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Abstract

Supply chain management is taken into account as an inseparable component in satisfying customers' requirements.
This paper deals with the distribution network design (DND) problem which is a critical issue in achieving supply chain
accomplishments. A capable DND can guarantee the success of the entire network performance. However, there are

different-sized problems to show its total performance.

many factors that can cause fluctuations in input data determining market treatment, with respect to short-term
planning, on the one hand. On the other hand, network performance may be threatened by the changes that take
place within practicing periods, with respect to long-term planning. Thus, in order to bring both kinds of changes
under control, we considered a new multi-period, multi-commodity, multi-source DND problem in circumstances
where the network encounters uncertain demands. The fuzzy logic is applied here as an efficient tool for controlling
the potential customers' demand risk. The defuzzifying framework leads the practitioners and decision-makers to
interact with the solution procedure continuously. The fuzzy model is then validated by a sensitivity analysis test, and a
typical problem is solved in order to illustrate the implementation steps. Finally, the formulation is tested by some
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Introduction

Moving towards competitive markets compels the man-
ufacturers to increase their qualifications so that they
can best fulfill the customers' needs. The supply chain
management (SCM) concept arose as an effective man-
agerial tool to enhance the customers' satisfaction within
the last 20 years in particular (Azaron et al. 2008;
Jayaraman and Ross 2003). Generally, a supply chain
(SC) can be defined as a set of plants, distribution cen-
ters, and customers in which the products are completed
once they are transmitted downstream the chain and de-
livered to the customers (Altiparmak et al. 2006;
Blackhurst et al. 2004).

Distribution network design (DND) is one of the
primitive principles in establishing a successful SC. It is
associated with the category of production-distribution
and facility location-allocation problems (Altiparmak
et al. 2009). The researchers investigate the distribution
networks under two distinctive categories including stra-
tegic and tactical levels. The first level concerns with

* Correspondence: babaktabrizi@ut.ac.ir
Department of Industrial Engineering, Faculty of Engineering, University of
Tehran, P.O. Box: 11155-4563, Tehran, Iran

@ Springer

whatever affects the entire network configuration (e.g.,
the numbers, capacities, and locations), and the second
level deals with whatever affects the aggregate quantities
(e.g., material handling, processing, and distribution)
(Santoso et al. 2005). Consequently, considering the two
planning levels simultaneously is very fruitful in enhan-
cing the network performance.

A DND problem can also incorporate five aspects
according to the necessity (please refer to Tang (2006)
for more description):

Network configuration (NC)
Product assignment (PA)
Customer assignment (CA)
Production planning (PP)
Transportation planning (TP)

Regarding the above, the proposed model covers the
first four aspects at the same time.

Some other issues are expected in the model structure
likewise (e.g., the number of consideration periods,
sources, echelons, and commodities). For example,
Amiri (2006) suggested a multi-capacity distribution
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network in deterministic environments so that both stra-
tegic and tactical levels were included. Gupta and Maranas
(2003) concentrated on the tactical level in a multi-
commodity, multi-echelon, multi-period problem. The au-
thors considered demand as the uncertain parameter. Selim
and Ozkarahan (2006) developed a fuzzy multi-echelon,
multi-commodity, multi-capacity problem by consider-
ing both levels. They introduced the demand as the
uncertain part likewise. Liu et al. (2006) introduced a
multi-commodity DND problem and dealt with the poten-
tial uncertainties by the combination of gray and fuzzy fac-
tors. Azaron et al. (2008) proposed a multi-commodity,
multi-source model and solved it by the goal attainment
technique. However, they extended the uncertainty and
vagueness to all three demand-, supply-, and process-side
risks. Gumus et al. (2009) applied a neuro-fuzzy technique
for demand uncertainty in a multi-echelon condition.
Xu et al. (2009) developed a multi-echelon, multi-source
problem where the demand, supply, and process follow a
fuzzy nature. They applied a heuristic solution approach
called spanning tree technique that originated from genetic
algorithm. Peidro et al. (2010) proposed a multi-echelon,
multi-period, multi-commodity, multi-source mathematical
modeling under fuzzy programming so that all three men-
tioned sides were uncertain. Compared with the mentioned
researches, our developed model lies in a three-echelon,
multi-source, multi-period, multi-commodity, single-
capacity category in which the two levels are planned. The
environment under consideration faces a demand-side risk
which is tackled with by the fuzzy mathematical modeling.
A brief overview on DND literature is depicted in Table 1.

