from suppliers 
if the LDCs have been established.

Constraint (15) expresses the quantity of relief items sent 
from a reliable LDC to the demand point. Constraint (16) 
restricts the quantity of relief items sent from an unreliable 
LDC to the demand point, and it should be less than the 
quantity of relief items available in the unreliable LDC.

Constraints (17), (18), and (19) ensured the fact that the 
quantity of the relief items sent from suppliers and CWs to 
the LDCs should be less than the capacity of the reliable and 
unreliable LDCs.

Constraints (20) and (21) ensured that the relief items 
could be sent to the demand point from reliable and unreli-
able LDCs if the LDCs have been opened.

(12)
∑
m

∑
t

ys
cjmt

≤ Vcj�j ∀j, c, s.

(13)
∑
i

Qs
cimt

≤ Mzrk ∀k,m = k, c, t, s

(14)
∑
i

Qs
cimt

≤ Mzul ∀l,m = l, c, t, s.

(15)
∑
d

xs
cmdt

+
∑
l

us
cklt

≤ ils
cmt

∀k,m = k, c, t, s

(16)
∑
d

xcmdts ≤ ils
cmt

∀l,m = l, c, t, s.

(17)
∑
j

ys
cjmt

+
∑
i

qlcim ≤ wcm�ms ∀m, c, t = 1, s

(18)
∑
j

ys
cjmt

+
∑
i

qs
cimt

+ils
cm(t−1)

≤ wcm ∀k,m = k, c, t, s

(19)

∑
j

ys
cjmt

+
∑
i

qs
cimt

+
∑
k

us
cklt

+ ils
cm(t−1)

≤ wcm�ms ∀l,m = l, c, t, s.

(20)
∑
d

xs
cmdt

≤ Mzrk ∀k,m = k, c, t, s

(21)
∑
d

xs
cmdt

≤ Mzul ∀l,m = l, c, t, s.

(22)us
cklt

≤ Mzrk ∀k,m = k, c, t, s

(23)us
cklt

≤ Mzul ∀l,m = l, c, t, s .

Constraints (22) and (23) express that relief items can be 
transported from a reliable LDC k to an unreliable one l if 
the LDC k and l have been opened.

Constraints (24) and (25) define the eligible domain of 
decision variables.

The above-proposed model is nonlinear by the max–min 
form of the second objective function. This objective func-
tion can be linearized using a new positive variable λ and a 
new constraint. Then, the second objective function can be 
rewritten as:

Solution methodologies

As the proposed two-stage stochastic programming model 
in the previous section is MOP and contains imprecise input 
parameters, first it must be converted to a single-objective 
programming (SOP). Afterwards, we can obtain its equiva-
lent crisp model (ECM) through an efficient possibilistic 
programming. The utilized possibilistic programming 
approaches and multi-objective are both described in this 
section.

Possibilistic programming

As mentioned before, there is not enough historical data about 
some input parameters and we encounter some imprecise 
parameters. To cope with these imprecise parameters, such as 
the demand of relief items, cost parameters, and transportation 
times, in optimization models, it is necessary to adopt an effi-
cient method to obtain the ECM of the proposed model. Torabi 
et al. (2018) state that possibilistic approaches are among the 
most applicable methods to tackle such uncertainties in relief 
chains and also, we used two-stage stochastic approach to 
develop the model because of the nature of disaster includ-
ing pre- and post-disaster phases. Thus, our model benefits 
from stochastic optimization. On the other hand, it is possible 
that decision makers encounter imprecise input parameters 
(scenario-dependents or scenario-independents) because of 
unavailability of historical data (Sherafati and Bashiri 2016; 
Khalaj et al. 2013; Mehrbod and Miao 2015). Therefore, we 
encounter epistemic uncertainty and a useful approach is nec-
essary to encounter imprecise parameters. For two reasons, 

(24)qccij, qlcim,Q
s
cimt

, ys
cjmt

, xs
cmdt

, us
cklt

, ils
cmts

, bs
cdt

≥ 0

(25)zrk, zul, �j ∈ {0, 1}.

