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An L1-norm method for generating all of efficient
solutions of multi-objective integer linear
programming problem
Ghasem Tohidi1* and Shabnam Razavyan2
Abstract

This paper extends the proposed method by Jahanshahloo et al. (2004) (a method for generating all the efficient
solutions of a 0–1 multi-objective linear programming problem, Asia-Pacific Journal of Operational Research). This
paper considers the recession direction for a multi-objective integer linear programming (MOILP) problem and
presents necessary and sufficient conditions to have unbounded feasible region and infinite optimal values for
objective functions of MOILP problems. If the number of efficient solution is finite, the proposed method finds all of
them without generating all feasible solutions of MOILP or concluding that there is no efficient solution. In any
iteration of the proposed algorithm, a single objective integer linear programming problem, constrained problem, is
solved. We will show that the optimal solutions of these single objective integer linear programming problems are
efficient solutions of an MOILP problem. The algorithm can also give subsets of efficient solutions that can be useful
for designing interactive procedures for large, real-life problems. The applicability of the proposed method is
illustrated by using some numerical examples.

Keywords: Multi-objective integer linear programming, Single objective integer linear programming, Recession
direction, Efficient solution, L1-norm
Background
Multiple criteria decision making suggests, including mul-
tiple (two or more) objective functions, a mathematical
programming framework. Since most real-life problems in-
clude conflicting objectives, multiple objective optimization
provides a means for obtaining more realistic models.
Multi-objective integer linear programming (MOILP) prob-
lem is an important research area as many practical situa-
tions require discrete representations by integer variables,
and many decision makers have to deal with several objec-
tives (Ulungu and Teghem 1994). Some note-worthy prac-
tical environments, where the MOILP problems find their
applications, are supply chain design, logistics planning,
scheduling, and financial planning. The MOILP problems
are theoretically challenging as well, as most of them, even
their single objective versions, fall into the class of compu-
tationally intractable problems.
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Numerous algorithms have been designed to solve an
MOILP (Climaco et al. 1997; Rasmussen 1986; Teghem
and Kunsch 1986; Ulungu and Teghem 1994) and multiple
objective mixed integer linear programs (Mavrotas and
Diakoulaki 1998; Sylva and Crema 2007). Klamroth et al.
(2004) and Ehrgott (2006) study the general MOIP prob-
lem. Klamroth (2004) defined composite functions to ob-
tain upper bounds on the objective function values of the
efficient solutions and discussed the use of the upper
bounds in generating the efficient set. To form the
composite functions, they proposed some classical
optimization methods such as cutting plane method
and branch and bound algorithm. However, the
MOILP have not received the algorithmic attention
that continuous problems have. The literature avail-
able on this topic is limited.
Using a straightforward theoretical approach, Sylva

and Crema's (2004) algorithm enumerates all efficient
solutions of MOILP models with bounded feasible
regions. Sylva and Crema's (2004) approach solves the
problem using a sequence of progressively more
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constrained integer linear programs and generates a
new solution at each step. Starting from an initial effi-
cient solution, Sylva and Crema's (2007) algorithm finds
at each iteration a new one that maximizes the infinity-
norm distance from the set dominated by the previously
found solutions. When all variables are integer and
feasible region is bounded, their approach generates the
whole set of efficient solutions; and it would be expen-
sive using the method for enumerating the whole set of
efficient solutions except for small problems.
However, in some cases, the feasible region of an

MOILP problem is unbounded. Therefore, an MOILP
problem can have infinite objective values. These
cases have not been considered in Sylva and Crema
(2004) and (2007). This paper considers the recession
direction to the MOILP problem and provides neces-
sary and sufficient conditions to have unbounded feas-
ible region and infinite values of MOILP problem and
then extends Jahanshahloo et al. (2004) method to
solve an MOILP problem. When the number of effi-
cient solutions of an MOILP problem is finite, the
proposed algorithm finds all of the efficient solutions
without generating all of the feasible solutions of an
MOILP. Using a straightforward theoretical approach,
the efficient solutions are found using a sequence of
progressively more constrained integer linear pro-
grams generating new efficient solutions in any iter-
ation. We prove that all of the optimal solutions of
this single objective integer linear programming prob-
lem are efficient solutions of an MOILP problem.
Therefore, the proposed method reduces the number
of constrained problems which are solved.
The paper is organized as follows: Section 2 presents a

