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Abstract The present research aims at predicting the

required activities for preventive maintenance in terms of

equipment optimal cost and reliability. The research sam-

ple includes all offshore drilling equipment of FATH 59

Derrick Site affiliated with National Iranian Drilling

Company. Regarding the method, the research uses a field

methodology and in terms of its objectives, it is classified

as an applied research. Some of the data are extracted from

the documents available in the equipment and maintenance

department of FATH 59 Derrick site, and other needed data

are resulted from experts’ estimates through genetic algo-

rithm method. The research result is provided as the pre-

diction of downtimes, costs, and reliability in a

predetermined time interval. The findings of the method

are applicable for all manufacturing and non-manufactur-

ing equipment.

Keywords Cost and reliability optimization � Drilling
equipment � Genetic algorithm � Preventive maintenance

Introduction

As the trade-off between the preventive maintenance costs

and corrective maintenance requires different methods, the

present research focuses on a schedule that cuts the costs

and keeps the reliability at an acceptable level; the opti-

mization of the task is undertaken through genetic

algorithm.

A handful of researches have devoted to the preventive

maintenance scheduling in the recent years, most of which

are attempts for coordinating preventive maintenance

scheduling with the production line (Moghaddam and

Usher 2011; Fitouhi and Nourelfath 2012; Nourelfath and

Chatelet 2012). In this respect, some researchers also focus

on the optimization of preventive maintenance scheduling

(Moradi et al. 2011; Nourelfath et al. 2012; Xiaojun et al.

2012). Munoz et al. (1997) are among the first researchers

who proposed the genetic algorithm as an optimization tool

for preventive maintenance scheduling (Lapa et al.

1999, 2000; Munoz et al. 1997) and then Lapa et al. (2006)

used the genetic algorithm for the optimization of main-

tenance and inspection intervals in a new approach. Most

of the schedules were originally developed for power

plants but shortly after that the optimized scheduling was

employed for mechanical components (Tsai et al. 2001)

and then for production lines (Sortrakul et al. 2005). So far,

it has not been used in the drilling industry.

Since machines depreciate over time, they need a new

maintenance schedule. The main advantage of this method

is revealed in providing updated schedule consistent with

the system life cycle at a pre-determined time interval. The

cost of maintenance for production or project-based

equipment’s forms a substantial portion of the firm’s total

cost. An in-time preventive maintenance would result in

the reduction of unwanted downtimes and ultimately the

total cost of maintenance. The maintenance schedule used

by most firms is in accordance with the manufacturer’s

instructions and standards, but the depreciation of the

equipment loses the credibility of such instructions. In this

way, the schedules should be updated continuously

according to the equipment life cycle to keep them in an

optimum condition. The proposed method aims at pre-

dicting the maintenance events using flexible intervals for a
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pre-determined period. It is expected that the implemen-

tation of this method results in predicting downtime, and

also the PM department can fix the components before its

failure.

In this approach, numerous parameters are used

including maintenance probability, cost of each mainte-

nance event, preventive maintenance cost, impact of

maintenance on system reliability, maintenance errors

probability, impact of reliability on optimization, etc. Some

of these values are determined through software and others

are decided upon by the operator. In the reliability model as

well as the cost model, the computations are firstly

undertaken for each component and then for the system as

a whole.

Preventive maintenance

Business leaders who have significant investments in

physical assets and equipment increasingly realize the

strategic importance of maintenance, and so the mainte-

nance cost is necessary expense in their operating budget.

In other words, reliability has become a critical issue in

capital-intensive operations. The maintenance and resource

management can increase profit in two ways: (1) by

decreasing running costs and (2) increasing capability. If

the annual maintenance cost exceeds five percent of the

asset value, the organization is probably faced to financial

difficulties. The total maintenance cost depends on the

quality of the equipment, the way it is used, the mainte-

nance policy, and the business strategy. Maintenance

activities are divided into two main categories: (1) cor-

rective maintenance and (2) preventive maintenance

(Duffuaa and Al-Sultan 1997). Corrective maintenances

fireman maintenance is performed when the action is taken

to restore the previous functionality. This type of mainte-

nance is known as a reactive approach because the action is

started when the unscheduled event happens (Khanlari

et al. 2007). Preventive maintenance includes repair,

replacement, and maintenance of equipment to avoid

unexpected failure during use (Mann et al. 1995).