(26)

max�

� ≤ ∑
m

∑
t

PS

xcmdts

D̃s
cdt

∀d, c, s

� ≥ 0.
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possibilistic programming approach is used to deal with such 
uncertainty:

• The possibilistic programming approach deals with epis-
temic uncertainty in input parameters. This approach is 
proper when there is a lack of knowledge about the exact 
values of parameters even if we approximate the values 
of uncertain parameters by historical data but due to the 
dynamic nature of the relief chain problems, they do 
not necessarily behave according to the historical data 
(Mousazadeh et al. 2018).

• A large number of published works find possibilistic pro-
gramming useful while designing HRCs to deal with such 
uncertainty (Tofighi et al. 2016; Torabi et al. 2018).

Thus, in this paper a method proposed by Jiménez et al. 
(2007) is used because Jimenez approach provides decision 
makers with flexible intervals while adjusting possibilistic 
parameters. Thus, they can obtain numerous and reliable 
solutions. Secondly, this method prevents model from increas-
ing complexity, because neither new variables nor new con-
straints will be added to the model in comparison with other 
approaches such as robust programming (Jiménez et al. 2007).

According to Jiménez et al. (2007), proper fuzzy distribu-
tion for possibilistic parameters should be determined. For this 
purpose, assume � is a triangular fuzzy parameter that can be 
represented as � = (�p, �m, �o) . Notably, �m is the most likely 
value, �o is the optimistic value, and �p is the pessimistic value 
of the fuzzy parameter � . Accordingly, such a definition of a 
fuzzy number is utilized to reformulate the presented model 
based on Jiménez et al. (2007) method to obtain the auxiliary 
crisp model. One of the advantages of this method is that it 
provides the decision maker with a satisfaction degree of pos-
sibilistic constraints. Let us assume that � denotes the satisfac-
tion degree for such constraints. Additionally, this method has 
two basic principles: I: the expected value and II: the expected 
interval. To clarify these principles, consider the following 
membership function of the fuzzy number 𝜁 as Eq. (27):

The expected interval (EI) and the expected value (EV), 
according to Jiménez et al. (2007), can be calculated by 
Eqs. (28) and (29):

(27)(x) =

⎧
⎪⎪⎨⎪⎪⎩

f� (x) =
x−�p

�m−�p
if �p ≤ x ≤ �m

1 if x = �m

g� (x) =
�o−x

�o−�m
if �m ≤ x ≤ �0

0 if x ≤ �p or x ≥ �0

.

(28)
EI(𝜁) =

[
E
𝜁

1
E
𝜁

2

]
=

[
∫

1

0

f −1
𝜁

(x)dx ∫
1

o

g−1
𝜁
(x)dx

]

=

[
1

2
(𝜁p + 𝜁m)

1

2
(𝜁o + 𝜁m)

]

Now, assume that ã and b̃ are a pair of fuzzy numbers; 
then, the satisfaction degree can be defined as Eq. (30):

If 𝜇M

(
ã, b̃

) ≥ 𝛼 , then we could claim that ã is equal to, 
or bigger than b̃ , at least with the degree of � by which we 
could show ã ≥𝛼 b̃ . Again, given ã and b̃ as a couple of fuzzy 
numbers, we can say that ã is equal to b̃ if ã ≤ 𝛼

2

b̃ and 
ã ≥ 𝛼

2

b̃ . Now, assume that model (31) is a representative of 
a possibilistic mathematical model:

According to Jiménez et al. (2007), the above inequality 
possibilistic constraints can be converted to Eqs. (32–34):

Thus, according to the above reformulations and the 
expected value of a triangular fuzzy number, which is pre-
sented by Eq. (29), the ECM model of (31) can be obtained 
as (35):

Based on the interpretations above, the final equivalent 
crisp model of our problem can be expressed as follows:

(29)EV(𝜁) =
E
𝜁

1
+ E

𝜁

1

2
=

𝜁p + 2𝜁m + 𝜁o

4
.

