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Abstract Mixed-model assembly lines are increasingly

accepted in many industrial environments to meet the

growing trend of greater product variability, diversification

of customer demands, and shorter life cycles. In this

research, a new mathematical model is presented consid-

ering balancing a mixed-model U-line and human-related

issues, simultaneously. The objective function consists of

two separate components. The first part of the objective

function is related to balance problem. In this part, objec-

tive functions are minimizing the cycle time, minimizing

the number of workstations, and maximizing the line effi-

ciencies. The second part is related to human issues and

consists of hiring cost, firing cost, training cost, and salary.

To solve the presented model, two well-known multi-ob-

jective evolutionary algorithms, namely non-dominated

sorting genetic algorithm and multi-objective particle

swarm optimization, have been used. A simple solution

representation is provided in this paper to encode the

solutions. Finally, the computational results are compared

and analyzed.

Keywords Mixed-model assembly lines � U-shaped
assembly lines � Learning and training effect �
Human-related issues � Multi-objective

Introduction

An assembly line is a group of successive workstations,

joined by a material handling system. In each workstation, a

set of tasks are carried out using a predefined assembly

process, in which the time required to carry out each task and

a set of priority relations which determines the order of the

tasks are defined. The current market is severely competitive

and consumer-centric with high variety in demands. As a

result of high cost to establish andmaintain an assembly line,

the manufacturers produce one model with various features

or several different models on a single assembly line. In sit-

uations like this, the mixed-model assembly line balancing

problem arises to smooth the production and decreases the

cost. Mixed-model Assembly Line (MMAL) is a kind of

production line, where a set of similar models of a product

are assembled to respond to the diversity of customer’s

demands. There are two types of assembly line balancing

problems. The purpose of type-I problems are minimizing

the number of workstations. In this problem, the required

production rate, assembly tasks, tasks times, and precedence

requirements will be given. In type-II problems, the goal is to

minimize the cycle time and maximize the production rate

with fixed number of workstations or production employees.

This study is mainly focused on the type-I problem, which

wants to minimize the number of workstations.

U-type line balancing was first invented by Miltenburg

and Wijngaard (1994). The U-type assembly line is an

attractive substitute for assembly production systems from

the time operators became multi-skilled by performing

tasks defined on different parts of assembly line (Gökçen

et al. 2005). The advantage of the U-type assembly line is

the flexibility that it offers to choose an appropriate number

of operators to satisfy demand changes (Aigbedo and

Monden 1997).
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Learning effect is another important factor at assembly

lines in the time of the new product lunch, or start of pro-

duction (Baloff 1971). The length of the learning stage has

becomean important performance indicator for a firmbecause

of some common topics, such as shortened product life cycles,

high innovation rates, and, therefore, more frequent product

launches. Learning effect has to be considered in firms,

because shorter learning stages enable firms to increase sales

and, as a result, achievemoreprofitswith thehighest revenues,

by the time, the new product reaches the market. Learning

effects may occur by a highly repetitive execution of certain

tasks. ‘‘A worker learns as he works; and the more often, he

repeats an operation’’. Andress (1954) mentioned, learning

effects at assembly lines and overall for repetitive operations.

According to aircraft construction, Wright (2012) described

learning effects at assembly lines and overall for repetitive

operations. He figured out that by making the cumulated

output double, average construction costs per unit sunk by

about 20 %. This observation was formalized as an inversely

proportional relationship between unit costs and cumulated

output called learning curve. After that, for assembly lines in

different industries, the presenceof significant learning effects

was confirmed. Basically, in mixed-model U-shaped assem-

bly lines, workers are capable of operating several tasks. As

Park (1991) said, training, the process by which workers

become multi-skilled, has been recognized as a tool for

boosting production flexibility. Theminimum introduction of

worker cross-training has the most significant improvement

from no cross-training, and the subsequent increase of the

cross-training has a diminishing return. In this research for the

first time, a new model is presented considering both line

balancing and worker assignment simultaneously, consider-

ing human-related issues. Twometa-heuristic algorithms [i.e.,

multi-objective particle swarm optimization (MOPSO) and

non-dominated sorting genetic algorithm (NSGA-II)] are used

to solve the proposed bi-objective problem, and a simple

method is applied to represent solutions.