The rest of the paper is organized as follows: model
formulation is presented in the next section. Solution
methodology is described in the third section, which also
demonstrates how the fuzzy steps can be implemented.
The fourth section pertains to the computational study,
and finally, the conclusions and future research interests
are discussed in the ‘Conclusions’ section.

Model formulation

In this section, the mixed-integer mathematical model is
defined and the fuzzy approach is described. Before we
construct the mathematical formulation, the assump-
tions, indices, parameters, and decision variables are in-
troduced as follows:

1. Assumptions
e Demand parameter follows a fuzzy nature.
e A given plant or distributor can be open or close
in each horizon.
e The number of practicing facilities cannot exceed
the predefined upper bound.
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e The processing capacity of each plant and
distributor is known with respect to the
commodities.

o The facility capacity is fixed during the total
horizon periods.

e Each tier can supply its needs from more than
one member of the upper tier.

2. Indices

e C: set of commodities (c € C)

e P:set of plants (p € P)

o J: set of distributors (j € /)

o [ set of customers (i € ])

e H: set of planning horizons (4 € H)

3. Parameters

e FC,;: annual fixed cost of plant p in period &

e FC'y: annual fixed cost of distributor j in period /4

o LG, logistics cost for supplying commodity ¢
in period % from plant p to distributor j

o LC'y: logistics cost for supplying commodity ¢
in period % from distributor j to customer i

e d,;: demand of customer i for commodity ¢ in
period &

e a,: capacity of plant p for commodity ¢

e i capacity of distributor j for commodity ¢

® Pypper: the upper bound for the number of open
plants

® Jupper: the upper bound for the number of open
distributors

4. Decision variables

e X, the proportion of commodity ¢ in period /
transported from plant p to distributor j

® Y the proportion of commodity ¢ in period 4
transported from distributor j to customer i

e Z,: the binary variable that takes 1 if plant p is
open in period / and 0, otherwise

e Z': the binary variable that takes 1 if distributor ;
is open in period / and O, otherwise

o LQg,: the left quantity of commodity ¢ in period
h for distributor j

Now, the model can be developed by Equations 1 to 8,
as follows:

P C H

ZZZZLCPCWM

p=1c=1h=1j

J C H I
Min = ZZZL chzy]chz lCh+ (1>
P

j=1 c=1h=1i
H



Table 1 An overview on DND literature

Articles Aspects Features Nature Uncertain parameter(s) Solution approach
NC PA CA PP TP Product Stage Period Source Capacity

Jayaraman and Ross (2003) FRRERK KX Multiple  Three Single  Single  Single Deterministic - Simulated annealing

Santoso et al. (2005) FAX R R e Multiple  Two Single Multiple ~ Single Stochastic Demand, supply, and process Sample average approximation scheme
and accelerated Benders' decomposition

Altiparmak et al. (2006) o R Single Multiple  Single Single Single Deterministic - Genetic algorithm

Selim and Ozkarahan (2006) ~ *** = *** *xx Multiple  Three Single  Single  Multiple  Fuzzy Demand Fuzzy multi-objective programming

Goh et al. (2007) FEE o Single Two Single  Multiple  Single Stochastic Demand and supply Heuristic algorithm

Chen et al. (2007) R R e Multiple  Three Multiple  Multiple ~ Single Fuzzy Demand Fuzzy programming

You and Grossmann (2008) HAX e xxx Multiple  Multiple  Multiple  Single Single Probabilistic ~ Demand e-Constraint

Cakir (2009) FrE wEX xxxowx . Multiple  Two Single  Multiple Single Deterministic - Benders' decomposition

Altiparmak et al. (2009) FAH R e Multiple  Multiple  Single Single Single Deterministic - Genetic algorithm

Georgiadis et al. (2011) HHE R e o Multiple  Three Single  Multiple Single Stochastic Demand Branch-and-bound

Cintron et al. (2010) *xE *xX Single Three Single  Single  Multiple  Stochastic Demand Goal programming

