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Abstract

An employee transporting problem is described and a set partitioning model is developed. An investigation of the
model leads to a knapsack problem as a surrogate problem. Finding a partition corresponding to the knapsack
problem provides a solution to the problem. An exact algorithm is proposed to obtain a partition (subset-vehicle
combination) corresponding to the knapsack solution. It requires testing and matching too many alternatives to
obtain a partition. The sweep algorithm is implemented in obtaining a partition (subset-vehicle combination) in an
efficient manner. Illustrations are provided to show how the algorithms obtain solutions.
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Background
A number of employees will be picked up from various
places (bus-stops) within a city and brought to the plant.
At the end of the work day, they will be returned back to
where they were picked up. A similar situation holds for
school students. The students are picked up from their
homes and returned back to their homes after school.
Transporting the passengers needs to be accomplished
within a given time period. It is obvious that work at a
plant starts at a specified time (8:30 in the morning for
instance), and the first class starting time at some schools
is 8:40 in the morning. The workers or the students must
reach the plant or the school on time.We call this problem
an employee transporting problem.
A set of different types of vehicles is used during the

transportation of those passengers. Vehicles may differ
in capacity, operating cost, and speed. Cruising within a
city has speed limits, and transporting passengers within
a city requires strict obedience to these speed limits. Sub-
sequently, all the vehicles are assumed to have the same
speed while traveling in the city streets.
Even though the vehicles may have different operat-

ing costs, they are chartered according to their capacities
and paid accordingly. Every vehicle will be assigned to a
subset of bus stops according to its capacity and the dis-
tance (time) required for traveling to this subset. Clearly,
the number of passengers picked up or delivered cannot
exceed the capacity of the vehicle. Further, the distance
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(time) required to travel through this subset of destina-
tions (bus stops) via a routemust remain less than a prede-
termined distance (time) amount. Any route is acceptable
as long as the traveling distance (time) does not exceed
the predetermined time, and thus, it is not necessarily the
traveling salesman (TSP) route.
The vehicle routing problem (VRP) or vehicle

scheduling problems concern with the distribution of
goods between the center (depot) and the customers
(destinations-final users). The objective is to determine
an optimal set of routes by a fleet of identical vehicles
to serve these customers. The total demand of the cus-
tomers on a route cannot exceed the vehicle capacity.
This type of problem is called capacitated vehicle routing
problem (CVRP). The fleet of the vehicles may differ in
size, capacity, and the operating costs. This gives rise to
heterogeneous vehicle routing problem (HVRP) or fleet
mix problem in the literature. All these problems are the
extensions and/or generalizations of the vehicle routing
problems. Toth and Vigo (2002) provide an extensive
discussion on VRP and solution methods with some
applications. There are also numerous excellent articles
on those problems and solution methods in the literature.
A general approach to modeling this class of problems is
based on the integer formulation of Miller et al. (1960).
Various researchers have modified and/or extended their
formulation to handle different situations.
The latest developments and the challenges in terms

of modeling and the solution techniques for VRP and its
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variants are presented in Bruce et al. (2008). Yaman (2006)
presents different formulations for HVRP and one for-
mulation with flow variables and also develops strong
bounds. Baldacci et al. (2011a) developed an exact method
for solving VRP after modeling it based on a partitioning
problem. Again in another attempt, Baldacci et al. (2011b)
describe an effective exact method for solving CVRP
based on the set partitioning formulation.
One possible approach for dealing with the existence

of binary and integer variables in those models is to
rely on the heuristic solution methods for CVRP and
HVRP. Desrochers andVerhoog (1991) propose a new sav-
ings heuristic based on successive route fusion. Gheysens
et al. (1986) developed another heuristic based on a
lower-bound procedure. Numerous others have devel-
oped various heuristic methods to solve the problem of
determining fleet size and the mix vehicle routing prob-
lems in the literature. There have also been attempts to
apply metaheuristic methods too. Önder (2007) attempts
using metaheuristics to solve HRVP without an investi-
gation of the structure of the model but fails unfortu-
nately. Evidently, the application of heuristics and even the
metaheuristics requires a thorough investigation of the
structure of the problem and the model.
The sweep algorithm described in Toth and Vigo (2002)

is a heuristic for a possible solution method for VRP and
some other problems. Nurchanyo et al. (2002) investigates
the capability of the sweep algorithm in solving the VRP
for public transport. After trying various approaches, they
conclude that it is capable of solving VRP for public trans-
port under certain conditions. Renaud and Boctor (2002)
apply the sweep algorithm for the fleet size and the mix
vehicle routing problem. Two kinds of decisions are con-
sidered: selecting a mix of vehicles and the routing of the
selected fleet. Their algorithm generates a large number
of routes to be serviced by one or two vehicles. Then the
selection of the vehicles is accomplished by solving a set
partitioning problem with a special structure.
The employee transporting problem is a variant of mix

vehicle problem without routing. This article takes a dif-
ferent view from the literature and presents a set par-
titioning model for the employee transporting problem.
The thrust of this article lies in the thorough investigation
of the structure of the model. Subsequently, a surrogate
problem is developed from this model which turns out
to be a knapsack problem. The assignments of the vehi-
cles are accomplished by matching subsets. For large-size
problems, the sweep algorithm is proposed to obtain the
assignments of the vehicles and consequently a parti-
tion in an efficient manner. The next section presents
a set partitioning model, then the section ‘A surrogate
constraint’ develops the surrogate problem. The solution
methods are described in the section ‘A solution method,’
and some illustrations are presented in the section

‘An illustration’. Finally, conclusions and findings of this
article are summarized in the ‘Conclusions’ section.