The rest of the paper is organized as follows: in ‘‘Lit-

erature review’’, the relevant literature is reviewed.

In ‘‘Problem description’’, the bi-objective problem, the

objective function, and a mathematical model are pre-

sented. The methodology is described in ‘‘Methodology’’,

and the illustrative examples are presented in this sec-

tion. In ‘‘Parameters tuning’’, comparisons and discussion

are brought. The study is finally ended by conclusions and

future research in ‘‘Conclusion’’.

Literature review

The existing competitive and consumer-centric market and

the observed trend of diversification of customer demands

and high fluctuations is an important subject that is worth

studying. Firms should improve their performance for

dealing with these pressures to meet the customers demand

within a short delivery time and with the lowest possible

cost. Mixed-model assembly lines are one of the most

relevant production environments that deal with these

problem. The assembly line balancing problem encom-

passes assigning tasks to an ordered sequence of stations,

such that precedence relations among tasks should not be

violated (Erel and Sarin 1998). A mixed-model assembly

line is assembly line, in which some similar product type

with some insignificant difference is assembled. Many

attempts have been made to solve the assembly line bal-

ancing (ALB) problems using the exact solution methods,

heuristics, and meta-heuristic approaches. Some compre-

hensive reviews of such studies have been done (Becker

and Scholl 2006; Erel and Sarin 1998). Some researches

solved the assembly line balancing problem using a ranked

positional weight technique (Helgeson and Birnie 1961).

Monden (2011) was concerned with the sequencing of

assembly lines, such as considering the stability of parts

usage rates. Kim et al. (2009) presented a mathematical

formulation and a genetic algorithm for the ALB-II prob-

lem. Some practitioners presented a formal ALB-I prob-

lem, and they also developed a branch-and-bound

algorithm to solve the problem (Wu et al. 2008). Erel and

Gokcen (1999) proposed a study that was concerned with

minimizing the task time for different models considering

precedence constraints using shortest route formulation. A

binary integer formulation for the mixed-model assembly

line balancing problem is developed by Gökcen and Erel

(1998). In another work, Gokcen and Erel (1997) extended

a goal programming approach which was previously

developed by Thomopoulos (1967), using a combined

precedence diagram. Vilarinho and Simaria (2002) develop

a two-stage heuristic method for balancing mixed-model

assembly lines. The application of genetic algorithms (GA)

for assembly line balancing has widely been considered in

many studies. A genetic algorithm for type-II problems was

presented by Anderson and Ferris (1994), and Leu et al.

(1994) presented a GA-based approach to solve type-I

problems with multiple objectives. Kim et al. (1996) pre-

sented a genetic algorithm for work load smoothing. In

another study, a hybrid genetic algorithm approach to the

assembly line planning problem was developed (Chen et al.

2002). There are only a few studies which use more than

one meta-heuristic approach to solve their problem, but in

this study, two meta-heuristic algorithms (i.e., MOPSO and

NSGA-II) are used to solve the proposed bi-objective

problem.

Many practitioners studied the mixed-model straight

line assembly line balancing problem which has been

reported in the literature (Erel and Gokcen 1999; McMul-

len and Frazier 1998; Simaria and Vilarinho 2004, 2009;
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Thomopoulos 1967; Vilarinho and Simaria 2002). Simaria

and Vilarinho (2009) proposed a mathematical program-

ming model to formally describe the MMALB problem

presenting an ant colony optimization algorithm. One of

the effective factors for realizing the objectives of lean

manufacturing is workforce planning. Several options of

alternative production planning that can be applied for

dealing with changing demand patterns, considering use of

variable workforce, overtime, seasonal inventory, and

planned backlogs have been developed by Hax and Candea

(1984). Several classical LP models combining the pro-

duction, manpower, and inventory-related trade-offs in

each of the options mentioned above have been presented

(Bhatnagar et al. 2003). Just-in-time (JIT) is able to adjust

to changes in the external environment of the firm, because

of several reasons, including efficient facility layouts and

multi-functional workers (Monden 2011; Schonberger

1983). Japanese companies are operating with very low

level of inventory and recognizing a high level of pro-

ductivity using the just-in-time (JIT) manufacturing system

which has the goal of continuously reducing and ultimately

removing all forms of wastes (Ōno 1988). The replacement

of the traditional straight lines with U-shaped production

lines is one of the most important changes resulting from

JIT implementation (Chiang and Urban 2006). Reducing

the work in process inventory and wasted operator’s

movement, labor productivity improvement, material han-

dling improvement, zero-defects campaign’s implementa-

tion, and higher flexibility in workforce planning in the

face of changing demand patterns (Monden 2011) are the

main benefits of the U-line as compared to a straight line.