Hajiaghaei-Keshteli (2011) o e Single Two Single Multiple ~ Single Deterministic - Genetic algorithm and artificial immune
algorithm

Cardona-Valdes et al. (2011)  *** Fxxoxxx %% Gingle  Three Single  Multiple  Single Stochastic Demand L-shaped algorithm

Rezapour and Farahani (2010)  *** xxx Single Three Single Multiple  Multiple  Deterministic - A modified projection method

Park et al. (2010) *xE *xX Single Three Single  Single  Single Deterministic - A two-phase heuristic algorithm

Our proposed model FRR KRR HEX XX Multiple  Three Multiple  Multiple ~ Single Fuzzy Demand, supply, and process Fuzzy programming
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P
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} ’
> Zi = Tpper Vh (7)
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Considering the presented formulation, Equation 1 is
the objective function (OF) which consisted of logistic
and annual fixed costs. In other words, the first two
parts deal with the total sum of logistic costs (i.e., vari-
able costs including processing, transportation, etc.). It is
calculated for both the practicing plants and distributors
separately. This type of cost is obtained from the com-
modity volume multiplied by the associated capacity. For
example, the logistic cost of plants is determined by the
corresponding unit logistic cost, to supply a given com-
modity from a plant to a distributor in a specific period,
multiplied by the satisfied quantities. The values of
responded needs are obtained from the multiplication of
the given capacity by the satisfied proportion. The same
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calculations can be presented for distributors likewise.
Furthermore, the fixed cost is realized for each of the
plants and distributors with respect to the extant cost
once the facility is practicing in the corresponding
period. Equation 2 shows the fraction of satisfied de-
mands for each of the commodities in each planning
horizon with respect to the existing customers. However,
a potential customer can acquire its demanded com-
modities from a set of distributors instead of focusing on
a single one. Equation 3 guarantees that the transporta-
tion quantity from plants to distributors cannot surpass
the given plant capacity, if it is open in the mentioned
period. Equation 4 denotes that the left quantity for each
commodity and distributor in each period can be calcu-
lated by the sum of transported quantities to customers
subtracted from the sum of transported quantities to a
distributor added to the left quantity in the previous
period. Equation 5 is the same as Equation 3 but con-
cerns the distributors and affirms that the output of each
distribution center does not exceed its extant capacity,
restricted by the remaining commodities. Moreover, the
volume of the left commodities cannot exceed the dis-
tributor capacity. Equations 6 and 7 state that the num-
ber of open plants and distribution centers in each of
the planning horizons should not exceed their upper
bounds (i.e., the maximum allowed numbers), respect-
ively. Furthermore, Equation 8 deals with the nature of
existing variables.

The schematic performance of our multi-commodity,
multi-period, multi-source network is depicted in Figure 1
for a given planning horizon.

Solution methodology

Since we presumed that the developed distribution net-
work practices in a vague environment, demand uncer-
tainty can be represented by fuzzy numbers efficiently. In
order to solve the model, we applied the fuzzy approach

Plants (p€ P)

Distributors ( j € J )

Figure 1 The proposed three-stage distribution network performance in period h.

Customers (i € )
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suggested by Jimenez et al. (2007) which consists of a
three-phase interaction algorithm.

Converting the fuzzy model into its crisp equivalent

In this section, we show the main framework of the im-
plementation method of fuzzy approach proposed by
Jimenez et al. (2007). Regarding the risk threatening
estimated demands, all OF coefficients, technological
multipliers, and right-hand side coefficients may take
a vague quantity. For instance, consider the following

, and

problem in which C’ = (¢,é,,..¢,), A" = [Zzll]
B = (13;75'7 ...E;)t are the fuzzy parameters representing
the OF coefficients, technological multiplies, and right-
hand side coefficients, respectively. Therefore, the fuzzy

mathematical model can be represented by Equation 9:

Min = C"* p
St AxoB, =120
x€R", =0.

The uncertainty in the nature of fuzzy problems makes
the decision-makers (DMs) find a solution so that both
feasibility and optimality conditions can be satisfied effi-
ciently. Consequently, there has been a great effort on de-
termining different methods which could fulfill the two
above characteristics (e.g., refer to Rommelfanger and
Slowinski (1998)). Some papers have also discussed the
ranking methods besides their justifications. We applied
the method introduced by Jimenez (1996) to our problem.