A set partitioningmodel for employee
transporting problem
Let A be the set of n destinations (bus stops) in an area,
for instance, vicinity of a city. Each destination has a
demand: the number of employees to be picked up and/or
delivered. Let s(a) denote the number of employees at des-
tination a ∈ A. Naturally, s(a) ≥ 1 and an integer. Let V
be the set of the vehicles available with different capaci-
ties. Then Av ⊂ A represents a number of destinations
to be serviced by the vehicle v of capacity Qv. If m vehi-
cles are required for servicing those n destinations, then
each vehicle v will serve a subset Av, and none of the sub-
sets have any intersection. More specifically, a partition of
the set A is obtained in the assignment of m vehicles. Let
� be the class of all partitions of the set A. A partition
P = (A1,A2. . . . ,Am) is a collection of subsets of A where
1 ≤ m ≤ n, Ai ∩ Aj = ∅, for i �= j, and ∪m

j=1Aj = A.
The cost per trip of assigning a vehicle v ∈ V with capac-

ity Qv to a subset Aj ∈ P ⊂ � is cv. This cost depends on
the capacity of the vehicle only, and it is independent of
the subset assigned. However, the total cost of the assign-
ment depends on the partition P ∈ �. Consequently, the
decision of assigning a vehicle to a subset is not inde-
pendent of the partition P ∈ �. Therefore, the decision
variable of assigning a vehicle to a subset is defined as
follows:

yvj =
{
1 if the vehicle v∈V is assigned to the subset Aj∈P
0 otherwise

(1)

Thus, the employee transporting model is given by the
following:

min
P∈�

∑
j∈JP

∑
v∈V

cvyvj (2)

subject to

yvj
∑
a∈Aj

s(a) ≤ Qv for all v ∈ V ,Aj ∈ P,P ∈ � (3)

yvjδ(Aj) ≤ Tmax for all v ∈ V ,Aj ∈ P,P ∈ � (4)
yvj ∈ {0, 1} (5)

where JP is the index set of the subsets in the partition P ∈
�, δ(Aj) is the traveling distance (time) to the destinations
in a subset Aj via some route for j ∈ JP , and Tmax is the
maximum allowed total traveling distance (time) for any
subset in any partition. The sum s(Aj) = ∑

a∈Aj s(a) rep-
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resents the total number of passengers to be transported
in a subsetAj, and it reduces constraint 3 to yvjS(Aj) ≤ Qv.
This is a linear constraint. It simply expresses the fact that
the total number of passengers to be transported from any
subset cannot exceed the capacity of the vehicle.
The set of constraint 4 states that the traveling distance

(time) to a subset Aj ∈ P for any partition P ∈ � cannot
exceed the maximum allowed distance (time). It is tacitly
assumed that the vehicles start from the center and return
back to the center after visiting every destination in their
routes. Traveling distance (time) to a subset is indepen-
dent of the vehicle; therefore, δ(Aj) ≤ Tmax for all Aj ∈ P,
P ∈ �. This is not a linear constraint. The total distance
(time) needs to be calculated for each subset Aj. Any route
to the subset Aj is acceptable as long as the distance (time)
does not exceed Tmax. This means that it is not necessary
to solve the TSP to determine the least-distance (time)
route for each subset.
The set of constraint 4 can also be treated as a set of

soft constraints. The distance (time) traveled to any sub-
set can be increased by a small amount (ε > 0) to make
the right-hand side of the constraint Tmax + ε at an added
cost of opportunity loss of being late to work (school).
Consequently, the objective function will be increased by
η(δ(Aj)) if the vehicle v traverses the subsetAj in Tmax+ε.
In this expression, η(.) > 0 is the cost of opportunity
loss of being late by an amount of ε for the subset Aj. For
a given value of ε, this problem is solved by setting the
right-hand side of the set of constraint 4 to Tmax + ε.
The objective function is then the total cost of all assign-

ments of vehicles to all subsets of any partition. The
problem is then to find a partition P ∈ � and a cor-
responding set of assignments of the vehicles to those
subsets of this partition such that the total cost of such
partition-vehicle assignments is minimum. This expres-
sion clearly defines the employee transporting problem as
a heterogenous fleet mix problem without routing.