(In some reference, it is shown that one of the best

applicable types of line is U-shape line and they illustrate

that the benefits are impressive. The main characteristics in

a U-shaped line are (Miltenburg and Wijngaard 1994): the

U-line arranges machines around a U-shaped line in an

operators work inside the U-line; U-lines are rebalanced

periodically when production requirements change; the

operators must be multi-skilled and versatile to do several

different processes; it requires operators to walking, when

setup times are negligible; U-lines are operated as mixed-

model lines, where each station is able to produce any

product in any cycle; when setup times are larger, multiple

U-lines are formed and dedicated to different products.

Miltenburg and Wijngaard (1994) have a comprehensive

article in the subject of U-shaped production line. In his

article, the benefits of U-shape line were mentioned, and by

some statistic information, they are proved for all). There

are several studies on line balancing problems. Most of

them assumed that the time of tasks for repetition tasks is

independent from learning of workers. A few researchers

have examined the learning effect on assembly line bal-

ancing problems (Chakravarty and Shtub 1988; Cohen and

Ezey Dar-El 1998; Cohen et al. 2006). Learning can play a

considerable role in manufacturing environments and there

are many empirical studies that have proven learning

effects (Cochran 1960; Yelle 1979). Learning occurs on the

part of workers directly involved into manufacturing of the

product (Andress 1954).

The first model of Wright (2012) describes the learning

rate as a relative decrease in average costs per product unit

over the whole history of production. The second learning

curve model, called Crawford or Stanford model (Yelle

1979), introduces the learning rate as a relative decline in

the marginal costs, i.e., costs required to produce the last

product unit. It is being observed that learning is present

only in the initial production state, i.e., after a while task

times converge to steady-state task (Table 1). A brief

review of the related literature and contributions of this

study is presented in Table 2.

Problem description

In this study, the focus is on minimizing the number of

stations to achieve an optimum balance; therefore, the idle

time should be minimized and the efficiency of the line

should be enhanced. These goals may be achieved by

smoothing the amount of workload and maximizing the

equalization of the workload among stations. It was

assumed that training, which is done to promote workers to

upper levels, is performed between periods and it takes

zero time. Workers are classified into four types based on

their skill levels. The level of each work station indicates

types of workers allowed to work at that station. Each

worker has exactly one skill and exactly belongs to one

skill level. Workers with skill level 4 can work on task

levels 1, 2, 3, and 4. Workers with skill level 3 can work on

task levels 1, 2, 3, and so on. In each period, workers can

be trained to improve their working abilities to operate

Table 1 Worker skills

promotion possibility
Skill level 1 Skill level 2 Skill level 3 Skill level 4

Skill level 1 – * * *

Skill level 2 – – * *

Skill level 3 – – – *

Skill level 4 – – – –
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other task levels. The initial number of workers with skill

level O in the beginning of the planning horizon is known.

Levels of tasks are known, and the level of each station is

equal to the maximum level of tasks which are assigned to

it.

Assumptions

• Parallel stations are not allowed.

• Operator walking time is ignored.

• All parameters in the model are assumed to be

deterministic.

• There is no uncertainty.

• Each task must be assigned to exactly one station.

• All predecessors or successors of a task have already

been assigned to a station (the precedence constraint.

• The total time of the tasks assigned to each station, (i.e.,

the station time), may not exceed the cycle time (the

cycle time constraint).

• Salary is merely dependent on worker’s skill level and

not depending on machine levels.

• All of the machine types which need the same skill

levels assumed to be similar in worker assignment.

• Cost of hiring and firing are given, and they merely

depend on skill levels.

• Each task needs just one worker.

• Training, which is done to promote workers to upper

levels, is performed between periods and it takes zero

time.