(30)

𝜇M(x) = (ã, b̃) =

⎧
⎪⎨⎪⎩

1 if Ea
1
> Eb

2
Ea
2
−Eb

1

Ea
2
−Eb

1
−(Ea

1
−Ea

1
)
if 0 ∈

�
Ea
1
− Eb

2
Ea
2
− Eb

1

�

0 if Ea
2
< Eb

1

(31)

minz = c̃tx

ãix ≥ b̃ix i = 1,… , l

ãix = b̃ix i = l + 1,… ,m

x ≥ o.

(32)[(1 − �)E
ai
2
+ �E

ai
1
]x ≥ (1 − �)E

bi
1
+ �E

bi
2

i = 1,… , l

(33)

[(
1 −

�

2

)
E
ai
1
+

�

2
E
ai
2

]
x ≤ (1 −

�

2
)E

bi
2
+

�

2
E
bi
1

i = 1 + l,… ,m

(34)
[(1 −

�

2
)E

ai
2
+

�

2
E
ai
1
]x ≥ (1 −

�

2
)E

bi
1
+

�

2
E
bi
2

i = l + 1,… ,m.

(35)

minEV(c̃)x

[(1 − 𝛼)E
ai
2
+ 𝛼E

ai
1
]x ≥ (1 − 𝛼)E

bi
1
+ 𝛼E

bi
2

i = 1,… , l

[(1 −
𝛼

2
)E

ai
1
+

𝛼

2
E
ai
2
]x ≤ (1 −

𝛼

2
)E

bi
2
+

𝛼

2
E
bi
1

i = 1 + 1,… ,m

[(1 −
𝛼

2
)E

ai
2
+

𝛼

2
E
ai
1
]x ≥ (1 −

𝛼

2
)E

bi
1
+

𝛼

2
E
bi
2

i = 1 + 1,… ,m.



S61Journal of Industrial Engineering International (2019) 15 (Suppl 1):S53–S68 

1 3

The crisp form of Eq. (26) is represented below:

Multi‑objective programming

As the proposed model is an MOP, it is essential to adopt an 
efficient method in order to convert the MOP to SOP. In this 
paper, TH method proposed by Torabi and Hassini (2008) is 
applied which is developed based on the interactive fuzzy pos-
sibilistic programming. TH method enables decision makers to 
obtain a set of optimal solutions and select the most appropri-
ate one. To elaborate on the method, let us assume the general 
form of the following MOP model:

(36)

minz =
�
j

�
go
j
+ 2g

p

j
+ gm

j

4

�
�j +

�
k

�
fro
k
+ 2fr

p

k
+ frm

k

4

�
zrk +

�
l

�
fuo

l
+ 2fu

p

l
+ fum

l

4

�
zul

+
�
i

�
j

�
c

�
pco

ic
+ 2pc

p

ic
+ pcm

ic

4

�
qccij +

�
i

�
m

�
c

�
pco

ic
+ 2pc

p

ic
+ pcm

ic

4

�
qlcim

+
�
i

�
j

�
c

�
aqo

c
+ 2aq

p
c + aqm

c

4

�
qccij +

�
i

�
m

�
c

�
aqo

c
+ 2aq

p
c + aqm

c

4

�
qlcim

�
s

ps

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�
i

�
m

�
c

�
t

�
pcso

cim
+ 2pc

sp

cim
+ pcsm

cim

4
+

tcso
im
+ 2tc

sp

im
+ tcsm

im

4

�
Qs

cimt

+
�
j

�
m

�
c

�
t

�
tcso

jm
+ 2tc

sp

jm
+ tcsm

jm

4

�
ys
cjmt

�
m

�
d

�
c

�
t

�
tcso

md
+ 2tc

sp

md
+ tcsm

md

4

�
xs
cmdt

+
�
k

�
l

�
c

�
t

�
tcso

kl
+ 2tc

sp

kl
+ tcsm

kl

4

�
us
cklt

+
�
d

�
c

�
t

�
� so

cdt
+ 2�

sp

cdt
+� sm

cdt

4

�
bs
cdt

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(37)

∑
m

xs
cmdt

+ bs
cdt

≥ (
�

2

)(Dsm
cdt

+ Dso
cdt

2

)
+

(
1 −

�

2

)(D
sp

cdt
+ Dsm

cdt

2

)

(38)

∑
m

xs
cmdt

+ bs
cdt

≤ (
1 −

�

2

)(Dsm
cdt

+ Dso
cdt

2

)
+

(
�

2

)(D
sp

cdt
+ Dsm

cdt

2

)
.