brief background about MOILP problem. Section 3
introduces modified algorithm for finding all of the effi-
cient solutions of an MOILP problem with bounded or
unbounded feasible region. Illustration with some nu-
merical examples is given in Section 4. Finally, the con-
cluding results are presented.
An MOILP problem is a special case of multi-objective

program. An MOILP problem with s-objectives is defined
as:

max C1W ;C2W ;⋯;CsWf g
s:t: AiW≤bi; i ¼ 1; 2;⋯;m

W 2 Zþ
n

ð1Þ

where, Cr ¼ cr1; cr2;⋯; crnð Þ r ¼ 1; 2;⋯; sð Þ; �Ai ¼ ai1; ai2;ð
⋯; ainÞ i ¼ 1; 2;⋯;mð Þ; �Zþ

n ¼ e1;⋯; enð Þf jej 2 Zþ ¼ 0; 1;f
2;⋯g; j ¼ 1;⋯; ng and W ¼ w1;w2;⋯;wnð ÞT

The set X, which is defined as follows:
X ¼ W AiW≤bi; i ¼ 1; 2; . . . ;m;W 2 Zþ
n

�� �� ð2Þ
is called the set of feasible solutions of the problem (1).
Corresponding to each W 2 X , the vector Y is defined as
follows (Jahanshahloo et al. 2004):

Y ¼ y1;⋯; ysð ÞT ¼ C1W ;C2W ;⋯;CsWð ÞT : ð3Þ
Definition The vector Y ¼ y1;⋯; ysð ÞT dominates the

vector Y o ¼ yo1;⋯; yos
� �T

if for each r r ¼ 1; 2; . . . ; sð Þ;
yr≥yor , and there is at least one l such that yl > yol .

Definition Let

F ¼ Y Y¼ C1W ;C2W ;⋯;CsWð ÞT ; AiW≤bi; i ¼ 1;⋯;
��n

m; W 2 Zþ
n g . F is called the values space of objective

functions in problem (1).
Let gr ¼ CrW �

r r ¼ 1;⋯; sð Þ , where W �
r is the optimal

solution of r th problem from the following problems
(Jahanshahloo et al. 2004):

gr ¼ maxCrW
s:t: AiW≤bi; i ¼ 1; 2;⋯;m

W 2 Zþ
n :

ð4Þ

Definition Let g ¼ g1; g2;⋯; gsð ÞT ¼ C1W �
1 ;C2W �

2 ;
�

⋯;

CsW �
s ÞT . The g is called the ideal vector of problem (1)

(Jahanshahloo et al. (2004)).

Efficient solutions of MOILP problem
Feasible region of a 0–1 MOILP is bounded. However,
an MOILP problem has bounded or unbounded feasible
region, which are discussed as follows.

Methods
MOILP problem with unbounded feasible region
In some cases, feasible region of an MOILP problem is
unbounded. For instance, consider the following MOILP
problem.

max w1 þ w2

max 2w1 þ w2

s:t:� 5w1 þ 4w2≤20
�6w1 þ 7w2≤42
w1;w2 2 Zþ:

To explain the unbounded case, we define recession dir-
ection for MOILP problems similar to recession direction
for linear programming problem (Bazaraa et al. 2007).

Definition: Let d 6¼ 0 and d 2 Zþ
n , then d is a recession

direction of the MOILP problem if and only if for all
W 2 X , and for all λ 2 Zþ, we have W þ λd 2 X .

Theorem Let d 6¼ 0ð Þ , then d is a recession direction of
problem (1) if and only if λ 2 Zþ and W þ λd 2 X .

Proof The proof is evident.
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Theorem If there is d 6¼ 0ð Þ such that

Aid≤0; i ¼ 1;⋯;m;
Crd≥0; r ¼ 1;⋯; s
d 2 Zþ

n

8<
:

with at least one p p 2 1;⋯; sf gð Þ such that Crd > 0 and
d 2 Zþ

n , then the optimal values of the objective functions
is infinite, i.e., problem (1) has no efficient solution.