It is assumed that the applied fuzzy parameters follow
a trapezoidal nature in order to provide a broader range
of potential values. Figure 2 shows the trapezoidal fuzzy
number 7, in which the a-cut equals the feasibility de-
gree for a specific decision.

Considering the above definitions, the corresponding
parts of the OF and constraints (i.e., the parts that include

x®

m ()

oa— cut

n, n, n, n,

Figure 2 The membership function of trapezoidal fuzzy number n.
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demand parameter) can be transformed to their relevant
crisp values due to Equations 10 to 12, respectively:

~ 1, : 1,. .
MinEI(C")x = [E (c; 4 ¢,) +3 (c3+ q)}x (10)
(1-a) 4 ;rﬂz +a® J2ra4]xsab1 +b + (1-a) byt h4. (11)
((;_ oya +a, aa;+a, gbvﬁ—bé a M
(1 2) 2 T2 }xsz 2 (1 2) 2
(12)
[/« a; +a, Ea{-l—aé Ebg-i-b; a b, +b,
_(1 2) 2 T2 }xzz 2 (1 2) 2

It should be noted that EI stands for the expected interval
for the corresponding fuzzy number and can be computed
by finding the half point of the given fuzzy number. We
can therefore calculate the expected value of a triangular or
any other shaped fuzzy numbers by considering the men-
tioned concept likewise. Equation 11 can be applied for less
than or equal type constraints, and Equation 12 can be ap-
plied for the equality type constraints likewise. However,
the crisp form of the proposed model can be rewritten as
Equations 13 to 16 based on Equations 2, 3, 6, 7, and 8:

P C H ] )
D DD LGt

plLlhl/l

d d d
Min = ZZZZL i <W> (13)

j=1 c=1 h=1i=1

P H J H o
Y D FCuZon + Y > FCuZ,

p=1h=1 =1 h=1

S.t.

3
e miLo 3 (5) + 0-9) (93]

+LQc(h—1)j; ch h: i (14)

1 2
LQa,z prch/ @e Zy;ch,[ <d’“h hs d’“’“) + (17%) (dich 42' dich>:|

+LQe(p1y Ve, by i (15)

AL+ 4P 43, +d

(16)

Zy,h a

Interaction resolution method
In this section, we explain the three levels of the reso-
lution method in which the DM is involved interactively.
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Firstly, the linear fuzzy model transformed into its crisp
mode should be solved regarding each different value of
a-cuts independently. In order to make the comparison
more clearly, the solutions are compared against three
quantitative measures as follows:

e Fixed cost: it can be calculated by the sum of annual
fixed costs of practicing facilities in planning
horizons.

e Logistics cost: it can be calculated by the sum of
cost of supplying commodities from plants to
customers in the given periods.

e Average customers' satisfaction: it can be
determined by Equation 17 so that the average
satisfied demands are determined as follows:

J
% <Zyjchidich/dich)
Yy~ = Ve, i.

h=1

(17)

Secondly, a decision vector should be obtained so that
the DM is satisfied with respect to two conflicting fac-
tors (i.e., feasibility degree and global satisfaction). In
this phase, the DM is asked to provide an aspiration
level z added to the relevant tolerance threshold ¢ for
the values obtained by the three measures introduced
above. The DM's satisfaction level can be assessed by
means of a fuzzy set z whose membership function is
depicted by Equation 16 or 17 for a ‘less is better’ or
‘much is better’ case, respectively. In other words, the
first two measures exemplify the ‘less is better’ state and
the last measure typifies the ‘much is better’ one. How-
ever, A is projected in a descending and ascending man-
ner for Equations 18 and 19, respectively:

1,if OF<z

ptz(OF) = Ae{0,1}if 2z<OF<z+t¢ (18)
0,if OF2z+t¢t
1,if OF>z

ﬂZ(OF) = 1€{0,1}if z-t<OF<z (19)
0,if OF<z-t.