Preventive maintenance is performed to keep the equip-

ment in an appropriate operational condition and it is

divided into (1) time-based and (2) condition-based

maintenance.

Time-based maintenance is performed after fixed time-

intervals to avoid failure during operation. Time-based

maintenance results in a huge amount of costs for keeping

the system in an acceptable reliability level because the

majority of items should be replaced without taking their

usefulness into consideration. Condition-based manage-

ment is valuable for components which deteriorate rapidly

with time (Eti et al. 2006). The objective of preventive

maintenance is the minimization of the total cost of

inspection, repair, and downtime (also known as lost pro-

duction capacity or reduced product quality). In the fixed

policies, PM activities are performing exactly pre-specified

time intervals while in the conservative policies, whenever

production and PM activities have overlap the production

operation is postponed and PM activities are conducted

first (Jolai et al. 2009).

In the preventive maintenance, feedback observations

and functionality degradation are considered to achieve the

following objectives:

• To model the system lifetime and to quantify the

degradation of functionality or failure probability,

• To detect important variables involved in the function-

ality degradation process and to design maintenance

events to eliminate ageing effect of equipment,

• To determine the effect of maintenance activities on the

system behavior,

• To propose diagnosis and help in decision making,

• To propose data extraction and sensibility analysis

(Celeux et al. 2006).

Preventive maintenance involves a series of managerial,

executioner, and technical activities to prevent components

lifetime reduction and also to improve the availability and

reliability of the system. Management takes the following

decisions into account:

• If/why maintenance is performed for equipment?

• What is the average interval between component

failures? When preventative maintenance is performed?

• Which actions are required?/What actions are under-

taken for equipment?

• How the work is done?

• Where the work is done?

• How long the work takes? (Knezevic et al. 1997).

Genetic algorithm

The original principle of genetic algorithm was proposed

by Holland (1975). After that, researchers used and

developed the concept in numerous studies. Genetic algo-

rithm pertains to the larger class of evolutionary algorithms

(EA) which generate solutions of optimization problems

using techniques derived by natural selection (Sadeghi

et al. 2011). Genetic algorithm is one of the oldest meta

heuristic algorithms that have received much attention by

researchers worldwide (Sedighpour et al. 2011). In the

genetic algorithms, the optimum solution is the winner of

genetic play and every potential solution is a solution

which its creation dependents on different parameters. The

parameters are considered as genes of chromosomes that

are assumed in a binary string. A genetic algorithm is
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especially suited for solving complex optimization prob-

lems. In general, a genetic algorithm consists of simulta-

neously evaluating multiple regions of the solution space

during each iteration (Pourvaziri and Azimi 2014). In this

algorithm, the superior algorithm is one that is closer to the

optimum solution. In the studies using genetic algorithm,

the chromosome populations were selected randomly.

Genetic algorithm requires a population of potential solu-

tion of the give problem to be initialized. The initial pop-

ulation of individuals is randomly generated by a number

of chromosomes (Karimi et al. 2011). The number of these

populations differs according to the considered problem. In

the related literature, some points are proposed about the

choice of appropriate population numbers (Mann et al.

1997). The size of chromosome depends on the required

precision in the problem. Decision variables do not have

necessarily the same size of secondary string (Deb 1995).

In the genetic algorithm, new candidates for the solution

are created by two mechanisms i.e. crossover and mutation.

A number of the new created chromosomes may be not

necessarily applicable, and so they need some corrections

for more reliable application.

