
ORIGINAL RESEARCH

Accelerated decomposition techniques for large discounted
Markov decision processes

Abdelhadi Larach1 • S. Chafik1 • C. Daoui1

Received: 14 October 2016 /Accepted: 14 March 2017 / Published online: 23 March 2017

� The Author(s) 2017. This article is an open access publication

Abstract Many hierarchical techniques to solve large

Markov decision processes (MDPs) are based on the par-

tition of the state space into strongly connected compo-

nents (SCCs) that can be classified into some levels. In

each level, smaller problems named restricted MDPs are

solved, and then these partial solutions are combined to

obtain the global solution. In this paper, we first propose a

novel algorithm, which is a variant of Tarjan’s algorithm

that simultaneously finds the SCCs and their belonging

levels. Second, a new definition of the restricted MDPs is

presented to ameliorate some hierarchical solutions in

discounted MDPs using value iteration (VI) algorithm

based on a list of state-action successors. Finally, a robotic

motion-planning example and the experiment results are

presented to illustrate the benefit of the proposed decom-

position algorithms.

Keywords Markov decision process � Graph theory �
Tarjan’s algorithm � Strongly connected components �
Decomposition

Introduction

The MDP theory is increasingly used in several problems

of planning under uncertainty; it has proven tremendously

useful in a wide area of disciplines (White 1993), including

Communication Network, Games and various applications

in Robotics. Other application areas of major importance,

such as Precipitation Forecasting or Rainfall Estimations

(Valipour 2016a, b), Evapotranspiration Estimations

(Valipour et al. 2017; Rezaei and Valipour 2016), Water

Lifting Devices (Yannopoulos et al. 2015) who need

optimal decision-making are also fields of MDPs applica-

tions (Freier et al. 2011; Mishra and Singh 2011;

Alighalehbabakhani et al. 2015).

Generally, these real-world problems have very large

state spaces; it is impractical to solve them with the clas-

sical MDP algorithms, since their computational com-

plexities are at least polynomials in the size of the state

space (Littman et al. 1995).

Several studies have focused on tackling the curse of

dimensionality: heuristic search (Bonet and Geffner

2003), action elimination techniques introduced by Mac-

Queen (1967), decomposition techniques introduced by

Ross and Varadarajan (1991) for constrained limiting

average MDP and used by Abbad and Boustique (2003),

Abbad and Daoui (2003), Daoui and Abbad (2007), Daoui

et al. (2010) in several categories of MDPs (average,

discounted and weighted MDPs. The weakness point of

these decomposition methods is there polynomial run-time

complexity. Dai and Goldsmith (2007) use also a

decomposition technique named topological VI algorithm

based on a linear Kosaraju–Sharir algorithm (Sharir 1981)

but its disadvantage is to repeat, in each iteration, com-

puting some constant terms. The parallelism is a known

accelerated solution technique (Chen and Lu 2013).

Chafik and Daoui (2015) combine the decomposition

technique and parallelism, which leads also to a polyno-

mial run-time decomposition algorithm.

Decomposing an MDP consists on: (1) partitioning the

state space into SCCs and classifying these SCCs into some

levels; (2) constructing and solving independently, in each

& Abdelhadi Larach

larachabdelhadi@gmail.com

1 Faculty of Sciences and Techniques, Laboratory of

Information Processing and Decision Support, Sultan Moulay

Slimane University, B.P. 523, Benimellal, Morocco

123

J Ind Eng Int (2017) 13:417–426

DOI 10.1007/s40092-017-0197-7

http://crossmark.crossref.org/dialog/?doi=10.1007/s40092-017-0197-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s40092-017-0197-7&domain=pdf

level, smaller problems named restricted MDPs; (3) com-

bining all the partial solutions to determine the global

solution of the original MDP.

In this paper, discounted MDP with finite state and

action space is considered. First, the authors present an

accelerated version of the VI algorithm based on intro-

ducing for each state-action pair a list of successors. They

also propose another variant of Tarjan’s algorithm using an

address table of the nodes.