A surrogate constraint
Multiplying the set of constraint 3 by yvj then summing
the capacity constraints over v ∈ V and j ∈ JP yields∑

j∈JP
∑

v∈V y2vjs(Aj) ≤ ∑
j∈JP

∑
v∈V yvjQv. The variables

yvj are binary variables, and thus, y2vj = yvj. On the other
hand, every subset Aj ∈ P must be assigned to a vehicle
v ∈ V , but not every vehicle v ∈ V may be assigned to
a subset. Consequently,

∑
v∈V yvj = 1 for all j ∈ JP , and∑

j∈JP yvj ≤ 1 for all v ∈ V . In fact, a new variable can be
defined now representing whether a vehicle is assigned or
not as follows:

yv =
∑
j∈JP

yvj =
{
1 if the vehicle v ∈ V is assigned
0 otherwise

(6)

Then a sequence of algebraic manipulations yields
the right-hand side of the inequality 3 to be the total
number of passengers to be transported from all the
destinations.

∑
j∈JP

∑
v∈V

y2vjs(Aj) =
∑
j∈JP

∑
v∈V

yvjs(Aj) (7)

=
∑
j∈JP

s(Aj)
∑
v∈V

yvj (8)

=
∑
j∈JP

s(Aj) = s(A) (9)

On the other side of the inequality,
∑

v∈V Qv
∑

j∈JP yvj =∑
v∈V Qvyv. Then constraint 3 becomes

∑
v∈V Qvyv ≥

S(A). A simplemodification in the objective function gives∑
v∈V

∑
j∈JP cvyvj = ∑

v∈V cv
∑

j∈JP yvj = ∑
v∈V cvyv.

Consequently, a knapsack problem is obtained for a parti-
tion P ∈ � as follows:

min
∑
v∈V

cvyv (10)

subject to

∑
v∈V

Qvyv ≥ s(A) (11)

where yv ∈ {0, 1} for all v ∈ V and the additional set of
constraints δ(Aj) ≤ Tmax for all j ∈ JP, P ∈ �.
For any partition P ∈ �, this surrogate problem needs to

be solved. The Stirling number of the second kind (S(k)
n )

gives the number of partitions with exactly k nonempty
subsets of n elements. For instance, the number of par-
titions of 15 elements with exactly six nonempty subsets
is S(6)

15 = 420,693,273. Consequently, the total number of
all partitions of a set of n elements is given by

∑n
k=1 S

(k)
n .

In fact, the total number of all partitions of a set of 15
elements is

∑n
k=1 S

(k)
15 = 1,382,858,545.

Let P∗ ∈ � be an optimal partition with a corre-
sponding vehicle assignment (V ∗ = {

1, 2, . . . , vp
}
). Hence,∑

v∈V ∗ cvyv is the minimum cost and the total transport-
ing capacity is given by

∑
v∈V ∗ Qvyv = b ≥ s(A). The

right-hand side of the constraint can be greater than or
equal to the total number of passengers (s(A)) to be car-
ried due to the discreteness of the number of passengers
at different locations and the traveling time constraint.
For each subset Aj ∈ P∗, the distance (time) constraint
δ(Aj) ≤ Tmax holds.
The following knapsack problem is independent of any

partition. If a partition (vehicle-subset assignment satisfy-
ing the capacity and the distance (time) constraints) can
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be obtained for this solution, a solution to the original
problem is obtained.

min
∑
v∈V

cvyv (12)

subject to ∑
v∈V

Qvyv ≥ r (13)

yv ∈ {0, 1} for all v ∈ V (14)

Theorem 1. Let Y ∗(r = b) be an optimal solution to
the knapsack problem above. If there exists a partition
(satisfying the capacity and the distance constraints) cor-
responding to Y ∗(b), then this solution is optimal to the
problems (2), (3), and (4).

Proof. Let P∗ ∈ � be an optimal partition and V ∗ be the
corresponding vehicle assignment. This solution satisfies
the surrogate problem necessarily. Clearly,

∑
v∈V ∗ cvyv is

the minimum cost solution for the optimal partition P∗,
and further,

∑
v∈V ∗ cvyv ≤ ∑

v∈V cvyv for any set V and
any partition P ∈ �. The knapsack problemwith the right-
hand side s(A) ≤ r < b can have a solution in Y (r),
but there cannot be any corresponding vehicle-subset
assignments and/or partitions available satisfying the dis-
tance (time) constraint. If this were possible, then there
would be a partition P′ and V ′ such that

∑
v∈V ′ cvyv <∑

v∈V ∗ cvyv. This is a contradiction to the hypothesis.
Therefore, a knapsack problem with r = b needs to be
considered.
Let Y (r = b) = (yv1, yv2, . . . , yvm) be a solution to this

knapsack problem for some 1 ≤ m ≤ n together with
V (r) = {v1, v2, . . . , vm} corresponding to a vehicle-subset
assignment (A1,A2, . . . ,Am) satisfying the distance (time)
constraints. Then

∑
v∈V (r) cvyv is the minimum cost sat-

isfying the constraint
∑

v∈V (r) Qvyv ≥ b > s(A). Subse-
quently,

∑
v∈V (r) cvyv≤

∑
v∈V ∗ cvyv implies that they must

be equal. The sets V ∗ and V (r) may not be equal because
of the existence of alternating optimal vehicle-partition
combinations. Thus, an optimal partition (vehicle-subset
combination) exists for the solution Y (r).