The crossover operation recombines the genes of two

selected chromosomes to generate a new crossover child to

be formed in the next generation. It aims to take the best

features of each parent and mix the remaining features in

forming the offspring (Asghari and Nezhadali 2014). If the

new individuals that are called offsprings inherit good

features from their parent, the chance of their survival will

increase. The process is continued until the termination

criterion is reached. Afterward, the best result is selected as

the optimum solution. In the crossover operation, the mat-

ing of chromosomes is necessary for offspring production.

There are various types of crossover operation including

one-point crossover, two-point crossover, integrated cross-

over, cut and slice crossover, semi-integrated crossover, etc.

In one-point crossover, two chromosomes are selected

randomly from a single point and exchange the considered

numbers which results in two other chromosomes. The

original chromosomes are known as parents and the resulted

chromosomes are called offspring. The crossover for parent

chromosomes is indicated by Pc probability; it means that

the crossover operation will happen with Pc probability. If

the crossover does not happen, the chromosomes results

will be mostly like the parents.

Mutation is the second mechanism in the genetic algo-

rithm for seeking new solutions. In mutation, one gene is

selected with a random number and is substituted in a limit

of parameters (Gen 1997). Then a random number between

(0 and 1) is created for each gene. If the random number is

less than a pre-determined mutation probability, Pm,

mutation of gene will happen. In other words, mutation of

another gene does not happen. After the creation of new

chromosomes, they should be re-evaluated by crossover

and mutation operators.

The last step in genetic algorithm method is answering

the question that whether the founded solution by algo-

rithm will meet user expectations. Termination criterion is

a set of conditions according to which the expected correct

solution is obtained. Different criteria used in the previous

studies are as follows:

• Termination of algorithm after a specified number of

generations,

• There is no optimization in objective function,

• Reaching a specified value of objective function.

Goldberg (1989) enumerated some differences between

genetic algorithm and other optimization methods as

follows:

• Genetic algorithm works with encoding parameters set

instead of individual parameters,

• Genetic algorithm starts its search from a set of points

instead of a single point,

• Genetic algorithm uses data from objective function

instead of supportive or driving knowledge,

• Genetic algorithm pursues the probable change rules

instead of definite change (Goldberg 1989).

In solving a problem according to the genetic algorithm,

we need:

• A method which provides the solution in a pseudo-

chromosome structure and starts its work with available

population,

• A function for estimating data fitness,

• A set of genetic algorithm operators including selec-

tion, crossover, and mutation that are used for devel-

opment or change of members’ genetic combination

(Machani and Nourelfath 2012).

Methodology

Equipment in FATH 59 Derrick Site are divided into

electrical and mechanic devices. There may be more than

one devices of the same kind which are used interchange-

ably and others are working in parallel. For programming

purpose, a sample was selected from each kind of equip-

ment. MATLAB software was used for programming.

Data collection was based on the case study method

using documents and interview with the net technicians.

In this section, some models are proposed for compu-

tation of reliability and cost. At first, the models are used

for a single component and then for the system as a whole.
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The present research relies on Lapa’s theory (Lapa et al.

2000, 2006) according to a model proposed by Lewis

(1996).

Reliability model

Let R tð Þ stand for reliability of a component with cor-

rective maintenance potential and/or is subjected to

preventive maintenance policy but it did not include any

maintenance intervention event at a time t accordingly, i

indicates the operating time or the time when the com-

ponent is ready to start. Assume Tm ið Þ as the scheduled

date for ith maintenance event of component m and

TmðultÞ as the last received maintenance event at time t.