(39)

� ≤ ∑
m

∑
t

PS

xcmdts

(1 − �)
(

Dsm
cdt
+Dso

cdt

2

)
+ (�)

(
D

sp

cdt
+Dsm

cdt

2

)∀d, c, s.

(40)

minf (x) = [f1(x), f2(x),… , fm(x)]

st ∶

x ∈ F(x),

where F(x) denotes the feasible solution. Torabi and Hassini 
(2008) proposed model (41) as the SOP of model (40):

�i(x) represents the satisfaction degree of the ith objective 
function which can be calculated using Eq. (42). wi indicates 
the importance of ith objective function where 

∑
i
wi = 1 and 

�0 expresses the minimum satisfaction degree of the objective 
functions. Moreover, � shows the coefficient compensation. 
For more details about the parameters, see Torabi and Hassini 
(2008).

According to TH method, Fig. 2 indicates the fuzzy mem-
bership function for the objective functions in the form of 
minimization (Torabi and Hassini; 2008). Where Zi(x) is the 
value of the objective function, Zpis

i
 is the most possible of it 

and Znis
i

 is the worst value that can be obtained from the objec-
tive function:

(41)

max�(x) = ��0 + (1 − �)
∑
i

wi�i(x)

st ∶

�0 ≤ �i(x) ∀i = 1,… ,m

x ∈ F(x), �0, � ∈ [0, 1].

(42)�i(x) =

⎧⎪⎨⎪⎩

1 Zi(x) ≤ Z
pis

i
Znis
i
−Zi(x)

Znis
i
−Z

pis

i

Z
pis

i
≤ Zi(x) ≤ Znis

i

0 Zi(x) ≥ Znis
i

⎫⎪⎬⎪⎭
.
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In addition, the fuzzy membership function for an objec-
tive function is presented in the form of maximization in 
Eq. (43):

Numerical experiments

To validate the proposed model, a comprehensive numerical 
example is provided in this section. The proposed model is 
solved using CPLEX solver in GAMS 24.3, and then the 
results are reported. The details of the considered problem 
are summarized in Table 1. Three major relief items are 
water, food, and shelter.

Table 2 represents the number of scenarios and the prob-
ability of occurrence for each one. The parameters of the 
numerical experiment, which are summarized in Tables 3 
and 4, are generated randomly using uniform distribution.

It is noteworthy to mention that the centre of the fuzzy 
parameters is generated randomly using the distribution 
mentioned in Tables 3 and 4. Moreover, the right and left 
spreads are considered as 10 per cent of the centres.

(43)�i(x) =

⎧⎪⎨⎪⎩

1 Zi(x) ≥ Z
pis

i
Zi(x)−Z

nis
i

Z
pis

i
−Znis

i

Z
pis

i
≤ Zi(x) ≤ Znis

i

0 Zi(x) ≤ Znis
i

⎫⎪⎬⎪⎭
.

Results and sensitivity analyses

One of the most important parameters for evaluating the 
performance of the crisp counterpart model is α as the mini-
mum acceptance satisfaction degree of the constraints which 
is known as the constraints’ confidence level. Table 5 shows 
the sensitivity analyses for α and denotes its effects on the 
objective functions. As can be seen from Table 5, when the 

Fig. 2  Membership function of 
a minimization-type objective 
function

Table 1  Details of the numerical example

# of suppliers # of reliable LDCs # of unreliable LDCs # of CWs # of demand points # of relief items # of time periods # of scenarios

5 6 6 4 10 3 3 3

Table 2  Possible scenarios Scenario 1 2 3

Probability .35 .4 .25

Table 3  Demand of relief items and the capacity of suppliers

Relief item Demand ( ̃Ds
cdt

) Supplier 
capacity 
( capic)

Water U(100, 200) U(500, 550)

Food U(50, 150) U(400, 450)

Shelter U(10, 50) U(150, 180)