Proof The proof is evident.

Theorem Suppose that for each recession direction

of model (1), say ~d, there is p p 2 1; . . . ; sf gð Þ such that

Cp
~d < 0, then model (1) has an efficient solution.

Proof The proof is evident.

MOILP problem with bounded feasible region
This section extends the proposed method in (Jahanshahloo
et al. 2004) to find all efficient solutions of MOILP with
bounded feasible region. To specify some efficient solu-
tions of model (1), we consider the following theorem
for an MOILP problem, which is a modification of The-
orem 2.1 in (Jahanshahloo et al. 2004)

Theorem Let Ol ¼ W �
1l;W

�
2l;⋯;W �

fl

n o
be the set of

optimal solutions of lth problem from problems (4), then
at least one of these solutions is an efficient solution of
problem (1).

Proof The proof is similar to that of Theorem 2.1 in
(Jahanshahloo et al. 2004) and is omitted.

Theorem For each W 2 X as a feasible solution of an
MOILP problem with bounded feasible region, the vector

g ¼ g1; g2;⋯; gsð ÞT dominates the vector Y ¼ C1W ;ð
C2W ;⋯;CsW ÞT 6¼ g .

Proof: See the proof of the Theorem 2.2 in (Jahanshahloo
et al. 2004).

As noted in (Jahanshahloo et al. 2004) about a 0–1
MOLP, to find the other efficient solutions of problem
(1) with bounded feasible region, we can specify a feas-
ible solution, say W 2 X , such that g � Y ¼ g1�ð C1W ;

g2 � C2W ;⋯; gs � CsW ÞT is minimized. Therefore, we
can solve the following MOILP problem.

min g1 � C1W ; g2 � C2W ;⋯; gs � CsWf g

s:t: AiW≤bi; i ¼ 1; 2;⋯;m

W 2 Zþ
n

ð5Þ
where X is a bounded feasible solution of an MOILP
problem. Since 8W 2 X; gr≥CrW ; r ¼ 1; 2;⋯; sð Þ using
L1-norm we have:

min W2X
Xs

r¼1

gr � CrWj j

¼ min
W2X

Xs

r¼1

gr � CrWð Þ

¼
Xs

r¼1

gr þ min
W2X

Xs

r¼1

�CrWð Þ

¼
Xs

r¼1

gr � max
W2X

Xs

r¼1

CrW :

To find some other efficient solutions of the MOILP
problem, we solve the following linear integer program-
ming problem:

max
Xs

r¼1

CrW

s:t: AiW≤bi; i ¼ 1; 2; . . . ;m
W 2 Zþ

n :

ð6Þ

Theorem Each optimal solution of problem (6) is an effi-
cient solution for an MOILP problem.

Proof The proof is similar to that of Theorem 2.3 in
(Jahanshahloo et al. 2004) and is omitted. □

As noted about a 0–1 MOILP in (Jahanshahloo et al.
2004), let for each q 2 Lo ¼ i1; i2;⋯; iαf g � 1; 2;⋯; sf g ,
the following problem has a unique optimal solution,

gq ¼maxCqW
s:t: AiW≤bi; i ¼ 1; 2;⋯;m

W 2 Zþ
n :

ð7Þ

Suppose that Go ¼ W �
i1 ;W

�
i2 ;⋯;W �

iα

n o
is the set of opti-

mal solutions of problem (7). When Go is empty, we solve

problem (6). In this case, let Go ¼ W �
i1 ;W

�
i2 ;⋯;W �

iβ

n o
be

the set of optimal solutions of problems (6), and Lo ¼
i1; i2;⋯; iβ

� �
. To find the other efficient solutions of the

MOILP problem, for each q 2 Lo, we add the constraints

CrW > CrW �
q �Mtrq; r ¼ 1; 2;⋯; s

t1q þ t2q þ⋯þ tsq≤s� 1
trq 2 0; 1f g; r ¼ 1; 2;⋯; s

ð8Þ

to problem (6), where M is a large positive integer number.
Therefore, we have
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max
X
r¼1