The main contribution of this paper is a novel algo-

rithm based on Tarjan’s algorithm that simultaneously

finds the SCCs and classifies them into some levels. This

algorithm accelerates the convergence time of the

decomposition and so the hierarchical solutions in dis-

counted reward MDP. Formerly, some accelerated hier-

archical VI (AHVI) algorithms are proposed. The later

AHVI algorithm is based on a new definition of the

restricted MDPs.

Finally, a motivating robotic motion-planning example

is presented to show the advantage of the proposed

decomposition algorithms.

Markov decision processes

A Markov decision process models an agent, which inter-

acts with its environment, taking as input the states of the

environment and generating actions as outputs. MDPs are

defined as controlled stochastic processes satisfying the

Markov property and assigning reward values to state

transitions (Bellman 1957; Puterman 1994).

Formally, an MDP is defined by the five-tuple (S, A, T,

P, R), where S is the state space in which the process’s

evolution takes place; A is the set of all possible actions

which control the state dynamics; T is the set of time steps

where decisions need to be made; P denotes the state

transition probability function where

P Stþ1 ¼ jjSt ¼ i;At ¼ að Þ ¼ Piaj is the probability of tran-

sitioning to a state j when an action a is executed in a state

i, St (At) is a random variable indicating the state (action) at

time t; -R provides the reward function defined on state

transitions where Ria denotes the reward obtained if the

action a is applied in state i.

A strategy p is defined by a sequence p = (p1, p2…)

where pt : Ht ! W is a decision rule, Ht ¼ ðS� AÞt�1 � S

is the set of all histories up to time t, and W ¼
fðq1; . . .; qAÞ 2 R Aj j :

PjAj
i¼1 qi ¼ 1; qi � 0; 1� i� jAjg is

the set of probability distributions over A ¼
S

i2S AðiÞ.
A Markov strategy is a strategy p in which pt depends

only on the current state at time t, a stationary strategy is a

Markov strategy with identical decision rules, and a

deterministic or pure strategy is a stationary strategy whose

single decision rule is nonrandomized. The core problem of

MDPs is to find an optimal policy that specifies which

action should be taken in each state.

Discounted reward MDPs

Let PpðSt ¼ j;At ¼ ajS0 ¼ iÞ be the conditional probability
that at time t the system is in state j and the action taken is

a, given that the initial state is i and the decision maker is a

strategy p.
If Rt denotes the variable reward at time t, then for any

strategy p and initial state i, the expectation of Rt is given

by:

Ep Rt; ið Þ ¼
X

j 2 S

a 2 AðjÞ

Pp St ¼ j;At ¼ ajS0 ¼ ið ÞRja ð1Þ

In the discounted reward MDP, the value function,

which is the expected reward when the process starts with

state i and using the policy p is defined by:

Va
p ið Þ ¼ E

X1

t¼1

atEp Rt; ið Þ
" #

; i 2 S ð2Þ

where a 2 ½0; 1� is the discount factor.

The objective is to determine V�, the maximum expec-

ted total discounted reward vector over an infinite horizon.

It is well known (Bellman 1957; Puterman 1994) that

the vector V� satisfies the optimality equation:

V ið Þ ¼ max
a2AðiÞ

Ria þ a
X

j2S
PiajVðjÞ

()

; i 2 S ð3Þ

The actions attaining the maximum in Eq. 3 give rise to

an optimal pure policy p given by:

p� ið Þ 2 argmax
a2AðiÞ

Ria þ a
X

j2S
PiajV

� jð Þ
()

; i 2 S ð4Þ

Accelerated value iteration algorithm

Value iteration algorithm is one of the most widely stan-

dard iterative methods used for finding optimal or

approximately optimal policies in discounted MDPs. In this

paragraph, the authors present an accelerated version of the

VI algorithm (Algorithm 1) based on introducing for each

action a the list of state-action successors denoted by Cþ
a ,

where Cþ
a ið Þ ¼ fj 2 S : Piaj [0g.