Table 4  Parameters for an experimental design

Parameter Parameters Parameter Parameters

g̃j 104 × U(20, 25) t̃c
s

md
U(15, 25)

f̃rk 104 × U(10, 15) �̃ s
cdt

U(100, 120)

f̃ul 104 × U(8, 10) ãqc U(50, 70)

p̃cic U(40, 50) wcm U(1000, 1200)

p̃c
s

cit
U(50, 60) Vcj U(1000, 2000)

t̃c
s

ij
U(20, 30) vc U(0.1, 2)

t̃c
s

im
U(25, 35) �ms U(0.2, 0.4)

t̃c
s

jm
U(20, 30)
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minimum degree of the satisfaction level increases, the opti-
mal value of the first objective function, which indicates the 
cost of the relief chain, increases and the optimal value of 
the second objective function, which represents the fairness, 
decreases. Therefore, it is better for decision makers to set 
a medium value for α which results in the average total cost 
of the relief chain and fairness.

Table 6 represents the effectiveness of using transhipment 
strategies. Eliminating transhipment opportunity increases 
the number of located reliable LDCs and decreases the num-
ber of located unreliable LDCs. As can be concluded from 
Table 6, using transhipment decreases the total cost of the 
chain, because the unmet demands are minimized as much 
as possible in post-disaster. In other words, using tranship-
ment might increase the cost of relief distributions, while it 
eliminates the unmet demands, saves more lives, and avoids 
penalty costs as much as possible. In the proposed model, 
the multiple sourcing policy is used for allocating demand 
points to LDCs to send relief items from LDCs to demand 
points. The distance between LDCs and demand points is 
incorporated in the transportation cost.

To solve the multi-objective model, selecting the most 
suitable value for the parameters such as � and w1 is vital 
since we want to make a trade-off between conflict objec-
tive functions while converting MOP to SOP. Here, there is 
a conflict between the total cost of the relief chain and fair-
ness. Torabi and Hassini (2008) explained that considering 
the coefficient compensation parameter ( � ) with the value 
more than 0.5 leads to an increase in the minimum satis-
faction degree of the objective function ( �0 ). As a result, 
more balanced compromised solutions are obtained, whereas 
selecting the value of � less than 0.5 leads to the acquirement 
of the unbalanced compromised solutions, because TH tries 
to find solutions with a higher satisfaction degree of objec-
tive functions with a higher relative importance weight.

Table 7 shows the sensitivity analysis results associ-
ated with the coefficient parameters of TH method ( � and 

wi ). Generally speaking, increasing the value of � leads to 
an increase in the satisfaction degree of the first objective 
function (the total cost of the relief chain) and a decrease 
in the satisfaction degree of the second objective function 
(fairness). Thus, selecting the lower value for the coefficient 
parameter, the first objective function, which calculates the 
total cost of the relief chain, increases and the second objec-
tive function, which is related to fairness, decreases. Also, 
selecting a higher value for � causes a decrease in the total 
cost of the relief chain and an increase in fairness. According 
to the results, if a decision maker wishes to make a balanced 
trade-off between the objective functions (the cost of HRC 
and fairness) he/she should not select the medium value for 
� . Besides, as can be seen in Table 7, changing the value of 
the parameters � and w1 can produce different balanced and 
unbalanced solutions based on which a decision maker can 
select the most suitable solutions for the problem. Figure 3 
shows that increasing the value of relative importance of the 
first objective function, which indicates the cost of the relief 
chain, increases the satisfaction degree of SOP. It means that 
to obtain better solutions for SOP one can increase the rela-
tive importance of the first objective function. In addition, 
increasing the value of � decreases the satisfaction degree 
of the SOP model.