CrW

s:t: AiW≤bi; i ¼ 1; 2;⋯;m
CrW > CrW �

q �Mtrq; r ¼ 1; 2;⋯; s ; q 2 LoXs

r¼1

trq≤s� 1; q 2 Lo

W 2 Zþ
n ;

trq 2 0; 1f g; r ¼ 1; 2;⋯; s ; q 2 Lo:

ð9Þ

As can be seen, if trq ¼ 1 , then constraint CrW >

CrW �
q �Mtrq is redundant. The constraint

Ps
r¼1trq≤s�

1; q 2 Lo implies that at least one of the constraints
CrW > CrW �

q �Mtrq; r ¼ 1; 2;⋯; s is not redundant

(Jahanshahloo et al. 2004). To solve problem (9), the in-
equalities

CrW > CrW
�
q �Mtrq; r ¼ 1; . . . ; s; q 2 Lo ð10Þ

should be converted to ≥ form. For all W 2 Zþ
n , the

values of CrW ; CrW �
q and Mtrq are integers. Therefore,

CrW � CrW �
q þMtrq

� �
is an integer, and we can add

the positive continuous variable, say δrq , to the right
hand side of the constraint (10). By introducing positive
variables δrq r ¼ 1; . . . ; s;q 2 Loð Þ , problem (9) is con-
verted to the following problem:

max
Xs

r¼1

CrW

s:t: AiW≤bi; i ¼ 1; 2;⋯;m
CrW≥δrq þ CrW �

q �Mtrq; r ¼ 1; 2;⋯; s; q 2 LoXs

r¼1

trq≤s� 1; q 2 Lo

W 2 Zþ
n ;

δrq≥E; trq 2 0; 1f g; r ¼ 1; 2;⋯; s ; q 2 Lo

ð11Þ

where E is a small positive real number.

Theorem Models (9) and (11) are equivalent.

Proof For each j; r j ¼ 1; . . . ; n; r ¼ 1; . . . ; sð Þwj 2 Zþ

and crj is an integer number. Therefore, for each W 2
X;

Ps
r¼1CrW ¼ Ps

r¼1

Pn
j¼1cjrwj is an integer number.

Therefore, difference of the sides of the strictly con-
straints are integer numbers. Thus, adding δrq (with
δrq≥E; r ¼ 1; . . . ; s;q 2 Lo ) to the lower sides of the
strictly constraints does not alter the feasible region of
model (6). Therefore, models (9) and (11) are equivalent.
Let A ¼ W �
ikþ1

;W �
ikþ2

;⋯;W �
ikþl

n o
be the set of optimal

solutions of problem (11) where k ¼ α or k ¼ β. We set
G1 ¼ Go∪A (Jahanshahloo et al. 2004). To find the other
efficient solution of problem (1), for each W �

q 2 A , we

add the following constraints to problem (11):

CrW≥δrq þ CrW �
q �Mtrq; r ¼ 1; 2;⋯; s; q 2 LoXs

r¼1

trq≤s� 1

δrq≥E; r ¼ 1; 2;⋯; s; q 2 Lo:

Finally, problem (11) can be written as follows,

max
Xs

r¼1

CrW

s:t:AiW≤bi; i ¼ 1; 2;⋯;m

CrW≥δrq þ CrW �
q �Mtrq; r ¼ 1; 2;⋯; s; q ¼ i1; i2⋯;

ik ; ikþ1;⋯; ikþlXs

r¼1

trq≤s� 1; q ¼ i1; i2⋯; ik ; ikþ1;⋯; ikþl

W 2 Zþ
n ; trq 2 0; 1f g; r ¼ 1; 2;⋯; s; q ¼ i1; i2⋯;

ik ; ikþ1;⋯; ikþl

δrq≥E; r ¼ 1; 2;⋯; s; q ¼ i1; i2⋯; ik ; ikþ1;⋯; ikþl:

ð12Þ

This process is continued until problem (12) became
infeasible. As noted in (Jahanshahloo et al. (2004)), if
problem (9) or (11) or (12) has an alternative optimal
solutions, we have to determine all of them. All of them
are efficient solutions of problem (1).