The argument until now assumes that there is only one
type of each vehicle; hence, yv is a binary variable, and the
surrogate problem is a (0,1) knapsack problem. However,
if the number of vehicles of each capacity is more than
one, then the surrogate problem becomes a bounded inte-
ger knapsack problem. All the arguments up to now apply
equally well to the case of bounded integer knapsack prob-
lem. In this form, the employee transporting problem is
reduced to the common sense problem of determining the
number of vehicles of each capacity to transport all the
passengers at a minimum cost provided that the distance

(time) of any route to a subset of destinations does not
exceed a predetermined limit without any consideration
of routing and vehicle-subset assignments.

A solutionmethod
The knapsack problem can be solved by anymethod in the
literature, see for instance Kellerer et al. (2004). It contains
|V | variables, binary or integer. Fortunately, in this class
of problems, |V | is a rather small number possibly not
exceeding 10. This fact simplifies the numerical computa-
tions somehowwhile solving this knapsack problem. After
obtaining a solution to the knapsack problem, a partition
of the set A is sought, satisfying the capacity and the dis-
tance constraints. If such a partition is obtained, then an
optimal solution to the original problem is found. Other-
wise, the right-hand side value of the knapsack problem is
increased to the next range, and the procedure is repeated.
Before describing the algorithms, first, how to determine
the range on the right-hand side of the knapsack problem
is presented. The knapsack problem

min z =
m∑
j=1

cjyj

subject to
m∑
j=1

ajyj ≥ b

where yj ≥ 0, and the integer for j = 1, 2, . . . ,m can be
converted to a maximization knapsack problem by setting
yj = wj−xj where wj = � b

aj  is the smallest integer greater
than or equal to b/aj for j = 1, 2, . . . ,m. The new knapsack
problem is given as follows:

max z′ =
m∑
j=1

cjxj −
m∑
j=1

cjwj

subject to
m∑
j=1

ajxj ≤
m∑
j=1

ajwj − b

where 0 ≤ xj ≤ wj, and the integer for j = 1, 2, . . . ,m.
Let (x∗

1, x∗
2, . . . , x∗

m) be an optimal solution to this knapsack
problem. Then

∑m
j=1 ajx∗

j = b∗ ≤ ∑m
j=1 ajwj − b. Conse-

quently, the upper bound on r is ru = ∑m
j=1 aj(wj − x∗

j )
and the lower bound on r is r� = b.
Intuitively, having a sufficient number of vehicles will

provide a partition (vehicle-subset assignment). Obvi-
ously, the algorithm will converge to a solution after a
finite number iterations. A main algorithm to solve the
knapsack problem consecutively and a subalgorithm to
obtain a partition will be described next. Let Y t(r) =
(ytv1, y

t
v2, . . . , ytvm) represent the number of each type of

vehicle in the knapsack solution in the iteration t.
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The main algorithm is as follows:

Step 0. Initialize: Set t = 1, r = s(A), go to Step 1.
Step 1. Solve the knapsack problem to obtain a solution

Y t(r), and go to Step 2.
Step 2. Use the subalgorithm to obtain a partition

corresponding to the solution Y t(r). If such a
partition is obtained, go to Step 4, otherwise go
to Step 3.

Step 3. Increase the right-hand side range to the next
level for which r is the lower bound. Set
t := t + 1 and go to Step 1.

Step 4. Terminate: An optimal partition (vehicle-subset
assignment) is obtained.

The subalgorithm to find a partition corresponding to
Y t(r) will determine all the possible subsets for each vehi-
cle in the solution Y t(r), and subsequently, it will check
whether a match is possible. The total capacity of the vehi-
cles used in the solution Y t(r) is

∑
v∈V (r) Qv = r ≥ s(A).

Let s0 = s(A) − r be the slack representing the unused
capacity of all the vehicles initially. Let Rv represent the
set of not-yet-assigned destinations for the vehicle v. Ini-
tially, R1 = A. Pv represents the incomplete partition for
the vehicles 1, 2, . . . , v, and P0 = ∅.
An exact algorithm to find a partition is as follows:

Step 0. Initialize: Set v = 1, R1 = A, and P0 = ∅. Go to
Step 1.

Step 1. L1 = {Ax|Ax ⊂ A,Q1 − s0 ≤ s(Ax) ≤ Q1, δ(Ax)
≤ Tmax}. If L1 = ∅, go to Step 5, otherwise go to
Step 2.