418 J Ind Eng Int (2017) 13:417–426

123

The Algorithm 1 permits to accelerate the iterations

compared to the classical VI algorithm especially when the

number of actions and successors is very less than the

number of states. Indeed, the time complexity is reduced

from O Aj j Sj j2
� �

to O Cþ
a

�
�

�
� Sj j

� �
per iteration where Cþ

a

�
�

�
�

denotes the average number of state-action successors.

Decomposition technique

Let G = (S, U) be the associated graph to the original

MDP, where the state space S represents the set of nodes

and U = f i; jð Þ 2 S2 : 9a 2 A ið Þ;Piaj [0g is the set of

directed arcs. There exist a unique partition T = {C1, C2,

…, Cp}of the state space S into SCCs (communicating

classes in MDP theory), that can be classified into some

levels (see Fig. 1). The level L0 is formed by all closed

classes Ci, that is for all i 2 Ci; a 2 A ið Þ : Piaj ¼ 0 for all

j 62 Ci. The level Lp is formed by all classes Ci such that the

end of any arc emanating from Ci is in some levels Lp-1,

Lp-2,…, L0.

Restricted MDPs

In the discounted MDPs, Abbad and Daoui (2003) define

and construct by induction the restricted MDPpk corre-

sponding to each SCC Cpk in level Lp, as follows.

– State space Spk ¼ Cpk [�Cpk

�Cpk ¼ fj 2 S; j 62 Cpk : 9i 2 Cpk;Piaj [0g

– Action space
Apk ið Þ ¼ A ið Þ if i 2 Cpk

Apk ið Þ ¼ h if i 2 �Cpk

h is some fictitious action that keeps the process in the

same state where it is.

– Transition
Ppk jji; að Þ ¼ Piaj if i 2 Cpk

Ppk jji; hð Þ ¼ 1 if i 2 �Cpk

– Reward function
Rpk i; að Þ ¼ Ria if i 2 Cpk

Rpk i; að Þ ¼ 1� að ÞV� ið Þ if i 2 �Cpk

where V� ið Þ is the optimal value calculated in some

previous level.

Abbad and Daoui (2003) propose and show the cor-

rectness of the following decomposition algorithm (Algo-

rithm 2) that finds an optimal strategy.

In the rest of this paper, the authors consider the

decomposition algorithm and propose some optimizations

to speed up these steps.

A variant of Tarjan’s algorithm

Tarjan’s algorithm (Tarjan 1972) is one of the most known

approaches used for finding SCCs; it performs a depth-first

search (DFS) of the graph; it uses stack to push each visited

node S0, which is associated to the visited number S0.idx

assigned in the order in which nodes appear in the DFS. The

‘Low-Return’ number S0.low is the smallest index of a node

Si in the stack reachable from the descendants of S0, the SCC

root is detected when (S0.low = S0.idx); the algorithm pop

the stack one by one until the state popped is S0. Tarjan’s

algorithm requires O(n ? m) space and time where n is the

number of nodes and m is the number of edges.

Dijkstra (1982) proposes a variant of Tarjan’s algorithm

that maintains a stack of possible root S0 candidates instead

of keeping track of low-return values; a SCC can be found

by a second DFS starting at S0. Couvreur (1999) designs a

variant of Dijkstra’s algorithm for the purpose of finding
Fig. 1 Example of SCCs and there belonging levels

J Ind Eng Int (2017) 13:417–426 419

123

accepting cycles that can be translated to SCC-based

algorithm. Lowe (2014) proposes an iterative version for a

multithreading, named concurrent algorithm.

The authors propose another variant (Algorithm 3) using

an address table of the nodes (Addrs()) stocked in some

Doubly Linked List: DLLV (see definition in Fig. 2). This

list is initialized by an arbitrary element and constructed

simultaneously with the associated graph G which is rep-

resented by Cþ: the set of successors. Each node S0 in

DLLV is directly accessible using the address value

Addrs(S0).

In the initialisation step, the index value of each node

(line 3 in Algorithm 3) is set to 0 to indicate that it is not

visited; the index value is set to 2 when a node is first

generated (line 5 in Algorithm 3); when a SCC is detected

the index value of each node (line 22 in Algorithm 3) is set

to 1 to indicate that it is in an SCC.