Theorem Each optimal solution of problem (12) is an ef-
ficient solution for MOILP problem.

Proof The proof is similar to that of Theorem 2.4 in
(Jahanshahloo et al. 2004) and is omitted.
Using the discussions of the previous sections, in the fol-

lowing cases, an MOILP problem has efficient an solution.

1. X is nonempty and bounded.
2. X is unbounded, and there is no d 6¼ 0 such that

Aid≤0; i ¼ 1; � � � ;m;Crd≥0; r ¼ 1; � � � ; s with at least
one p p 2 1; � � � ; sf gð Þ such that Cpd > 0 and d 2 Zþ

n :

We can modify the proposed algorithm to solve a 0–1
MOILP in Jahanshahloo et al. (2004) to find all of the ef-
ficient solutions of MOILP problems with bounded and
unbounded feasible regions as follows. When the num-
bers of efficient solutions are infinite, we can find their
subset (for instance see example 3).
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The modified algorithm
Stage 0: Solve the system Aid≤0; i ¼ 1; . . . ;m;Crd≥0;
r ¼ 1; . . . ; s; with at least one p p 2 1; 2; . . . ; sf gð Þ such
that Cpd > 0 and d 2 Zþ

n : If this system has a solution,
then there is no efficient solution for problem (1) and go to
stage 3. Otherwise, go to stage 1.
Stage 1:

Step 1.1 Set k ¼ 0 and solve problem (4) and specify
Go ¼ W �

i1 ;W
�
i2 ; � � � ;W �

iα

n o
: If Go is empty go to step

1.2, otherwise go to step 1.3,

Step 1.2 Determine all optimal solutions of problem
(6) and set Go ¼ W �

i1 ;W
�
i2 ; � � � ;W �

iβ

n o
,

Step 1.3 Determine all optimal solutions of problem
(11) and set A ¼ W �

ikþ1
;W �

ikþ2
; � � � ;W �

ikþl

n o
,

Step 1.4 If A is not empty, set G1 ¼ Go [ A and go to
stage 2. Otherwise, stop; the set Go is all of the
efficient solutions of problem (3),
Stage 2:

Step 2.1 Determine all optimal solutions of problem
(12), and suppose B is the set of optimal solutions of
problem (12),

Step 1.4 If A is not empty, set G1 ¼ Go [ A and go to
stage 2. Otherwise, stop; the set Go is all of the
efficient solutions of problem (3),
Stage 2:

Step 2.1 Determine all optimal solutions of problem
(12), and suppose B is the set of optimal solutions of
problem (12),

Step 2.2 If B is not empty, set Gkþ1 ¼ Gk [ B and go
to stage 2.

Otherwise, stop; the set Gk is all of the efficient solutions
of problem (1),

Stage 3: End.

Theorem: there is no recession directionLet the number
of efficient solutions of an MOILP problem be finite.
Then, the modified algorithm generates all of them with
bounded or unbounded feasible region.
Proof The feasible region of MOILP problem is bounded
or unbounded. Therefore, we can consider the following
cases:

1. If there is a d such that Aid≤0; i ¼
1; . . . ;m; Crd≥0; r ¼ 1; . . . ; s; with at least one
p p 2 1; 2; . . . ; sf gð Þ such that Cpd > 0 and d 2 Zþ

n ;
then feasible region of the MOILP is
unbounded, and objective function values can
become infinite together. In this case, the
algorithm is stopped.

2. If X is nonempty and bounded. The proof is similar
to that of Theorem 2.5 in (Jahanshahloo et al. 2004).

3. If feasible region is unbounded and there is no d such
that Aid≤0; i ¼ 1; . . . ;m; Crd≥0; r ¼ 1; . . . ; s; with at
least one p p 2 1; 2; . . . ; sf gð Þ such that Cpd > 0 and
d 2 Zþ

n ; then objective functions values of the MOILP
cannot become infinite together. In this case, in order
to prove the theorem by adding the constraint w1 þ
w2 þ � � � þ wn≤M to problem (11), its feasible region
is converted to a bounded feasible region where M is a
large positive number. Also, the rest of the proof for
this case is similar to that of Theorem 2.5 in
(Jahanshahloo et al. 2004) and is omitted.