Figure 4 demonstrates the total quantity of transhipped 
relief items from the reliable LDCs to the unreliable ones 
in post-disaster during three periods in each scenario. The 

Table 5  Results in sensitivity 
analyses on confidence level

Satisfaction degree (α) .1 .3 .5 .7 .9

Objective function 1 4,961,149 4,993,258 5,019,165 5,053,338 5,080,908
Objective function 2 0.498 0.452 0.435 0.409 0.393

Table 6  Results of solving test problem

Without transhipment Transhipment

Objective function 1 5,901,368 5,019,165
Objective function 2 0.355 0.435
# of Located CW 6 4
# of located reliable LDC 6 5
# of located unreliable LDC 4 3

Table 7  Sensitivity analyses on 
parameters of TH method

γ Impor-
tance of 
objective 
functions

Satisfaction 
degree of 
objective func-
tions

w1 w2 μ1 μ2

0.1 .05 .95 0.410 0.983
.2 .8 0.599 0.919
.25 .75 0.651 0.898
.3 .7 0.704 0.870

0.6 .05 .95 0.775 0.810
.2 .8 0.775 0.809
.25 .75 0.775 0.809
.3 .7 0.775 0.809

0.8 .05 .95 0.785 0.806
.2 .8 0.785 0.806
.25 .75 0.785 0.807
.3 .7 0.785 0.807
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quantity of relief items that are transhipped in the second 
period is larger than that of others. Also, as can be concluded 
from Fig. 5, the total shortage of relief items in the affected 
areas in the third period is larger than that in the first and sec-
ond periods in each scenario. Thus, it is important to increase 
the number of established warehouses in order to prevent the 
occurrence of shortages in the third scenario because of the 
high severity of the disaster. Notably, the humanitarian organi-
zations can use the national and international aids to establish 
more warehouses. In order to decrease the total shortages and 
to gain better responses in post-disaster, the following sugges-
tions are presented:

• As our numerical example shows, the number of estab-
lished CWs and LDCs is not sufficient to pre-position the 
proper quantity of relief items, and the HO should increase 
the number of established warehouses. Notably, increas-
ing the number of established warehouses increases the 
total cost of HRC. Thus, the HO should be provided with 
enough budget through some public monetary and govern-
mental donations in pre-disaster.

• When a disruption occurs, unreliable LDCs lose some por-
tions of their supply capacities. Thus, increasing the fortifi-
cation level of the unreliable LDCs can play an important 
role in post-disaster to meet the relief item demands.

Case study

In this section, in order to evaluate the performance of the 
proposed model, a case study of Iran is presented and solved. 
Due to the fact that Tehran is located surrounded by major 
faults, the design of a proper HRC is necessary to prevent 
from massive destructions. Several earthquakes have been 
occurred in Tehran, but due to the small size of the city and 
the low population in those years, the impact of those crises 
has not been very high. Experts predict that a high-magnitude 
earthquake might annihilate human lives and infrastructures 
massively. Tehran is surrounded by three major faults called 
Mosha, North of Tehran, and Rey, whose movement would 
result in a high-magnitude earthquake (Tofighi et al. 2016). 
Also, movement of two or more faults will results in an intense 
earthquake which is called floating model. The possibility 
of earthquake occurrence due to the movement of each of 
these faults on day and night is considered in different sce-
narios and is shown in Table 8. In this study, tents, water, and 
food are considered as relief items and cities like Golestan, 
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Fig. 3  Sensitivity analysis for compromising the parameter and rela-
tive importance of the total relief chain
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Table 8  Probabilities of 
different earthquake scenarios

Scenario Rey Fault North of Tehran Mosha Fault Floating model

Night Day Night Day Night Day Night Day

Probability 0.125 0.125 0.125 0.125 0.1 0.1 0.15 0.15
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Mazandaran, Isfahan, and Gilan are considered as locations 
that suppliers are located in. Tehran has 22 districts, and they 
have been considered as demand points. Tables 9 and 10 rep-
resent the volume of each unit of relief items occupied and 
the supply capacity for the supply relief items. Another data 
for the case study are borrowed from Tofighi et al. (2016) and 
Torabi et al. (2018).   

The results of the case study

In this section, the results of the solved case study using 
the proposed model are presented in order to design a HRC 
for Tehran. Results represent that six candidate points are 
selected as central CWs in Qom, Qazvin, Semnan, Karaj, 
Arak, and Mazandaran and LDCs are selected in 1, 2, 5, 6, 
8, 11, 16, 19, 21, 22 points which are shown in Fig. 6.

The results of quantity of pre-positioned relief items are 
summarized in Tables 11 and 12 for CWs and LDCs prior 
to the occurrence of the disaster.