The search starts from the last node of the DLLV list

(line 6 in Algorithm 3). Each visited node is moved to the

end of the list (line 14 in Algorithm 3, Procedure 1).

When a new SCC is detected with a root node S0, the

sub-list identified by the address value Addrs(S0), is moved

to the SCCs list (line 20 in Algorithm 3, Procedure 2) that

is a simply linked list in which each element is also a

simply linked list (Fig. 3).

Remark 1 In Tarjan’s algorithm, the step in line 4

requires O(n) time, but in this variant version it only

requires O(k) time where k is generally a low constant

compared to n, and depends on the structure of the graph.

Eventually, the temporary complexity of Algorithm 3

struct Node{ // Element of DLLV list
int num; // Node identifier
Node *Next; // Next element

 Node *Previous; // Previous element
 };
struct List{

Node *Start; // Beginning of the list
Node *End; // End of the list

};
Node **Addrs; //Address table of the nodes
List *DLLV; // Doubly Linked List

Fig. 2 C?? code for the definition of the address table and the

DLLV list

Fig. 3 Illustrative representations of the DLLV list (left) and SCCs

list (right) in the example of Fig. 1

420 J Ind Eng Int (2017) 13:417–426

123

remains similar to Tarjan’s algorithm (O(n ? m)), but the

execution time is reduced.

Note that the first arbitrary element in DLLV list is

useful to avoid testing if the node to be moved is in the

beginning of the list or not.

Modified Tarjan’s algorithm for finding SCCs

and levels

After the partition of the state space into SCCs, Abbad and

Boustique (2003) use the following algorithm to classify

these classes into some levels.

This algorithm requires 0(n2) time, to reduce the com-

plexity of the decomposition algorithm (Algorithm 2) the

authors propose a new algorithm that finds simultaneously

the SCCs and theirs belonging levels. It is based on the

following proprieties:

Let C be a SCC: L Cð Þ design the level of C. For all

x 2 C, L xð Þ design the level of x, and L xð Þ ¼ L Cð Þ.

Propriety 3.1 Let x and y be two nodes or states. If y 2
Cþ xð Þ then L xð Þ� L yð Þ.

Proof Let Cx (Cy) be the SCC containing x (y). Suppose

that L xð Þ\L yð Þ then L Cxð Þ\L Cy

� �
, from the definition of

the levels, there is no successors of node x in Cy, this

contradicts that y 2 Cþ xð Þ.

Propriety 3.2 Let C be the SCC containing a node x and

let y be a node such as y 62 C, if y 2 Cþ xð Þ; then

L xð Þ[L yð Þ, y is called external successors.

Proof The Propriety 3.1 imply that L xð Þ� L yð Þ; y 2 C

imply that L yð Þ ¼ L Cð Þ and x 62 C imply that L xð Þ 6¼ L Cð Þ
and L Cð Þ ¼ L yð Þ then L xð Þ[L yð Þ.

Propriety 3.3 Let Ci, i = 1,…, p be the successor’s

classes of C, L Cð Þ ¼ maxi L Cið Þð Þ þ 1; if (p = 0) then

L Cð Þ ¼ 0.

Proof It is clear from the Propriety 3.2 and the definition

of levels.

Theorem 1 The Algorithm 5 works correctly and runs in

O(n ? m) time.

Proof The proof follows from the Proprieties 3.1, 3.2 and

3.3. Indeed, the instructions of lines 19 and 23 transmit the

SCC level to its root. In fact, after each recursive call, the

function DFS_Levels(s) returns the possibly minimum

level value to its predecessor. In this case, the level value is

updated using the Propriety 3.1 (line 19). If any successor

is external, the level value is updated using the Propriety

3.2 (line 23). When a SCC is detected, its level is deter-

mined by the level value transmitted to its root (Propriety

3.3). In this case (line 28 in Algorithm 5), the function

should return the level value incremented by one (Propriety

3.2).

The Algorithm 5 has the similar structure as Tarjan’s

algorithm so it runs in O(n ? m) time.