Since we have defined three measures A (k=1,2,3) for
our DND problem, we are required to specify the associ-
ated weights wy, with regard to the DM's opinion by one of
the multi-criteria decision-making tools (e.g., AHP, ANP,
or TOPSIS). At the end of the second level, the global sat-
isfaction degree Q) can be determined by Equation 20:

Q= )w1 + o + 130s. (20)

Finally, we should reach a favorite balanced solution
considering the feasibility degree and the global satisfac-
tion degree at the third level. This is carried out by using
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Equation 21 that consists of two fuzzy sets whose mem-
bership functions represent the magnitude the DM ac-
cepts for each feasibility degree p, and satisfaction
degree po importance:

P=0p,+ (1-0)p, if p,,pn70 and 0, otherwise. (21)

Note that P is the joint acceptation index obtained by
the linear combination of the two mentioned degrees
and 6 € [0,1] points to the relative importance the DM as-
signs to feasibility in comparison with global satisfaction.

Computational study

In this section, the developed fuzzy model is tested by
the sensitivity analysis, and then a numerical example is
solved to show its applicability and efficiency in real-
world problems. Finally, the total performance of the
model is investigated by different-sized problems. The
calculations are run by Lingo 8 solver on a PC with
characteristics of Intel®, Pentium® 4, central processing
unit (CPU) 3.20 GHz, and 2,046 MB of RAM.

Sensitivity analysis

Applying the sensitivity analysis helps us understand
how accurate the problem performance is. This is dem-
onstrated by changes in model outputs according to ma-
nipulations in parameters. In other words, it is assumed
that the input data may vary independently. Hence, we
have to investigate the potential changes in values of
model variables. To do so, a typical example whose data
have been created randomly is considered here. The re-
sults are depicted in Table 2.

Implementation of interactive phases

This section is presented in order to show how the
model can be implemented with respect to the three
interactive solution steps. To do so, the DM is required
to specify the aspiration level of each three introduced
measures 4z (OF) as follows. It should be noted that the
measures' quantity is calculated according to the lower
and upper bound results, obtained from different cuts:

e Fixed cost: z = US$17,650,000 and z + ¢ = US
$18,800,000.

Table 2 The results of fuzzy sensitivity analysis

Variation Fixed Logistic OF Average customers'

source costs costs satisfaction
(Us$) (Us$) (Us$) (%)

Fixed costs 18,095,016 947,500 19,042,516 89.2

Logistic costs 17,650,000 765014 18415014 83.1

Demand 17,923,000 1,100,540 19,023,540 85.7

Capacities 17,025,000 945000 17,970,000 86.2
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Table 3 The comparison results between feasibility sets and deterministic state

a-cut OF (US$) CPU time (s) Iteration Fixed cost Logistic cost Average customers'
(USs$) (US$) satisfaction (%)

0 18,595,000 14 52,741 17,650,000 945,000 786
0.1 18,602,400 13 47,856 17,665,500 952,400 814
0.2 18,784,700 15 58,996 17,823,000 961,700 86.2
03 18,937,300 14 44,258 17,965,000 972,300 85.7
04 19,204,020 21 68,439 18,220,000 984,020 889
05 19,558,500 26 89477 18,575,000 983,500 94.5
0.6 19,510,750 27 71,644 18,522,000 988,750 92.8
0.7 19,810,600 34 83,355 18,800,000 1,010,600 92.1
0.8 19,844,330 31 67,195 18,800,000 1,044,330 87.7
09 19,844,050 50 85,008 18,800,000 1,044,050 85.5
1 19,860,010 63 107,414 18,800,000 1,053,070 773
Deterministic 19,789,840 19 104,220 18,800,000 1,060,010 81.2

e Logistic cost: z = US$945,000 and z + ¢t = US order to compare the results with respect to the elapsed

$1,060,010. solution time (i.e., the CPU time), it is apparent that the

e Average customers' satisfaction: z — ¢ = 77.3% and deterministic mode needs a rather small time although

z = 94.5%. the lower cuts do the same. However, it indicates an ap-

The global satisfaction degree can be determined by
weighting the measures which is done here by consider-
ing equal importance (i.e., w1 = w; = w3).

Afterwards, it is time to specify the joint acceptance
indicator, shown by Equation 19. The results of our typ-
ical example are demonstrated in Tables 3 and 4, re-
spectively, in which the former shows the output for
each feasibility cut and the latter shows the final quan-
tity regarding the feasibility and global satisfaction sim-
ultaneously. Note that 8 is assumed to be 0.5 to give
equal weights to both feasibility and global conditions.