Step 2. Let Av ∈ Lv be the first subset in this list. Set
Pv := Pv−1 + Av, sv := sv−1 − (Qv − s(Av)), and
v := v + 1. Go to Step 3.

Step 3. If (v > vm), go to Step 5. Otherwise, Rv :=
Rv−1 − Av, and Lv = {Ax ⊂ Rv | Qv − sv−1 ≤
s(Ax) ≤ Qv}. If Lv = ∅, go to Step 4, otherwise
go to Step 2.

Step 4. v := v − 1, Pv−1 := Pv − Av, Lv := Lv − Av,
sv−1 := sv + (Qv − s(Av)), and Rv := Rv + Av. If
v = 1, go to Step 1, otherwise go to Step 2.

Step 5. Terminate by declaring that either a feasible
partition is obtained if Rv = ∅ or there are no
feasible partitions if Rv �= ∅ or L1 = ∅.

This algorithm finds a partition for the solution Y t(r)
if it exists by checking all the possibilities. An exam-
ple is provided to illustrate how this algorithm works.
Unfortunately, it requires checking so many alterna-
tives; it is not practical for solving large-size prob-
lems. Consequently, an adaptation of the sweep method
(Toth and Vigo 2002) is proposed as an easier and
efficient approach for finding the subset-vehicle assign-
ments. This sweep algorithm is also a subalgorithm to

be called by the main algorithm in Step 2 to obtain a
partition.
The sweep algorithm is as follows:

Step 0. Initialize: Convert the Cartesian coordinates to
the polar coordinates for each destination
aj(x, y) → aj(r, θ) for j = 1, 2, . . . , n. The
destinations are called nodes from now on. Set
v := 1. Start with the vehicle v in the solution
Y t(r) with the capacity Qv. Go to Step 1.

Step 1. Set B := ∅, Av := ∅, s(Av) = 0, k = 0.
Step 1a. Start rotating from the x-axis and find a node

avk such thatminθ aj(r, θ) = avk(r, θ) where
θk ≤ θj for all aj ∈ A. If avk exists, then go to
Step 1b, otherwise go to Step 3.

Step 1b. If s(Av) + s(avk) ≤ Qv, then go to Step 1c,
otherwise go to Step 1e.

Step 1c. Calculate δ(Av + {avk}) = δ. If δ ≤ Tmax, then
go to Step 1d, otherwise go to Step 1e.

Step 1d. Av := Av + {avk}, and A := A − {avk}. Set
k := k + 1 and go to Step 1a.

Step 1e. Set B := B + {avk} and A := A − {avk}. If
A = ∅, go to Step 2, otherwise go to Step 1a.

Step 2. Set A := A ∪ B, and v := v + 1. If v ≤ vm, then
go to Step 1, otherwise go to Step 3.

Step 3. Terminate by declaring either that a partition
is obtained if A = ∅ or a partition is not
obtained if A �= ∅.

An illustration
An implementation of the main algorithm and the sub-
algorithms is essential to observe how the employee
transporting problem can be solved to optimality in an
efficient manner. A small example with ten destinations
and 91 passengers to be transported is used in testing
the knapsack solution and the exact algorithm. A larger-
size example with 79 destinations and 694 passengers is
used to implement the sweep method. Both examples are
randomly generated.
A small town with ten destinations is considered. The

coordinates and the number of passengers to be trans-
ported from/to each destination is given in Table 1. The
distance matrix is given in Table 2. There are three types
of vehicles available for transportation: mini-busses with
15 seats, midi-busses with 30 seats, and coaches with 50
seats with costs of 35, 55, and 105 TL per trip, respectively.
There are altogether 91 passengers to be transported. How
many vehicles of each type are needed and to which sub-
sets will they be assigned to accomplish the task at a
minimum cost?
The initial knapsack problem to be solved is given as

follows:

min z = 35y1 + 55y2 + 105y3
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Table 1 The coordinates and the number of passengers

a xa ya ra θa s(a)

1 0.90 7.10 7.16 0.13 10

2 0.70 10.20 10.22 0.07 8

3 1.50 12.20 12.29 0.12 13

4 0.20 10.90 10.90 0.02 6

5 0.60 14.30 14.31 0.04 6

6 2.20 14.50 14.67 0.15 4

7 0.10 14.60 14.60 0.01 10

8 0.50 16.50 16.51 0.03 11

9 1.80 18.00 18.09 0.10 8

10 2.50 15.80 16.00 0.16 15

subject to

15y1 + 30y2 + 50y3 ≥ 91

where yi ≥ 0, and the integer for i = 1, 2, 3. In this
problem, y1 is the number of mini-busses, y2 is the num-
ber of midi-busses, and y3 is the number of coaches to
employ. The solution to this knapsack problem yields
Y 1 = (1, 1, 1) with a cost of 195 TL. The following argu-
ment shows that this solution is valid for 91 ≤ r ≤ 95. A
simple computation shows w1 = 7, w2 = 4, and w3 = 2.
The transformation yj = wj − xj for j = 1, 2, 3 gives the
following knapsack problem:

max z′ = 35x1 + 55x2 + 105x3 − 675

subject to

15x1 + 30x2 + 50x3 ≤ 325 − 91 = 234

where 0 ≤ x1 ≤ 7, 0 ≤ x2 ≤ 4, and 0 ≤ x3 ≤ 2
are all integers. The optimal solution to this knapsack is
X = (6, 3, 1) and Y = (1, 1, 1) with z′ = 480 − 675 = −
195 = −z and 15x1 + 30x2 + 50x3 = 230. Therefore, ru =