Thus, ult reveals the number of maintenance events at

time t. Equation (1) includes hypotheses in the traditional

model:

Rm t; Tm ið Þ; TmðultÞ½ � ¼ R t � TmðultÞ½ �
Yult

i¼1

R Tm ið Þ � Tm i� 1ð Þ½ �; TmðultÞ� t\Tmis

ð1Þ

Since we aimed at evaluating the influence of single

component maintenance on entire of the operational sys-

tem, we assumed that the considered component was out of

operation during its maintenance time (outage time) Dm ið Þ.
We also considered the probability p (unsatisfactory

maintenance):

R t; Tm ið Þ; TmðultÞ½ �

¼
R t � TmðultÞ½ � 1� pð Þult

Yult

i¼1

R Tm ið Þ � Tm i� 1ð Þ½ �; TmðultÞ� t\Tmis

0; Tm ið Þ� t� Tm ið Þ þ Dm ið Þ

8
>><

>>:

ð2Þ

Equation (2) is not exactly the component’s reliability; it is

sometimes a cumulative distribution function and is not

able to change the values to smaller than those obtained

previously. In this way, Eq. (2) represents the reliability

during the operational and the non-operational states dur-

ing the outage time.

The factor p (unsatisfactory maintenance probability)

presents a new condition in which a maintenance event

may not result in the system reliability or even may be

detrimental. For evaluation purpose, the flexible interval

method was used employing Eq. (2) for the times when the

components are operating:

Rm t; Tm ið Þ; TmðultÞ½ � ¼ R t � TmðultÞ½ � 1� pð Þult

Yult

i¼1

R Tm ið Þ � Tm i� 1ð Þ½ � ð3Þ

Given that the component’s reliability under aging effects

can be shown by Weibull distribution, and with p � 1, and

1� pð Þultffi e�pult, the following result is obtained:

Rm t; TmðiÞ; TmðultÞ½ � ¼ exp � t � TmðultÞð Þ=hj
� �mj

� �

exp �pðultÞ½ � �
Yult

i¼1

exp � TmðiÞ � Tmði� 1Þð Þ=hj
� �mj

" #

ð4Þ

where, m and h are aging factors and the component’s

characteristic life.

Evaluation of total maintenance policy at system

level

The above mentioned model (Eq. 4) shows the behavior of

an individual component used for testing maintenance

policy. The aim of it is to estimate the availability of multi-

component systems. To estimate the system failure prob-

ability for each specified combination of component states

(operating or testing), some global evaluation techniques

including fault trees, minimum cut sets or Markovian

chains should be employed to provide the reliability of the

system as a whole,

Rsis ¼ fun R1
m t; TmðultÞ; TmðiÞ½ �; R2

m t; TmðultÞ; TmðiÞ½ �;
�

. . .Rx
m t; TmðultÞ; TmðiÞ½ �

�
: ð5Þ

where, x is the number of components of the system.

Cost model

At first, a cost estimation model is created for a specified

maintenance policy for a single component. Figure 1

shows the time axis for maintenance dates for a specific

mission during Tmis

Fig. 1 Maintenance events over a component
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C0�Tmis

T ¼
Xult

j¼1

Cðj�1Þ!j
m

R TmðjÞ½ �
R Tmðj� 1Þ½ �

� 	

þ C j�1ð Þ!1
r 1� R TmðjÞ½ �=R Tmðj� 1Þ½ �f g

þ Cult!Tmis

r 1� R Tmis½ �=R TmðultÞ½ �½ �f g ð6Þ

Tm 0ð Þ is the mission start date. At the last interval

TmðultÞ ! Tmis, the potential cost of corrective mainte-

nance is added, and in Eq. (6) the total cost with respect

to single component is evaluated which undergoes pre-

ventive maintenance in time Tm jð Þ, where, j ¼ 1. . .ult and

mission duration is Tmis. To consider several aspects

including repair and maintenance duration interval in the

cost model, it is necessary to evaluate their compatibility

with the reliability model (Eq. 5) which deals with such

features.