Theorem Let the number of efficient solutions be finite.
Then, the modified algorithm is convergent.

Proof Let the number of efficient solutions be finite. In
any iteration, at least one efficient solution is found, and
the found efficient solutions are not the same. Therefore,
the modified algorithm is convergent.

Examples This section illustrates the proposed algo-
rithm for the four MOILP problems with bounded or
unbounded feasible regions.

Example 1 Consider the following MOILP problem with
two objective functions.

max w1 þ w2

max 4w1 þ 3w2

s:t: � 3w1 þ 2w2≤6
� 6w1 þ 10w2≤60
w1; w2 2 Zþ:

As can be seen, there is d ¼ d1
d2

	 

such that Aid≤0; i ¼

1; 2; Crd≥0; r ¼ 1; 2 and d 2 Zþ
2 ; where A1 ¼ �3; 2ð Þ;

A2 ¼ �6; 10ð Þ; C1 ¼ 1; 1ð Þ and C2 ¼ 4; 3ð Þ. That is, feas-
ible region is unbounded and objective functions can be-
come infinite together. Therefore, there is no any efficient
solution for this problem.

Example 2 The feasible region of the following MOILP
problem is unbounded.
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max w1 þ w2

max � 2w2

s:t: � w1 þ w2≤1
�4w1 þ 6w2≤24

w1; w2 2 Zþ:

As can be seen, d ¼ d1
d2

	 

¼ 1

0

	 

is a solution of the

following system,

Aid≤0; i ¼ 1; 2; C1d > 0; C2d≥0; d 2 Zþ
2

where A1 ¼ �1; 1ð Þ; A2 ¼ �4; 6ð Þ; C1 ¼ 1; 1ð Þ and C2 ¼
0;�2ð Þ . Similar to Example 1, there is no efficient solu-
tion for this problem.

Example 3 Consider the following MOILP problem

max� 2w1 þ w2

max w1 � 3w2

s:t:� 4w1 þ w2≤4
�9w1 þ 5w2≤45
w1; w2 2 Zþ:

ð13Þ

It is evident that there is d say d ¼ d1
d2

	 

¼ 1

1

	 

,

such that Aid≤0; i ¼ 1; 2; d 2 Zþ
2 where A1 ¼ �4; 1ð Þ;

A2 ¼ �9; 5ð Þ: That is, the feasible region of this problem is
unbounded. But, there is no recession direction such that,

Crd≤0; r ¼ 1; 2;∃p 2 1; 2f g; Cpd≥0;d 2 Zþ
2 ;

where A1 ¼ �1; 1ð Þ; A2 ¼ �4; 6ð Þ; C1 ¼ �2; 1ð Þ , and
C2 ¼ 1;�3ð Þ: Therefore, this problem has an efficient
solution.

Stage 1, Step 1.1: Consider the following single object-
ive integer programming problems:

max� 2w1 þ w2

s:t:� 4w1 þ w2≤4
�9w1 þ 5w2≤45
w1; w2 2 Zþ

ð14Þ

and

max w1 � 3w2

s:t:� 4w1 þ w2≤4
�9w1 þ 5w2≤45
w1; w2 2 Zþ:

ð15Þ

W �
1 ¼ 5; 18ð Þ is the optimal solution of problem (14),

and Y 1 ¼ 8;�49ð ÞT is its objective value vector. How-
ever, the optimal value of problem (15) is infinite, and this
problem does not have an optimal solution. Therefore,
Go ¼ 1f g.
Step 1.2: The corresponding problem of Go ¼ 1f g is as
follows:

max� w1 � 2w2

s:t:� 4w1 þ w2≤4
�9w1 þ 5w2≤45
�2w1 þ w2 � δ1 þ 100t11≥8
w1 � 3w2 � δ2 þ 100t21≥� 49
t11 þ t12≤1
t11; t12 2 0; 1f g
w1; w2 2 Zþ

δ1; δ2≥E:

ð16Þ

W �
2 ¼ 0; 0ð Þ is the optimal solution of problem (16),

and Y 2 ¼ 0; 0ð ÞT is its objective value vector. Therefore,
A ¼ 0; 0ð Þf g.
Step 1.3: G1 ¼ A∪Go ¼ 5; 18ð Þ; 0; 0ð Þf g
Stage 2, Iteration 1

Step 2.1: The corresponding problem of G1 is as follows:

max� w1 � 2w2

s:t: � 4w1 þ w2≤4
�9w1 þ 5w2≤45
�2w1 þ w2 � δ1 þ 100t11≥8
w1 � 3w2 � δ2 þ 100t21≥� 49
t11 þ t21≤1
�2w1 þ w2 � δ3 þ 100t12≥0
w1 � 3w2 � δ4 þ 100t22≥0
t21 þ t22≤1
t11; t21; t12; t22;2 0; 1f g
w1; w2 2 Zþ

δ1; δ2; δ3; δ4≥E:

ð17Þ

W �
2 ¼ 0; 0ð Þ is the optimal solution of problem (17),

and Y 3 ¼ �2; 1ð ÞT is its objective value vector. Thus,

B ¼ 1; 0ð ÞT
n o

.

Iteration 2

Step 2.1: The corresponding problem of G1 is as follows:

max� w1 � 2w2

s:t:� 4w1 þ w2≤4
�9w1 þ 5w2≤45
�2w1 þ w2 � δ1 þ 100t11≥8

w1 � 3w2 � δ2 þ 100t21≥� 49
t11 þ t21≤1

�2w1 þ w2 � δ3 þ 100t12≥0
w1 � 3w2 � δ4 þ 100t22≥0
t12 þ t22≤1

�2w1 þ w2 � δ5 þ 100t13≥0
w1 � 3w2 � δ6 þ 100t23≥0
t13 þ t23≤1
t11; t21; t12; t22; t13; t23 2 0; 1f g
w1; w2 2 Zþ

δ1; δ2; δ3; δ4; δ5; δ6≥E:

ð18Þ



Figure 1 The first two efficient solutions of the MOLP example.

Figure 2 The first two efficient solutions of the MOLP example.
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W �
4 ¼ 0; 1ð ÞT and W �

5 ¼ 2; 0ð ÞT are optimal solutions of

problem (18). Therefore, Y 4 ¼ 1;�3ð ÞT and Y 5 ¼ �4; 2ð ÞT
are its objective value vectors, respectively. Hence, B ¼
0; 1ð Þ; 2; 0ð Þf g.
Using the other single objective integer problems, we

find that for each n 2 Zþ; W � ¼ 0; nð Þ is an efficient solu-
tion of problem (13). Hence, the number of the efficient
solution of this problem is infinite, and the proposed
approach finds at least one of them in any iteration.

Example 4 Consider the following MOILP problem with
s ¼ m ¼ 2 and n ¼ 3:

max w1 þ 2w2 � w3

max 2w1 þ w2 þ 3w3

s:t: w1 þ w2 þ w3≤3
2w1 þ w2 � w3≤2
w1; w2; w3 2 Zþ:

As can be seen, there is no d ¼ d1; d2; d3ð ÞT such that
Aid≤0; i ¼ 1; 2 and d 2 Zþ

3 ; where A1 ¼ 1; 1; 1ð Þ and
A2 ¼ 2; 1;�1ð Þ. Therefore, the feasible region is bounded,
and the problem has an efficient solution.
Step 1.1: By solving the following problems, the mem-

bers of Go are specified.

max w1 þ 2w2 � w3

s:t: w1 þ w2 þ w3≤3
2w1 þ w2 � w3≤2
w1; w2; w3 2 Zþ

and
max 2w1 þ w2 þ 3w3

s:t: w1 þ w2 þ w3≤3
2w1 þ w2 � w3≤2
w1; w2; w3 2 Zþ:

W �
1 ¼ 0; 2; 0ð ÞT and W �

2 ¼ 0; 0; 3ð ÞT are the optimal
solutions of the above single objective integer pro-
blems, respectively, and their objective value vectors

are Y 1 ¼ 4; 2ð ÞT and Y 2 ¼ �3; 9ð ÞT (Figure 1). Hence,

Go ¼ 0; 2; 0ð ÞT ; 0; 0; 3ð ÞT
n o

.