Table 2 The distances between the destinations

a 0 1 2 3 4 5 6 7 8 9 10

0 - 75 103 126 111 144 152 146 167 185 166

10 166 91 67 42 68 40 14 47 40 26

9 185 110 82 59 79 45 35 47 30

8 167 94 64 48 57 23 40 20

7 146 75 45 35 38 8 40

6 152 78 53 27 55 32

5 144 71 41 28 35

4 111 40 10 30

3 126 52 26

2 103 30

1 75

325 − 230 = 95 and r� = 91. Obviously, if the right-hand
side of this knapsack is less than 230, a new solution is
required.
The next range is 96 ≤ r ≤ 105 with an optimal solu-

tion Y 2 = (1, 3, 0) with a cost of 200 TL. Further, the
next range is 106 ≤ r ≤ 110 with an optimal solution
of Y 3 = (0, 2, 1) with a cost of 215 TL. Tmax = 370 dis-
tance (time) units for this town. First, the exact algorithm
is implemented for finding a partition corresponding to
the solution Y t(r). There are no partitions for the solu-
tion Y 1(91) = (1, 1, 1) with Tmax = 370. Then the next
best solution (next range) is attempted. Y 2(96) = (1, 3, 0).
The total capacity of the vehicles now is 105. Therefore,
s0 = 105 − 91 = 14. The list L1 of all subsets satisfying
the condition 30 − 14 ≤ s(Ax) ≤ 30 and the distance con-
straint has 118 subsets of A. First, the subset A1 = {4, 7, 8}
with s(A1) = 27 and δ(A1) = 336 is chosen. The set of
remaining destinations is {1, 2, 3, 5, 6, 9, 10} for the vehicle
v = 2 with Q2 = 30. Now s1 = 14 − (30 − 27) = 11. The
list L2 of all subsets satisfying the condition 30 − 11 =
19 ≤ s(Ax) ≤ 30 contains 22 subsets. First one in this list,
A2 = {6, 10} with s(A2) = 19 and δ(A2) = 332 yields s2 =
11 − (30 − 19) = 0, and there are no subsets for v = 3
satisfying the condition 30 ≤ s(Ax) ≤ 30. Subsequently,
the subset A2 = {6, 10} is deleted from L2. Next, the sub-
set A2 = {3, 9} is tested. s(A2) = 21 and δ(A2) = 370.
Now s2 = 11 − (30 − 21) = 2. The set of remaining desti-
nations now is {1, 2, 5, 6, 10}. The set L3 of all subsets satis-
fying the condition 30 − 2 ≤ s(Ax) ≤ 30 and δ(Ax) ≤ 370
for the vehicle v = 3 with Q3 = 30 contains three ele-
ments only. Taking A3 = {2, 5, 10} with s(A3) = 29 and
δ(A3) = 350 yields L4 = A4 = {1, 6} with s(A4) = 14 and
δ(A4) = 305 for the vehicle v = 4 with Qv = 15. Hence,
an optimal partition is obtained. There are also alternat-
ing optimal partitions: A3 = {1, 2, 5, 6} with s(A3) = 28
and δ(A3) = 330 for Q3 = 30 and A4 = {10} with
s(A4) = 15 and δ(A4) = 332 for Q4 = 15 with a cost of
200 TL.
Solving the same problem by the sweep algorithm yields

A1 = {2, 4, 5, 7, 8} with s(A1) = 41, δ(A1) = 346 for
the vehicle of the capacity Q1 = 50; A2 = {3, 9} with
s(A2) = 21, δ(A2) = 370 for the vehicle of the capacity
Q2 = 30; and A3 = {1, 6, 10} with s(A3) = 29, δ(A3) =
333 for the vehicle of capacity Q3 = 30 corresponding to
the knapsack solution Y 3 = (0, 2, 1) with a cost of 215 TL
and Tmax = 370. This is a good example that the sweep
algorithm may miss the optimal partition.
Treating the constraint δ(Ax) ≤ Tmax as a soft con-

straint is also considered. Tmax = 370 distance time units
in this example. Now it is increased by 1% to 373.7 at
an additional cost of opportunity loss of 2% of the total
cost of the solution. Then Y 1 = (1, 1, 1) yields the parti-
tion A1 = {1, 4, 5, 6, 7, 8} with s(A1) = 47, δ(A1) = 370;
A2 = {2, 3, 9} with s(A2) = 29, δ(A2) = 373; and A3 =
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Table 3 The locations and the number of passengers to be transported

a ya xa ra θa s(a) a ya xa ra θa s(a)