More details about such relations between the two

models along with the objective function definition are

described in the following sections. It is necessary to

mention that such relations are significant and the cost

model considers the mission as a sum of shutdowns

between the maintenance events. The impact of the

shutdowns on the whole system is not considered. In

system with X components, the total cost for the system

operation is the sum of the total cost for each compo-

nent; therefore, we obtain the following relation adding

up X’s:

C0!Tmis

Tsis
¼

Xx

Q¼1

C0�Tmis

T ¼
Xx

Q¼1

� C
ðj�1Þ!j
mQ RQ TmQðiÞ½ �=RQ TmQ j� 1ð Þ½ �½ �

n

þ C
ðj�1Þ!j
rQ 1� RQ TmQðjÞ½ �=RQ TmQ j� 1ð Þ½ �½ �

� �

þ Cult!Tmis

rQ 1� RQ Tmis½ �=RQ TmQ ultð Þ½ �½ �
� �o

ð7Þ

where, Q is component index and j is maintenance event

index.

In general, modeling the optimization problem by

genetic algorithms includes two basic views:

(a) Definition of chromosome which is known as data

structure for decoding the selected solutions, and

(b) Providing an objective function for evaluating the

selected solutions.

Chromosome structure

In this new problem, the chromosome should decode all the

possible scheduling combinations for all the system com-

ponents. Traditionally, the problem is a numerical opti-

mization problem in which the test search or maintenance

frequency is considered as the variable. Now, we need to

know when and how a number of events should be per-

formed for all the system components. In this approach, the

time axis considers a 10-day interval along with a constant

number of genes and string in the searching process for

scheduling problems.

A fixed binary string was used based on the genetic

algorithm paradigm. Each gene (chromosome sub-string)

contains Tmiss=10 bits and its decoding (chromosome) is

such that 1 shows that the considered combination is

working or ready to work and 0 indicates testing at pre-

determined date (multiple of 10 days).

Figure 2 shows the chromosome and its decoding

(phenotype) for each component or a vector whose ele-

ments are testing dates. The proposed chromosome may be

customized to match time with different steps. The com-

putational cost may be affected by the method, but its

consideration is necessary. In this task, time steps of

10 days may be enough to reach the solution of the

problem.

Membership function

The function for evaluating the determined chromosome

(scheduling) is a weighted sum which includes the system

reliability, all missions, computation of the impact of

component outage, and total costs related to the considered

Fig. 2 An example of chromosome
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maintenance policy. Equation (8) indicates the integrated

impact of a specified maintenance policy on the system

reliability:

Fun ¼ T�1
mis

ZTmis

0

Rsisdt: ð8Þ

Thus, the membership function is a linear combination

between the function (Eq. 9) and total costs in relation to

maintenance policy

fit ¼ WdFunþWcCT
0�Tsis
sis ð9Þ

where, Wd varies between 0 and 1, and Wc varies in a rage

from 0 and 1= N COMP 	MAX INTð Þ, here, N COMP

shows the number of components and MAX INT is the

maximum number of maintenance events. The combination

is necessary because the cost model is not compatible with

the effect of component outage.

Data analysis

Input data

The electrical equipments of FATH 59 Derrich Site are as

follows (Table 1):

The list of mechanical equipment is as follows

(Table 2).

In the present research, the parameters used in equip-

ment’s scheduling based on genetic algorithm adjustments

are as follows.

• The effect of reliability on optimization,

• The effect of cost on optimization,

• The possible maximum number of maintenance events,

• Number of components,

• Specifications of components,

• Useful life of components,

• The probability of faulty maintenance,

• Scheduling time,

• Cost of component maintenance,

• Number of generations,

• Number of population,

• Crossover rate.

In this scheduling, the effects of reliability and costs are

adjusted at 0.7 and 0.3, respectively. The probability of

faulty maintenance is 0.1, and the time frame for

scheduling includes 150 days in the future. The numbers of

generations and population are, respectively 30 and 100.

The crossover rate is 0.7 i.e. the future generation is

determined by this value through selection and by 0.3

through mutation. Other parameters are based on condition

and data from previous scheduling.

Due to the extent of the task, only the input data and

scheduling results for one system i.e. ‘‘Main engine’’ are

presented in this section.

Table 3 shows the input data for scheduling related to the

main engine. The cost of preventive maintenance per

component indicates the cost of each maintenance event for

each component. The maximum number of maintenance

events shows the prediction of maintenance events in the

scheduling time. The number of components per system

shows the components which are appropriate for mainte-

nance. The component specification is the score of each

component with respect to its robustness.