Figure 7 shows the objective function changes (i.e., the 
HRC costs) versus variations in a unit of transportation 
costs between relief facilities. It is observed that increasing 
the total transportation costs between relief facilities results 
in increasing the HRC cost. Also, Fig. 8 shows the varia-
tion of the objective function versus the shortage cost of a 
deficiency unit. Accordingly, increasing shortage costs will 
increase the HRC costs. As expected, results are reasonable 
and represent that the model performance is logical.

Managerial insights

Based on the conducted sensitivity analyses, the following 
managerial insights are presented:

1. Incorporating multi-period planning can enhance 
the responsiveness of the relief chain in post-disaster 
because the new information gained can be used for 
future periods once it is known.

Table 9  Volume occupied by 
relief items  (103 units)

Relief item(c) VC

Water 4.5
Food 2
Shelter 120

Table 10  Capacity of suppliers for each commodity  (103 units)

Suppliers (Water, Food, Shelter)

Golestan (450,450,150)
Mazandaran (450,450,150)
Gilan (510,510,170)
Isfahan (450,450,150)

Fig. 6  Selected locations for 
establishing CWs and LDCs

Table 11  Results of the storage amount of commodities in CWs  (103 
units)

CWs Water (10) Food (10) Shelter 
(103)

Qom – 380 –
Qazvin 200 – 140
Semnan – 300 –
Karaj 380 180 90
Arak 440 200
Mazandaran 210 – 120
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2. Considering lateral transhipment as a strategy among 
LDCs can decrease the total relief item shortages and 
enhance the responsiveness of the relief chain.

3. If a decision maker wishes to make a medium trade-off 
between the total cost of HRC and fairness, it would be a 
good idea to set a medium value for the confidence level 

of the constraints which results in obtaining medium 
values for the total cost of fairness.

4. If a decision maker selects a lower value for the coef-
ficient compromise parameter, the satisfaction degree of 
SOP model will increase.

5. If a decision maker chooses a higher value for the rela-
tive importance of the first objective function (i.e., the 
total cost of HRC), the satisfaction degree of the SOP 
model will increase. As a result, choosing lower values 
for the compromise parameter and higher values for the 
relative importance of the first objective function can 
bring about better solutions for the SOP model.

Conclusion

Disasters have negative impacts on individuals and affect 
millions of people worldwide. Appropriate planning of 
humanitarian relief chains can reduce these negative 
impacts. In this paper, a bi-objective two-stage stochastic 
programming model was presented to design humanitar-
ian relief chains, which brings about maximizing fairness 
and minimizing the total cost of HRC. The proposed model 
integrates pre-positioning relief items in pre-disaster and 
distributing relief items in post-disaster, considering lateral 
transhipment among LDCs in order to reduce the relief item 
shortages. We proposed to use reliable and unreliable LDCs 
while establishing warehouses in the cities.

As the proposed model is bi-objective, TH method was 
used to solve the model and to obtain its equivalent SOP 
model. In addition, an efficient possibilistic programming 
method was adopted to deal with the imprecise input param-
eters. Imprecise parameters might be scenario-dependent 
or independent. To show the effectiveness of the developed 
model, a numerical example and a case study are provided 
and solved. Numerical experiments showed how the total 
cost of chain could be reduced in pre- and post-disaster by 
using lateral transhipment. In addition, sensitivity analyses 
were conducted to show the effects of varying key param-
eters. Finally, useful managerial insights are presented based 
on the conducted sensitivity analyses. It is interesting to 
extend the proposed model to the perishable relief items. 
Also, involving disruption risks in roads and last mile dis-
tribution and vehicle routing problem can be studied in the 
future.

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat iveco 
mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.

Table 12  Results of the storage 
amount of commodities in 
LDCs  (103 units)

LDCs Water Food Shelter

1 45 36 –
2 – 50 14
5 60 19 –
6 45 – 19
8 – 68 15
11 – 43 20
16 55 – 18
19 – 51 18
21 43 – 19
22 30 39 –
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Fig. 7  Total cost versus changing the unit transportation cost
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Fig. 8  Total cost versus changing the unit shortage cost
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