1 0.50 1.50 1.58 1.25 7 41 12.20 1.50 12.29 0.12 13

2 1.00 2.40 2.60 1.18 8 42 10.80 2.60 11.11 0.24 14

3 1.80 3.30 3.76 1.07 9 43 10.90 0.20 10.90 0.02 6

4 2.60 4.40 5.11 1.04 9 44 13.40 11.40 17.59 0.70 5

5 3.50 3.50 4.95 0.79 6 45 13.50 7.50 15.44 0.51 5

6 5.00 3.60 6.16 0.62 13 46 13.40 5.80 14.60 0.41 8

7 4.70 4.60 6.58 0.77 3 47 14.00 5.50 15.04 0.37 12

8 4.40 5.60 7.12 0.90 11 48 19.40 4.30 19.87 0.22 4

9 4.60 8.10 9.32 1.05 7 49 13.90 3.50 14.33 0.25 7

10 5.70 5.80 8.13 0.79 8 50 13.10 2.50 13.34 0.19 3

11 5.50 9.00 10.55 1.02 8 51 14.30 0.60 14.31 0.04 6

12 6.60 7.50 9.99 0.85 2 52 14.80 12.50 19.37 0.70 6

13 7.00 2.50 7.43 0.34 8 53 14.20 11.00 17.96 0.66 6

14 7.10 0.90 7.16 0.13 10 54 14.40 9.80 17.42 0.60 3

15 8.10 11.00 13.66 0.94 6 55 14.50 8.10 16.61 0.51 8

16 8.00 8.50 11.67 0.82 2 56 14.50 2.20 14.67 0.15 4

17 7.90 6.20 10.04 0.67 6 57 14.60 0.10 14.60 0.01 10

18 7.80 2.60 8.22 0.32 10 58 15.90 11.10 19.39 0.61 9

19 8.00 1.40 8.12 0.17 11 59 15.80 10.50 18.97 0.59 13

20 9.00 1.00 9.06 0.11 8 60 15.10 9.10 17.63 0.54 11

21 8.70 7.00 11.17 0.68 13 61 15.50 7.00 17.01 0.42 10

22 9.20 2.50 9.53 0.27 6 62 15.10 4.30 15.70 0.28 10

23 10.50 10.40 14.78 0.78 8 63 15.80 2.50 16.00 0.16 15

24 10.20 8.30 13.15 0.68 5 64 16.10 13.00 20.69 0.68 15

25 10.30 7.30 12.62 0.62 13 65 16.70 12.40 20.80 0.64 10

26 10.00 6.40 11.87 0.57 12 66 16.20 9.70 18.88 0.54 10

27 10.10 4.50 11.06 0.42 14 67 16.80 8.80 18.97 0.48 10

28 10.00 2.40 10.28 0.24 13 68 16.20 8.10 18.11 0.46 5

29 10.20 0.70 10.22 0.07 8 69 16.10 6.20 17.25 0.37 3

30 11.70 11.50 16.41 0.78 12 70 16.60 5.30 17.43 0.31 3

31 11.50 9.60 14.98 0.70 11 71 16.50 3.30 16.83 0.20 11

32 11.40 6.70 13.22 0.53 15 72 16.50 0.50 16.51 0.03 11

33 11.50 3.50 12.02 0.30 13 73 18.00 11.20 21.20 0.56 5

34 12.70 11.00 16.80 0.71 13 74 18.00 7.50 19.50 0.39 13

35 12.60 9.70 15.90 0.66 8 75 18.00 5.00 18.68 0.27 12

36 12.50 8.30 15.00 0.59 7 76 17.80 3.10 18.07 0.17 12

37 13.00 6.50 14.53 0.46 8 77 18.00 1.80 18.09 0.10 8

38 12.60 3.50 13.08 0.27 6 78 18.50 11.40 21.73 0.55 8

39 12.00 3.30 12.45 0.27 14 79 19.00 9.00 21.02 0.44 11

40 12.10 2.20 12.30 0.18 8 Total 694

{10} with s(A3) = 15, δ(A3) = 332 at a total cost of
195+ 2%(195) = 198.90 TL. This is another alternative to
consider for the fleet mix problem.