• The productivity of experienced workers is assumed to

be equal to 100 %.

• The productivity of newly trained workers is assumed

to be fewer than that of experienced ones, and it

depends on the skill level to which they are trained.

• Productivity of newly hired workers is assumed to be

fewer than that of experienced ones, and it depends on

the skill level for which they are hired.

• Cost of training from one skill level to another is given,

and it depends on both skill levels.

Objective functions

Minimizing the number of stations which is equivalent to

the minimization of the idle time related to the line is one

of the most important objectives in this article. Each

model’s idle time is multiplied by the corresponding pro-

portion (q0j). Computation of total weighted idle time

(WIT) is shown below (Manavizadeh et al. 2013; Simaria

and Vilarinho 2009).

Minimize WIT ¼
XM
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By balancing the workloads between stations, the idle

time will be distributed across the workstations as equally

as possible for each model. The workload balance between

workstations will be computed by function Bb. Therefore,

the objective would be minimization of Bb, as shown below

(Simaria and Vilarinho 2009):

Minimize Bb ¼
v

v� 1

XR

r¼1

idr

WIT
� 1

v

� �
ð2Þ

where idr is the idle time of workstation r:

idr ¼
XM

j¼1

q0jidrj: ð3Þ

The value of function Bb is within the value range of

[0,1]. In worst case, where the average idle time of the

line is equal to the idle time of one of the workstations,

the value equals 1, and in optimal case, equals zero when

it is equally distributed among all workstations in the

line actually it. By minimizing Bw, the optimal value for

Bw is calculated as shown below (Simaria and Vilarinho

2009).

Minimization Bw ¼ M2

v M2 � 1ð Þ
XX q0jidrj

idrj
� 1

M2

� �
:

ð4Þ

The value of Bw is within the value range of [0,1]. In

worst case, when only model attributes to the idle time of

each workstation, it equals 1, and when all models attribute

equally to the idle time at each workstation it equals zero

(Simaria and Vilarinho 2009).

The value of WIT is different from one problem to

another due to their dependence on the cycle time and task

processing of each specific problem, whereas the function

Bb and Bw are always within the value range of [0,1]. An

alternative measurement, which is always within a fix

range of values, is the weighted line efficiency (WE) (Si-

maria and Vilarinho 2009).

This value varies between 0 and 1 is a direct indication

of the efficiency of the line; 1 being the optimal value

which indicates no idle time is found. The WE in an

objective function computed as follows (Simaria and

Vilarinho 2009):

WE ¼
X

q0j �
PI

i¼1 tij

v� c

 !
: ð5Þ

Another important objective is ti distribute tasks among

workstations in a balanced fashion based on the job pro-

cessing time. To achieve this goal, the difference between

processing time of each model in each station and the

average processing time for each model should be mini-

mized. The formula is given below:

WI ¼
XR

r¼1

XM

j¼1

XI

i¼1

tij � xij �meanj

�����

����� ð6Þ

where tij is the processing time of task i related to model j,

and xir is equal 1 if task i assigned to station r and meanj is

the average processing time workload needed for model

j (Simaria and Vilarinho 2009).

meanj ¼

PI

i¼1

tij

I
: ð7Þ

In Z2, we want to minimize all costs related to operators

considering:

Hiring cost:
XT

s¼1

X4

o¼1

XMS

k¼1

ho;s � uo;s;k ð8Þ

Training cost:
XT

s¼1

X4

o¼1

X

o0

XMS

k¼1

XMS

k0¼1

co;o0;s � UXo0;o;s;k0;k

ð9Þ

Salary:
XT

s¼1

X4

o¼1

XMS

k¼1

so;s � Eo;s;k ð10Þ

Firing cost:
XT

s¼1

X4

o¼1

XMS

k¼1

fo;s �Wo;s;k: ð11Þ

Mathematical model

Parameters

i, b Index of task

R Maximum number of stations

r, r0 Index of station

J Model (product) {1,…, M}

s Index of period

O Work skills category {1, 2, 3, 4}

k,k0 Index for station levels {1, … , MS = 4}

M Number of models

V Number of operators

I Total number of tasks in the combined

precedence diagram, (i = 1, 2, 3, … , I)