Remark 2 These properties can be easily applied to other

varieties of Tarjan’s algorithm to simultaneously find the

SCCs and their belonging levels, such as Dijkstra’s

J Ind Eng Int (2017) 13:417–426 421

123

algorithm (Dijkstra 1982), Couvreur’s algorithm (Couvreur

1999), and Sequential or Concurrent Tarjan’s algorithm

proposed by Lowe (2014).

Using Algorithm 5, the authors present the following

first version of accelerated hierarchical VI (AHVI) algo-

rithm (Algorithm 6).

Remark 3

(i) The restricted MDPs in the same level Lp are

independent, so they can be solved in parallel.

(ii) The DFS used in Tarjan’s algorithm ensures the

dependency order of the restricted MDPs. In non-

parallel computing, the MDP can be solved without

passing through levels (Algorithm 7).

Remark 4 The DFS avoids to finds the non-accessible

SCCs from the start state S0. For example, in Fig. 4, the

initial state S0 is in class C20, Only the restricted MDPs

corresponding to the SCCs: C00, C10, C11 and C20 are

solved.

New restricted MDPs

In each restricted MDPpk defined by Abbad and Daoui

(2003), the Eq. 3 can be decomposed as follows:

Vpk ið Þ ¼ max
a2AðiÞ

Ria þ a
X

j2 �Cþ
a ðiÞ

PiajV
� jð Þ þ a

X

j2Ĉþ
a ðiÞ

PiajVpk jð Þ

8
<

:

9
=

;
;

i 2 Spk

ð5Þ

where �Cþ
a is the set of external successors of Cpk relatively

to action a, Ĉþ
a is the set of internal successors and V� jð Þ is

the optimal value of the state j calculated in some previous

level.

The term a
P

j2 �Cþ
a ið Þ PiajV

� jð Þ is a constant value in the

level Lp, it is not optimal to recalculate this term at each

iteration and it can be called the resulting reward for the

state-action (i, a) in the previous levels. So, the authors

propose a new definition of the restricted MDPpk as follows:

– State space Spk ¼ Cpk

– Action space Apk ið Þ ¼ A ið Þ; i 2 Cpk

– Transition Ppk jji; að Þ ¼ Piaj; i 2 Cpk

– Reward function

Rpk i; að Þ ¼ Ria þ a
X

j2 �Cþ
a ið Þ

PiajV
� jð Þ; i 2 Cpk ð6Þ

Theorem 2 Let V�
pk ið Þ; i 2 Cpk, the optimal value in the

restricted MDPpk, then V�
pk ið Þ is equal to the optimal value

V� ið Þ in the original MDP.

Proof The proof is by induction. For p = 0 and for each

C0k, the optimal value V�
0k is the unique solution of:

V0k ið Þ ¼ max
a2AðiÞ

R0kði; aÞ þ a
X

j2S0k
PiajV0k jð Þ

()

; i 2 S0k ð7Þ

The fact that R0k i; að Þ ¼ Ria, A0k ið Þ ¼ A ið Þ, Ppk jji; að Þ ¼
Piaj and C0k is closed imply that the optimal value V�

0k is the

unique solution of:

V ið Þ ¼ max
a2AðiÞ

Ria þ a
X

j2S
PiajV jð Þ

()

; i 2 C0k ð8Þ

Then V�
0k ið Þ ¼ V� ið Þ for all i 2 C0k.

Let p[0 and suppose that the result is true for all levels

preceding p. Now, we show that the result is still true for

level p.

Let V�
pk ið Þ; i 2 Spk be the optimal value in the

restricted MDPpk, V
�
pk ið Þ is the unique solution of:

Fig. 4 Example of an aggregated acyclic graph, some SCCs are not

reachable from start state S0

422 J Ind Eng Int (2017) 13:417–426

123

Vpk ið Þ ¼ max
a2AðiÞ

Rpkði; aÞ þ a
X

j2Spk
PiajVpk jð Þ

8
<

:

9
=

;
ð9Þ

The Eq. 6 and the fact that Cpk U {L0,…,Lp-1} is closed

imply that V�
pk ið Þ is equal to the optimal value V� ið Þ in the

original MDP.