Table 1 Electrical equipment of FATH 59 Derrick Site

Equipment name Model Number

Koomey unit Shaffer 1

Comp. generator CAT (3408-SR4) 2

Main generator KATO 1

CAT 2

Transformer 600.480 5

Traction engine GULF 1

GE 752RB3 5

GE752 1

Air conditioner TRAINE 2

Electric engine MARATON 3

HP 5

SCR and MMC ROSSHILL 1

DRILLER CONSOLE ROSSHILL 1

Table 2 Mechanical equipment of FATH 59 Derrick Site

Equipment name Model Number

Mixer LIGHTNIN 5

Rotary table NATIONAL 1

Gearbox NATIONAL 1

Kelly spinner VARCO 1

Compressor GARDNER DENVER 1

HAVAKARAN SANAT 2

Swivel NATIONAL 1

Deraworks NATIONAL 1

Electric brake ELMAG CO 1

Traveling NATIONAL 1

Mud pump NATIONAL 2

River pump GARDNER DENVER 2

Air host INGERSOLL 1

Air wrench VARCO 1

Comp. motor CAT 2

River motor GM 2

Main motor CAT 3
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Results

Given the input data, the cost and reliability of preventive

maintenance scheduling related to the main engine for

future 150 days are obtained (Table 4). In addition, the

final value with fitness function of 3411.2 is determined.

The best fitness value—the smallest fitness value for all

population individuals—along with the mean fitness values

are depicted in Fig. 3. Finally, the prediction of downtimes

during the scheduled period is reported in Table 5. The

main advantage of this method is revealed in providing

updated schedule consistent with the system life cycle at a

pre-determined time interval. Other advantages of this

model include: Presents stop forecast, cost and reliability

simultaneously; Presents reliability in both operational and

nonoperational conditions, it means that the piece will be

considered at the time of repair out of operation; it’s very

appropriate For planning preventative maintenance that

belongs to repairable parts; according to failure history of

each component, forecasts it’s future stops in flexible

intervals at the lowest cost and most reliability.

Conclusion and recommendations

Based on the proposed model, the cost and reliability of

each component are computed firstly by each component

and secondly by the system as a whole. Then, the results

are deployed in the objective function. The secondary data

including the effects of reliability and cost on the opti-

mization, cost of component maintenance and repair, faulty

maintenance, etc. are determined and used as the input of

MATLAB software. Some of the mentioned data are

extracted from database of the net department, and other

needed data are collected through interview with experts. It

is worth mentioning that the scheduling procedure is only

useful for components which are prone to maintenance.

The optimization method results in introducing new

procedure for preventive maintenance activities using the

flexible intervals technique. Given that the scheduling

framework is for future 150 days, the results reveal that

most of the failures happen in the first and third parts of the

period. To reference the software results, the fitness func-

tion diagram is provided.

For better scheduling, future researchers can consider

the following recommendations: records of the system

failures date of system start up, engineers comments, reli-

ability, hours of system operation per day, and number of

off days. Additionally, this type of researches should be

performed where very precise information about equip-

ment’s available and active approach to preventive main-

tenance is followed.
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Table 3 Input data for main engine

Cost of preventive maintenance per component *0.33$

Cost of repair or replacement per component *3.33$

Maximum number of maintenance events 9

Number of components per system 4

Component specifications 0.9, 0.95, 0.9, 0.85

Useful life of components 250, 500, 500, 1000

Table 4 Data results related to the main engine

Cost *34.1$

Reliability 96 %

Final value 3411.2

Best fitness value 2178.5622

Mean of fitness values 3008.7807

Fig. 3 Best fitness related to the main engine

Table 5 Predicted downtimes related to the main engine

Component name First downtime Second downtime

Component 1 13 140

Component 2 140 –

Component 3 125 131

Component 4 137 –
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