MS Number of station levels

D The vector presenting the total demand for each

model, D = {D1, D2, … , Dm}

q0 The overall proportion of the number of units of

model j

Pib Showing the precedence relationship between

task b and i. Equal 1 if task b is the precedence

for task i

suib Showing the succeeding relationship between task

b and i. Equal 1 if task b is a successor for task i
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oib A zero–one variable which determines whether

or not constraints 2 or constraint 3 is satisfied

C Cycle time

P Total time in the planning horizon

idr Idle time of station r

Djs Demand of model j in period s

tij Processing time of task i of model j

wo Number of workers of skill category o

ws
o Number of workers of skill category o working

in period s

pts Regular time rate for workers during period s

ots Overtime rate for workers during period s

h0 Total working hours in a period

h0 Minimum overtime work for operators

ho,s Cost of hiring of a worker with skill level o in

period s

so,s Salary of each o-level worker in period s

fo,s Firing cost of each o-level worker fired in period s

Co,o00,s Training cost of each o-level worker trained for

skill level o0 in period s

ao Productivity of each newly o-level worker hired

in period s 0\ ao\ 1

bo,o0 Training productivity of o-level worker trained

for skill level o0 0\bo,o0 \ 1

aro Equals 1 if workers of skill category o can work

at processing stage r and zero

Decision variables

xir Equals 1 if task i is assigned to station r and

equal 0 otherwise

y0r Equals 1 if workstation r is used for assembly

and 0 otherwise

x0rs Total number of overtime hours done by

workers at station r in period s

xrs
o Equals 1 if worker from skills category o is

allocated to station r in period s

Uo,s,k Number of o-level workers who are hired and

assigned to station level k in period s

Eo,s,k Number of existing o-level workers who are

assigned to station level k in period s

UXo’,o,s,k, Number of o0–level workers who were

assigned to task level k in period s - 1 and

now are trained to skill level o and assigned to

task level k0 in period s

UGo0,o Equals 1 if training from skill level o0 to skill

level o is possible and 0 otherwise

meanj ¼
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i¼1 tij
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PM
j�1 q

0
j

PI

i¼1
tij

v�c

� �

0

BB@

1

CCAþ U�WITþ c

�
XR

r¼1

XM

j¼1

XI

i¼1

tij � xij �meanj

�����

�����

 !
þ 2 �V:

Subject to:

XR

r¼1

xir ¼ 1
ð12Þ

X

r1

xir1 � xbr �M � oib 8i; b; r; r1� 1; pib ¼ 1

ð13Þ
X

r1

xir1 � xib �M � 1� oibð Þ 8i; b; r r1� 1 suib ¼ 1

ð14Þ

tjr ¼
XI

i¼1

xir �Max tij
� �

8j; r; s ð15Þ

XI

i¼1

XM

j¼1

xir �Max tij
� �

�C 8r ð16Þ

C ¼ p
PM

j¼1 Dj

ð17Þ

q0j ¼
DjPM
j¼1 Dj

ð18Þ

v ¼
XR

r¼1

y0r ð19Þ

WIT ¼
XM

j¼1

q0j
XR

r¼1

C �
XI

i¼1

xir � tir

 !
ð20Þ

idrj ¼ C �
XI

i¼1

xir � tir 8r; j ð21Þ

idr ¼
XM

j¼1

q0jidrj 8r ð22Þ

XI

i¼1

xir � y0r 8r: ð23Þ

490 J Ind Eng Int (2016) 12:485–497

123



Minimizing
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� �
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Methodology

Proposed model in this paper is multi-objective, so the

methods for solving the problem are NSGA-II and

MOPSO. Rabbani et al. (2016a, b) applied these two

algorithms for solving a mixed-model assembly line

problem, and the results obtained by these two algorithms

were compared to each other. NSGA-II is a popular non-

domination-based genetic algorithm for multi-objective

optimization. It is a very effective algorithm but has been

generally criticized for its computational complexity, lack

of elitism, and for choosing the optimal parameter value for

sharing parameter (Rabbani et al. 2016a, b). Kusiak and

Wei (2012) introduced MOPSO for optimizing continuous

non-linear functions, Particle Swarm Optimization (PSO)