Remark 5 The new state space definition does not con-

sider the external successors of each SCC compared to the

old definition of restricted MDPs. This reduces the state

space and so the time required.

The following procedure constructs the new restricted

MDPs.

For each external successor j of state-action (i, a) the

resulted reward is added (line 5 in Procedure 3) and the

external successor is eliminated (line 6 in Procedure 3).

Using this procedure, the following third version of

AHVI algorithm for discounted MDPs is presented:

Remark 6 It is more interesting to construct the new

restricted MDP during the first iteration of VI algorithm;

indeed, the step 4 in Algorithm 8 can be executed in the

first iteration of step 5. Also, an external successor can be

detected with a different class identifier or a different level

value.

Experimental results

The proposed algorithms are tested using Intel(R) Cor-

e(TM)2 Duo process (2.6 GHz), C?? implementation,

Windows 7 operating system (32 bits) and random models

(e ¼ 10�5; a ¼ 0:9; jCþ
a j ¼ 20).

Figure 5 shows the running time for several variants of

Tarjan’s algorithm.

In the sequential Lowe’s variant algorithm, each node is

pushed in two stacks and popped from two stacks, thus the

time needed is longer than Tarjan’s algorithm.

In Dijkstra’s variant for SCC, instead of keeping track of

low-return values that need O(m1) time, where m1 is the

number of explored edges, it maintains a stack of possible

root candidates and uses a second DFS for SCC members

which need O(m) time and generally m1\m, where m is

the number of edges, so the time is longer than Tarjan’s

algorithm. But the memory consumption is reduced, since

the low-return values are not used.

In the proposed variant, searching all SCCs (not only

those reachable from one start state) need O(k) additional

time instead of O(n) additional time in Tarjan’s algorithm

and generally k\ n. Figure 5 shows the reduction time

using the proposed variant, and it is efficient since it

directly construct the SCCs list for the hierarchical solution

of the original MDP, eventually, it requires more memory

since it uses doubly linked list.

Figure 6 shows the linearity and the rapidity of the new

decomposition algorithm into SCCS and levels compared

to the classical algorithm used by Abbad and Boustique

(2003). As it can be seen, the decomposition steps in

Algorithm 2 becomes so fast using this novel algorithm.

To show the time gained by the new definition of the

restricted MDPs, we compare the third version with the

second version of AHVI algorithm using a random number

of external successors. As it can be seen from Fig. 7,

AHVI_V3 reduces the running time.

Note that the number of classes and the size of each class

affect the performance of the hierarchical algorithms. In

addition, the timegainedby the newdefinition of the restricted

MDPs depends on the number of the external successors.

Fig. 5 Running time of several variants of Tarjan’s algorithm

J Ind Eng Int (2017) 13:417–426 423

123

Problem example

In this section, the authors present an example of applying

MDP decomposition in Robotics navigation where the

environment structure can be decomposed into some

regions. Each region corresponds to a SCC.

Model for Robotics navigation

Applying MDP theory in robotic navigation need a choice

of the environment representation and a definition of the

five-tuple (S, A, T, P, R).

Grid of the environment The grid method is used to

model the environment, which is entirely discretized

according to a regular grid.

States space Using the grid method, the state space is

therefore a set of grids; each grid cell has an associated

value stating, obstacle, free or goal state. The obstacle

state can be eliminated from the state space.

Actions space The robot can be controlled through nine

actions: the eight compass directions and the fictitious

action h that keep the robot on the spot. The actions that

move the robot to an obstacle are eliminated. In a goal

state the possible action is h.
Note that the average number of state-action successors

is very less than the number of states, so the proposed

AVI algorithm (Algorithm 1) is efficient in this case.

Reward function The transition to a free state is

characterized by a cost of energy equal to x when the

action is diagonal, and xffiffi
2

p when the action is horizontal

or vertical. For any transition to goal state, the reward

value is equal to the constant Rb that is very higher than

x.

Transition function The transition function defines the

uncertainty due to the effects of the actions; it is a

problem data and can be determined by reinforcement

learning. In this problem, the authors use the example of

transition function indicated in Fig. 8.