Step 1.2: The corresponding problem of Go is as follows:

max 3w1 þ 3w2 þ 2w3

s:t: w1 þ w2 þ w3≤2w1 þ w2 � w3≤2
w1 þ 2w2 � w3 � δ1 þ 100t11≥5
2w1 þ w2 þ 3w3 � δ2 þ 100t21≥3
w1 þ 2w2 � w3 � δ3 þ 100t12≥� 3
2w1 þ w2 þ 3w3 � δ4 þ 100t22≥10
t11 þ t21≤1
t12 þ t22≤1
w1; w2; w3 2 Zþ

δ1; δ2; δ3; δ4≥E
t11; t12; t21; t22 2 0; 1f g:
By solving the above problem, we have W �
3 ¼

0; 2; 1ð ÞT ; W �
4 ¼ 1; 1; 1ð ÞTand A ¼ 0; 2; 1ð ÞT ; 1; 1; 1ð ÞT

n o
.

Therefore, the corresponding objective value vectors are

Y 3 ¼ 3; 5ð ÞT and Y 4 ¼ 2; 6ð ÞT (Figure 2).

Step 1.3: G1 ¼ A∪Go ¼ 0; 2; 0ð ÞT ; 0; 0; 3ð ÞT ; 0; 2; 1ð ÞT ;
n

1; 1; 1ð ÞTg

Stage 2, Iteration 1

Step 2.1: The corresponding problem of G1 is as fol-
lows:

max 3w1 þ 3w2 þ 2w3

s:t: w1 þ w2 þ w3≤5
2w1 þ w2 � w3≤4
w1 þ 2w2 � w3 � δ1 þ 100t11≥5
2w1 þ w2 þ 3w3 � δ2 þ 100t21≥3
w1 þ 2w2 � w3 � δ3 þ 100t12≥� 3
2w1 þ w2 þ 3w3 � δ4 þ 100t22≥10
w1 þ 2w2 � w3 � δ5 þ 100t13≥4



Figure 3 The all of efficient solutions of the MOLP example.
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2w1 þ w2 þ 3w3 � δ6 þ 100t23≥6
w1 þ 2w2 � w3 � δ7 þ 100t14≥3
2w1 þ w2 þ 3w3 � δ8 þ 100t24≥7
t11 þ t21≤1t12 þ t22≤1
t13 þ t23≤1
t14 þ t24≤1
w1; w2; w3 2 Zþ

δp≥E; p ¼ 1; . . . ; 8
t11; t12; t21; t22; t13; t23; t14; t24 2 0; 1f g:

By solving the above problem, we will have

W � ¼ 0; 1; 2ð ÞT , W � ¼ 1; 0; 2ð ÞT ; Y 5 ¼ 0; 7ð ÞT , Y 6 ¼
5 6

�1; 8ð ÞT (Figure 3), and B ¼ 0; 1; 2ð Þ; 1; 0; 2ð Þf g.
Step2.2: G2 ¼ B∪G1 ¼ 0; 2; 0ð ÞT ; 0; 0; 3ð ÞT ;

n
0; 2; 1ð ÞT ;

1; 1; 1ð ÞT ; 0; 1; 2ð ÞT ; 1; 0; 2ð ÞTg.
Iteration 2
Step 1.1: The corresponding problem of G2 is infeas-

ible. Hence, the members of G2 are efficient solutions for
the MOILP example.
Conclusions
This paper considered MOILP problems with bounded
and unbounded feasible regions. Then, the proposed
method in (Jahanshahloo et al. 2004) has been modified
to find all of the efficient solutions of an MOILP prob-
lem when the number of efficient solutions is finite. In
any iteration of the modified algorithm, at least one effi-
cient solution of an MOILP problem is found. If W �

p and

W �
pþ1 are two efficient solutions of an MOILP which

have been obtained in pth and pþ 1ð Þth iterations, re-
spectively, then the distance of Yp is less than Ypþ1 from
g using the L1 norm, and the rank of W �

p is higher than

W �
pþ1 . Therefore, the efficient solutions of the MOILP

problem are ranked using the proposed algorithm.
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