defined a new era in Swarm Intelligence (SI). PSO is a

population-based method for optimization. The population

of the potential solution is called as swarm and each

individual in the swarm is defined as particle. PSO is

motivated by social behavior of birds flocking or fish

schooling Solutions are represented by particles in the

search space. The particles fly in the swarm to search their

best solution based on experience of their own and the

other particles of the same swarm. PSO started to hold the

grip amongst many researchers and became the most

popular SI technique soon after getting introduced, but due

to its limitation of optimization only of single objective, a

new concept Multi-Objective PSO (MOPSO) was intro-

duced, by which optimization can be performed for more

than one conflicting objectives, simultaneously. Coello

et al. (2002) described the advantages of using MOPSO in

solving multi-objective optimization problem rather than

the single objective version of the algorithm.

Representation of solutions

The chromosome is a string of length I which shows the

task numbers, where each element represents a task and the

value of each element represents the workstations to which

the corresponding task is assigned. The maximum number
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of stations is equal to total number of tasks. For example,

for 16 tasks, 9 workstations will be created.

In this research, individuals in the initial population are

all randomly generated. While a heuristic procedure can

provide good initial solutions, it can cause the solutions to

be biased.

Illustrative example

In this section, 5 small-size and 5 large-scale problems are

implemented to compare the performance of algorithms

with each other in various size problems. Parameters of

problems were generated based on Table 3. In this paper,

the workers assignment is based on their skill level.

Workers with skill level 4 can work on task levels 1, 2, 3,

and 4. Workers with skill level 3 can work on task levels 1,

2, 3, and so on. The problem with five tasks is as follows:

The precedence diagram of five task problems is shown

in Tables 4, 5, 6, 7, 8, 9.

The results from NSGA-II algorithm are shown below:

This table shows that task number 1 is assigned to

workstation number 4, task 2 and task 3 are assigned

to workstation number 3, task number 4 is assigned to

workstation number 2, and task number 5 is assigned to

workstation number 1. Training should happen according

to Table 10:

Parameters tuning

The efficiency of the meta-heuristic algorithms in finding

better solutions in less run time is considerably dependent on

their parameters. To setting the MOPSO and NSGA-II

parameters, design of experiment (DOE) using Taguchi

approach is used in the paper. The performance of NSGA-II

is influenced by four parameters, including population size

(Np), maximum number of generations (Max Iteration),

mutation rate (Pm), and crossover rate (Pc). MOPSO

parameters consist of population size (Np), maximum

number of iterations (Max Iteration), inertia weight (w),

repository size (Nr), personal learning coefficient (c1), and

global learning coefficient (c2). After specifying levels for

each parameter (factor), design of experiment is performed

using the Minitab software to set these two groups of

parameters (Figs. 1, 2, 3). Parameters tuning for both algo-

rithms are done according to the results of large-sized

problem (Table 11). The consequences of Taguchi method

in tuning of parameters are shown in Figs. 4 and 5. In

addition, the results are summarized in Table 12.

Comparative results

Comparison metrics: It is common to compare the per-

formance of the multi-objective algorithms’ performance

by means of some specific comparison metrics; to compare

proposed algorithms with each other, three comparison

metrics are employed (Rabbani et al. 2016a, b).

1. Number of Pareto solutions (NPS): The quantity of

non-dominated solutions that every algorithm can discover.

2. Spacing metrics (SM): This kind of metric provides

us details about the uniformity of the distribution of the

solutions obtained by the way of each algorithm. This

metrics are computed as follows:

SM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1
�
Xn

i¼1

di � d
� �2

s
ð40Þ

Table 3 Test problem generation

Parameters Value Parameters Value

Demand U(5, 10) Hiring cost U(1500, 2000)

Processing time (2, 5) Firing cost U(1500, 2000)

Training cost U(50, 150) Salary U(100, 500)