The transition function is similar for the other actions.

Robot oriented to the nearest goal

Consider a robot that moves in a corridor, whenever it

needs energy, it can load its battery in the nearest position

in one of the desks. The battery load positions are the goal

states. Figure 9 shows an example of an environment with

four desks.

In each desk exists a goal state (G), the black grid is an

obstacle and the blue grids represent the border of the

environment.

The state space is communicant, but some states (en-

trances of the desks, cells with an arrow) can only perform

a single deterministic action (direction of the small arrow

in Fig. 9). Once the system reaches one of these states, it

cannot go back. Hence, using a modified version of Tar-

jan’s algorithm, the state space is decomposed into five

Fig. 6 Running time of the modified Tarajan’s levels algorithm

(MTLA) compared to the classical levels algorithm (CLA)

Fig. 7 Comparison between AHVI_v2 and AHVI_v3 algorithms

Fig. 8 Example of transition function for the action indicated by

arrow (the probability of transition to the desired state is equal to 0.8)

424 J Ind Eng Int (2017) 13:417–426

123

regions. Each region corresponds to one restricted MDPs

(Fig. 10).

The fourth restricted MDPs: MDPpk, k = 0,…,3 in level

p = 0 can be solved in parallel, thereafter the fifth

restricted MDP: MDPp0 in level p = 1 is solved.

Figure 11 shows the optimal strategy generated by

Algorithm 1 without using the decomposition. The arrow

indicates the optimal action.

Using decomposition, the smaller restricted MDPs:

MDP0k, k = 0,…,3 are solved independently; the optimal

strategy generated for each restricted MDP0k in level 0 is

shown in Fig. 12.

After solving the fourth restricted MDPs in level 0, the

fifth new restricted MDP10 in level 1 is constructed and

solved; Fig. 13 shows the obtained solution.

The abstract goal state represents an external successor.

It is eliminated during the construction of the new

restricted MDP10. In old definition of the restricted MDPs,

it is considered as a goal state.

Fig. 9 Example of an environment with four desks

Fig. 10 SCC number (blue) and level value (black) for the state

space in the example of Fig. 9

Fig. 11 An optimal strategy calculated without using the decompo-

sition technique

Fig. 12 An optimal strategy calculated for each restricted MDP0k in

level 0

Fig. 13 An optimal strategy for the new restricted MDP10 in level 1,

corresponding to the corridor

J Ind Eng Int (2017) 13:417–426 425

123

It can be seen from Figs. 12 and 13 that the optimal

solution is similar to that obtained in Fig. 11 without using

the decomposition technique. Thus, the original problem is

decomposed into five smaller problems, which reduces the

time complexity.

Conclusions

In this work, the authors have proposed a new algorithm

that simultaneously finds the SCCs and classifies them into

some levels used to accelerate the decomposition steps.

The possible uses of this algorithm are certainly not limited

to distributed or parallel solution for discounted MDPs.

The authors have also proposed an accelerated version of

HVI algorithm using a list of state–action successors and a

new definition of the restricted MDPs; this allows us to

reduce the time required. In future works, we try to com-

bine the action elimination techniques with the proposed

decomposition algorithms for more acceleration. The dis-

tributed solution and various areas of applications are also

our perspectives.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://crea

tivecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

References

Abbad M, Boustique H (2003) A decomposition algorithm for

limiting average Markov decision process. Oper Res Lett

31(6):473–476

Abbad M, Daoui C (2003) Hierarchical algorithms for discounted and

weighted Markov Decision Processes. Math Methods Oper Res

58(2):237–245

Alighalehbabakhani F et al (2015) Comparative evaluation of three

distinct energy optimization tools applied to real water network

(Monroe). Sustain Comput Inform Syst 8:29–35

Bellman RE (1957) Dynamic programming. Princeton University

Press, Princeton, NJ

Bonet B, Geffner H (2003) Faster heuristic search algorithms for

planning with uncertainty and full feedback. In: IJCAI,

pp 1233–1238

Chafik S, Daoui C (2015) A modified value iteration algorithm for

discounted Markov decision process. J Electron Commerce

Organ 13(3):47–57

Chen P, Lu L (2013) Markov decision process parallel value iteration

algorithm on GPU. In: International conference on information

science and computer applications, ISCA, 2013, Atlantis Press

Couvreur J-M (1999) On-the-fly verification of linear temporal logic.