Now a larger-size problem shows how efficient the
sweep algorithm is in obtaining a partition if it exists or
not for the given fleet of vehicles. This example has 79
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destinations located in a metropolitan area, and the total
distance to be traveled should not exceed 50 km. Table 3
provides the locations in (x, y) and (r, θ) polar coordi-
nates and the number of passengers to be transported
from those 79 destinations to the center in the morning
and back later in the evening in this metropolitan area.
There are 694 passengers to be transported; therefore, the
knapsack problem to be solved is given as follows:

min z = 35y1 + 55y2 + 105y3
subject to

15y1 + 30y2 + 50y3 ≥ 694

where yi ≥ 0 and the integer for i = 1, 2, 3. The solution is
Y 1 = (1, 21, 1) with a cost of 1,295 in the range 694 ≤ r ≤
695. The next best solution is Y 2 = (1, 23, 0) with a cost
of 1,300 in the range 696 ≤ r ≤ 710. Further, the next best
solution is Y 3 = (0, 22, 1) with a cost of 1,315 in the range
711 ≤ r ≤ 720. Finally, the next solution is Y 4 = (2, 23, 0)
with a cost of 1,335 in the range 721 ≤ r ≤ 725. The sweep
algorithm does not obtain any partitions for the solutions
Y 1 = (1, 21, 1), Y 2 = (1, 23, 0), and Y 3 = (0, 22, 1), but
finds a partition for the solution Y 4 = (2, 23, 0) given in
Table 4. Therefore, the relative error is less than (1, 335 −
1, 295)/1, 295 = 3.09%. As an indication of the efficiency
of the sweep algorithm, one should point out that a small
laptop computer (netbook) with a processor chip of 1.60
GHz solves the last problem in 1.73 s of CPU time.

Conclusions
The employee transporting problem is actually a set par-
titioning problem for the assignment of the vehicles. The
capacities of the vehicles vary in size. Therefore, it is a het-
erogenous fleet problem. These facts make the employee
transporting problem belong to a different class of prob-
lems than the HVRP in the literature. Although in both
problems the aim is to determine the fleet mix and com-
position, the employee transporting problem strives for
this aim without routing. A set partitioning model is
developed, deviating from the integer formulations in the
literature. An important aspect of this article is the thor-
ough investigation of the model structure. Consequently,
this investigation leads to a knapsack problem from the
model structure. This knapsack problem is the common
sense problem of determining the number of vehicles of
each capacity to transport all the passengers at aminimum
cost by ignoring the subset-vehicle assignments.
The partition obtained for the knapsack solution is an

optimal solution. There is an exact algorithm to find
the partition for a given knapsack solution. However, it
requires matching too many subsets; it is impractical for
large-size problems. The sweep algorithm is suitable for
large-size problems. It is a heuristic method which obtains
a partition in a very efficient manner computationally

Table 4 Solution of the large-size problem forY = (2, 23, 0)
v s(Av) Qv δ(Av) Av

Vehicle 1 30 30 41.98 Part: 50 57 43 72

Vehicle 2 30 30 42.78 Part: 51 56 77 48 29

Vehicle 3 30 30 29.35 Part: 41 49 14

Vehicle 4 30 30 38.02 Part: 63 76 70

Vehicle 5 30 30 33.66 Part: 19 40 71

Vehicle 6 30 30 34.77 Part: 28 42 69

Vehicle 7 29 30 39.96 Part: 22 39 38 54

Vehicle 8 30 30 37.40 Part: 13 62 75

Vehicle 9 30 30 48.37 Part: 16 18 33 68

Vehicle 10 30 30 41.10 Part: 47 45 74

Vehicle 11 30 30 29.94 Part: 37 46 27

Vehicle 12 29 30 43.15 Part: 55 61 79

Vehicle 13 30 30 42.86 Part: 67 73 32

Vehicle 14 29 30 45.97 Part: 66 60 78

Vehicle 15 30 30 43.31 Part: 12 26 36 58

Vehicle 16 29 30 38.13 Part: 7 25 59

Vehicle 17 29 30 41.63 Part: 6 53 65

Vehicle 18 27 30 34.06 Part: 21 17 35

Vehicle 19 26 30 41.46 Part: 52 64 24

Vehicle 20 29 30 35.22 Part: 31 34 44

Vehicle 21 28 30 32.81 Part: 20 23 30

Vehicle 22 25 30 16.68 Part: 5 8 10

Vehicle 23 30 30 27.69 Part: 4 9 15 11

Vehicle 24 9 15 7.52 Part: 3

Vehicle 25 15 15 5.21 Part: 2 1

Total 694 720

but may miss the optimal partition. A few examples are
provided to illustrate how the main algorithm and each
subalgorithm works. It is worth mentioning at this point
that other heuristics and/or metaheuristics can be imple-
mented in obtaining the partition after deciding the mix
of the fleet. The employee transporting problem differs in
nature from HVRP by not considering the routing, thus a
computational comparison with other methods in the lit-
erature will not serve any purpose and such a task was not
undertaken.
The model for the employee transporting problem and

its solution can provide useful insights to practitioners in
order to decide the mix of vehicles in the fleet and subse-
quently the fleet size to transport the passengers from/to
the destinations. Furthermore, vehicle drivers are human
beings; hence, they may have preferences and/or restric-
tions where to go. The approach of this article allows
including the preferences and/or restrictions of the drivers
in the choice of destination subsets.
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