Table 4 Initial number of workers with skill level 1 in the beginning

of the planning horizon

Skill level 1 2 3 4

Initial number of

workers

5 1 1 0

Table 5 Level of tasks

Task 1 Task 2 Task 3 Task 4 Task 5

Skill level 1

Skill level 2

Skill level 3 * *

Skill level 4 * * *

Signed cells means that worker with skill level o can work the task

number j considering tasks level, and in addition, the training cost

from skill level O to skill level O0 in period s is shown in Table 6

Table 6 Cost of training from skill level O to skill level O0 in periods

From

skill

Period/

to skill

Skill

level 2

Skill

level 3

Skill

level 4

Skill level 1 1 118 64 127

2 125 69 112

3 118 83 117

Skill level 2 1 97 130

2 95 65

3 106 66

Skill level 3 1 124

2 86

3 146
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where di is the Euclidean distance between solution i and

the nearest solution belonged to Pareto sets of solutions. d

is the average value of all di:

3. Diversification metrics (DM): This metric specifies

the spread of solution set and determined as follows:

DM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

max xit � yit
�� ��� �

s
ð41Þ

where maxð xit � yit
�� ��Þ is the Euclidean distance between

the non-dominated solutions xti and yti

Small-size problem

NSGA-II and MOPSO algorithms are used for solving the

test problems. Each test problem operates five times, and

the outcomes are summarized in Table 13. The average

values for all mentioned metrics are shown in Table 12,

and the average run time for each test problem is demon-

strated in Table 14. Generally, we can say that in small-

size problems, NSGA-II could achieve greater number of

Pareto solutions than MOPSO. Spacing metrics obtained

by mentioned formula show that NSGA-II provides non-

dominated solutions that have less average value of spacing

metrics. These results show that the non-dominated set

obtained by NSGA-II is more uniformly distributed in

comparison with the MOPSO algorithm. Diversification

metric in NSGA-II and MOPSO does not show superiority

of none of them, but average value for diversification

metric obtained by NSGA-II for test problems is greater

than MOPSO. In small-size problems, computational time

for MOPSO algorithm is considerably less than the NSGA-

Table 7 Cost of hiring, firing,

and salary of each O-level

worker in each period are

generated randomly

Skill level/period Hiring Firing Salary

1 2 3 1 2 3 1 2 3

Skill level 1 1823 1604 1667 1823 1604 1667 1800 1600 1500

Skill level 2 1813 1530 1959 1813 1530 1959 1800 1500 1900

Skill level 3 1910 1677 1509 1910 1677 1509 1900 1677 1500

Skill level 4 1878 1628 1651 1878 1628 1651 1800 1700 1600

Table 8 Processing time

related to five task problems
Model 1 2 3 4

Task

1 5 2 5 4

2 4 3 2 3

3 4 4 4 3

4 5 3 3 4

5 5 3 4 3

Table 9 Task assignment

4 3 3 2 1

Table 10 Training

Period 1 Period 2 Period 3

Skill

level 1

Skill

level 2

Skill

level 3

Skill

level 4

Skill

level 1

Skill

level 2

Skill

level 3

Skill

level 4

Skill

level 1

Skill

level 2

Skill

level 3

Skill

level 4

Skill level 1 0 0 0 2 0 0 0 2 0 0 0 2

Skill level 2 0 0 0 1 0 0 0 0 0 0 0 0

Skill level 3 0 0 0 0 0 0 0 1 0 0 0 1

Skill level 4 0 0 0 0 0 0 0 0 0 0 0 0

 99661444161414

Encoding        
Workstation 1  4  6  11  14  16 
Assigned 
tasks 

8,9 4  -  - 
8 9

- - - -  - 

Fig. 1 One task assignment chromosome
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II algorithm. Table 14 shows that the average computa-

tional times for both the algorithms.

Large-size problem

In this Sect. ‘‘Parameters tuning’’, various size problems

are implemented to compare the performance of algorithms

with each other in large-scale problems. The comparisons

metrics are similar to small-sized problems, and we employ

number of Pareto solutions (NPS), spacing metrics (SM),

and diversification metric (DM) for comparison of algo-

rithms. In large-size test problems, number of Pareto

solutions in the NSGA-II and MOPSO algorithms does not

show superiority of none of them (Tables 15, 16). Spacing

metrics obtained by mentioned formula show that NSGA-II

provides non-dominated solutions that have less average

value of spacing metrics. These results show that the non-

dominated set obtained by NSGA-II is more uniformly

distributed in comparison with the MOPSO algorithm.