In: Wing JM, Woodcock J, Davies J (eds) FM’99—formal

methods. FM 1999, in computer science, vol 1708. Springer,

Berlin

Dai P, Goldsmith J (2007) Topological value iteration algorithm for

Markov decision process. In: IJCAI, pp 1860–1865

Daoui C, Abbad M (2007) One some algorithms for limiting average

Markov decision processes. Oper Res Lett 35(2):261–266

Daoui C, Abbad M, Tkiouat M (2010) Exact decomposition

approaches for Markov decision processes: a survey. Adv Oper

Res 2010:1–19

Dijkstra E (1982) Finding the maximum strong components in a

directed graph. Selected writings on computing: a personal

perspective, texts and monographs in computer science.

Springer, New York, pp 22–30

Freier KP, Schneider UA, Finckh M (2011) Dynamic interactions

between vegetation and land use in semi-arid Morocco: using a

Markov process for modelling rangelands under climate change.

Agric Ecosyst Environ 140(3):462–472

Littman ML, Dean TL, Kaelbling LP (1995) On the complexity of

solving Markov decision problems. In: Proceedings of the

eleventh conference on uncertainty in artificial intelligence.

Morgan Kaufmann Publishers Inc., pp 394–402

Lowe G (2014) Concurrent depth-first search algorithms. tools and

algorithms for the construction and analysis of systems. In:

Lecture notes in computer science, vol. 8413, p 202

MacQueen JA (1967) Test for suboptimal actions in Markov decision

problems. Oper Res 15(3):559–561

Mishra AK, Singh VP (2011) Drought modelling. A review. J Hydrol

403(1):157–175

Puterman M (1994) Markov decision processes: discrete stochastic

dynamic programming. Wiley, New York

Rezaei M, Valipour M (2016) Modeling evapotranspiration to

increase the accuracy of the estimations based on the climatic

parameters. Water Conserv Sci Eng 1(3):197–207

Ross KW, Varadarajan R (1991) Multi-chain Markov decision

processes with a sample path constraint: a decomposition

approach. Math Oper Res 16:195–207

Sharir M (1981) A strong-connectivity algorithm and its applications

in data flow analysis. Comput Math Appl 7(1):67–72

Tarjan R (1972) Depth-first search and linear graph algorithms. SIAM

J Comput 1(2):146–160

Valipour M (2016a) Optimization of neural networks for precipitation

analysis in a humid region to detect drought and wet year alarms.

Meterol Appl J 23:91–100

Valipour M (2016b) How much meteorological information is

necessary to achieve reliable accuracy for rainfall estimations?

Agriculture 6(4):53

Valipour M, Gholami Sefidkouhi MA, Raeini-Sarjaz M (2017)

Selecting the best model to estimate potential evapotranspiration

with respect to climate change and magnitudes of extreme

events. Agric Water Manag 180:50–60

White DJ (1993) A survey of applications of Markov decision

process. J Oper Res Soc 44(11):1069–1073

Yannopoulos SI, Lyberatos G, Theodossiou N, Li W, Valipour M,

Tamburrino A, Angelakis AN (2015) Evolution of water lifting

devices (pumps) over the centuries worldwide. Water

7(9):5031–5060

426 J Ind Eng Int (2017) 13:417–426

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Accelerated decomposition techniques for large discounted Markov decision processes
	Abstract
	Introduction
	Markov decision processes
	Discounted reward MDPs
	Accelerated value iteration algorithm

	Decomposition technique
	Restricted MDPs
	A variant of Tarjan’s algorithm
	Modified Tarjan’s algorithm for finding SCCs and levels
	New restricted MDPs

	Experimental results
	Problem example
	Model for Robotics navigation
	Robot oriented to the nearest goal

	Conclusions
	Open Access
	References