Referring to Table 3, it can be observed that the fuzzy
formulation led to lower costs for all cuts compared with
the deterministic mode. However, cuts greater than 0.6
resulted in an equal value for the annual fixed cost. In

Table 4 The best cut with respect to the DM's opinion

a Pa Q Pa P
0 0 002 0 0

0.1 005 009 0.1 0075
02 0.15 026 033 024
03 025 032 04 0325
04 04 047 055 0475
05 055 071 078 0765
06 07 065 07 07
07 085 081 093 0.89
08 09 082 095 0925
09 095 077 086 0905

1 1 0.66 0.72 0.86

proximately ascending order, so the last cuts required
much more time that the first ones. On the other hand,
the average customers' satisfaction measure showed the
third lowest value for the deterministic mode. However,
the measure increases as the cut magnitude goes up
until it reaches the maximum value and then starts to
decrease.

Considering Table 4, it is obvious that & = 0.8 yielded
the most acceptable result for the final solution. The
DM's opinions can be seen for each of the different
feasibility and satisfaction degrees likewise.

Total performance of the model

In order to understand the total performance of the
mathematical formulation, some different-sized prob-
lems are solved and compared with respect to the
elapsed solution time. The results are shown in Table 5.

Table 5 The results when considering different-sized
problems

Problem size CPU OF (US$) Average Variables Constraints

XexixXixh time (s) customers'
p J satisfaction

(%)

2X2X4X6X?2 68 16,855,025 81 418 420
3X2Xx5%x8x2 217 17,120,250 75 622 754
3X2X5%x9x%3 873 23,864,700 86 1216 1,436
3X3x6%x9x%x3 1,307 25,004,610 79 1,484 1,668
4x3x6x10x2 4876 93324080 80 1,560 1,610
5X3x10x12x3 9654 26,080,950 76 3,044 3,152
5x4x10x15%x4 14662 35775940 78 5,696 5,842
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It is clear that because of intrinsic intricacy, it takes a
long time for the model to respond as the dimension en-
larges. These problems belong to the NP-hard category,
and the solution time increases exponentially as the
problem size rises, in other words. For example, in
Table 5, there is a noticeable difference in CPU time
while even one of the problem elements changes to a
higher value. This can be easily observed as the required
solution time gets multi-fold once the considered prob-
lems become larger. For instance, the second problem is
larger than the first one just as one unit for the number
of plants and two units for the number of distribution
centers, but its elapsed time is 3.19 times as much as
that of the first one. Like the previous comparison, the
third problem needed a more remarkable time than the
second one while the number of considered customers
and planning horizons has been added by one unit. That
same analysis can be carried out for the rest of the prob-
lems as well. Consequently, it is suggested that intelli-
gent computation approaches be applied for large-sized
cases in particular. This makes the mathematical model
be applied efficiently for any real market conditions.

Conclusions

The noticeable increase in competition amongst the market
holders makes the SCM a necessary tool in fulfilling the
customers' needs. DND is of great importance as it estab-
lishes the first steps in handling the network. Consequently,
a multi-period, multi-commodity, multi-source DND prob-
lem was considered in this paper. We extended our formu-
lation to an uncertain environment, due to receiving
demands, by fuzzy mathematical programming. The fuzzy
model consisted of a three-interaction resolution method,
so it included the DMs throughout the solution procedure.
Afterwards, it was validated by a sensitivity analysis, and
then a numerical example was solved in order to give a pic-
ture of how the method steps can be implemented. The
consideration of different-sized problems was also carried
out and indicated to the intrinsic complexity.

The presented model focused on increasing the net-
work design efficiency so that it can help more to the
drawn decisions. Considering that demand uncertainty
causes the disruptions, it threatens the network (e.g., the
Bullwhip effect) to decrease to a great extent as the
practitioners are well equipped by demand fluctuations
a priori. In fact, this issue helps in the necessity of the
least changes in executive plans.

For future studies, it is suggested that the presented
model be solved by more effective tolls like meta-heuristic
or exact methods and even compared with each other.
The model can also be enriched by added concepts like
the inventory control management. Furthermore, the
problem can be considered by other backgrounds like eco-
nomic viewpoints at the same time.
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