Diversification metric in NSGA-II and MOPSO does not

show superiority of none of them, but average value for

diversification metric obtained by MOPSO for test prob-

lems is greater than NSGA-II. In large-size problems, the

average computational time for MOPSO algorithm is

greater than NSGA-II.

Conclusion

This research deals with balancing a mixed-model assem-

bly U-line considering human-related issues. The objective

function consists of two separate components. The first part

of the objective function is related to balance problem. In

this part, objective functions are minimizing the cycle time,

minimizing the number of workstations, and maximizing

the line efficiencies. The second part is related to human

issues and consists of hiring cost, firing cost, training cost,

and salary, and the labor assignment policy was defined. In

this research, workers are classified into four types based

on their skill levels. The level of each work station indi-

cates types of workers allowed to work at that station. Two

4

3

1

2

5

Fig. 2 Combined diagram for

five task problems

5 4

1

3

2

Fig. 3 NSGA-II solution for five task problems

Table 11 Total number of hiring and firings

Hire Fire

Skill level 1 2 3 4 1 2 3 4

Number of workers 0 0 0 6 9 2 1 0

1251007550

13

12

11

10

9

8
100755025 0.80.70.60.4 0.60.50.40.3
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M
ea

n 
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 M
ea
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Main Effects Plot for Means
Data Means

Fig. 4 Obtained results for

NSGA-II parameters tuning
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meta-heuristic algorithms (NSGA-II and MOPSO) are used

for solving a bi-objective problem presented in this paper.

In small-sized problem, MOPSO outperforms NSGA-II

with respect to computational time, but in large-scale

problem in all problems except the problem with 16 tasks,

the operation of NSGA-II is better than MOPSO with

regard to computational time. In most problems, including

small- and large-sized problems, the number of Pareto

solutions (NPS) generated with NSGA-II is more than

MOPSO. Spacing metrics obtained by the NSGA-II pro-

vide non-dominated solutions that have a less average

value of the spacing metrics. These data reveal that the

non-dominated set obtained by the NSGA-II is more uni-

formly distributed in comparison with the MOPSO

algorithm. In two other comparison metrics, the obtained

results do not show any superiority of each algorithm with

comparison another one. The algorithms provided

approximated Pareto solutions for decision maker to

choose from them, but in some real cases, especially in

critical industries, where any error has catastrophic results,

finding approximated solutions cannot be helpful for

decision makers.

Future developments will be devoted to investigate the

effects of human resource planning policies on balancing of

a mixed-model assembly U-line in uncertainty conditions,

12510075
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8.0
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7.0

6.5

6.0

1007550 755025 0.70.60.5 1.501.251.00 1.501.251.00

Max_Iteration

M
ea

n 
of

 M
ea

ns

Np Nr w c1 c2

Main Effects Plot for Means
Data Means

Fig. 5 Obtained results for

MOPSO parameters tuning

Table 12 Tuned parameters for NSGA-II and MOPSO algorithms

Algorithm Parameter

Max iteration Np Pc Pm Nr W c1 c2

NSGA-II 100 100 0.7 0.5 … … … …
MOPSO 125 50 … … 75 0.7 1.5 1

Table 13 Computational results for small-size problem

Number of tasks NPS SM MID Diversity

MOPSO NSGA-II MOPSO NSGA-II MOPSO NSGA-II MOPSO NSGA-II

5 3 3.66 0.939 0.029 12,104.313 23,473.333 26.697 233.388

6 2.88 3.8 1.923 1.280 14,280.774 19,886.250 255.612 337.352

7 6 8.9 1.145 1.4219 8657.736 18,860.888 255.668 480.552

8 6.3 10.5 1.519 0.612 11,554.265 17,592.728 297.687 442.358

10 10.4 12 1.103 1.265 27,919.017 23,332.4 502.774 430.670

Table 14 Average computational times for small-size problems (in

seconds)

Number of tasks NSGA-II MOPSO

5 7.812923 2.629137

6 4.666816 2.084193

7 5.151678 2.364705

8 41.968083 2.780

10 47.039556 6.261575
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given the fact that human activities are not deterministic. In

addition, solving a problem by exact methods, such as goal

programming and goal attainment, can have great manage-

rial insights to make decisions more precisely.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://crea

tivecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.
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