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Abstract This paper investigates the issue of an eco-

nomic manufacturing quantity model for defective prod-

ucts involving imperfect production processes and rework.

We consider that the demand is sensitive to promotional

efforts/sales teams’ initiatives as well as the setup cost can

be reduced through further investment. It also assumes that

fixed quantity multiple installments of the finished batch

are delivered to customers at a fixed interval of time. The

long-run average cost function is derived and its convexity

is proved via differential calculus. An effective iterative

solution procedure is developed to achieve optimal

replenishment lot-size, setup cost and the initiatives of

sales teams so that the total cost of system is minimized.

Numerical and sensitivity analyses are performed to eval-

uate the outcome of the proposed solution procedure pre-

sented in this research.

Keywords Defective � Rework � Demand � Setup cost

Introduction

In 1913, Harris (1990) first proposed the economic order

quantity (EOQ) model to help companies in minimizing

total inventory costs. The EOQ model utilizes

mathematical techniques to symmetrize the setup and

inventory holding costs as well as derives an optimal order

size that minimizes the long-run average inventory costs. In

the manufacturing sector, when parts are produced in-

house instead of being purchased from outside suppliers,

the economic manufacturing quantity model is often

employed to cope with the finite inventory replenishment

rate to minimize the expected overall cost per unit time

(Hillier and Lieberman 2001). Despite the simplicity of

EOQ and EMQ models they have been used broadly and

are still applied industry-wide today; and many production-

inventory models with more complicated and/or practical

features were addressed extensively during the past dec-

ades (see Dutta et al. 2007, Taleizadeh et al. 2010a, b,

2013a, b; Crdenas-Barrn et al. 2012). Sarkar et al. (2014)

recently developed an EMQ model with price- and time-

dependent demand under the effect of reliability and

inflation.

The traditional EOQ and EMQ inventory models

assumed that all products are perfect. It is common in all

industries that a certain percent of produced/ordered

products are of imperfect quality. Moreover, imperfect

quality products can be reworked and repaired in some

circumstances. In view of this numerous studies have been

carried out to enhance the EMQ model by addressing the

issue of imperfect quality products produced and reworked

(see So and Tang 1995; Shekarian et al. 2014; Taleizadeh

et al. 2010c, 2011, 2013c; Pal et al. 2013; Hayek and

Salameh 2001; Haji et al. 2008; Hafshejani et al. 2012;

Chen 2013; Sarkar et al. 2014; Vishkaei et al. 2014). For

instance, the plastic goods in plastic injection molding

process, the printed circuit board assembly (PCBA) in

PCBA manufacturing, etc. Therefore, overall production-

inventory costs can be significantly reduced. Examples of

articles that studied the effect of rework on optimal
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replenishment decisions are as follows. So and Tang (1995)

studied an optimal operating policy for a production system

with bottleneck and a random rework. Hayek and Salameh

(2001) assumed that all defective items produced are

repairable and derived an optimal operating policy for the

EMQ model under the effect of reworking all defective

items. Haji et al. (2008) addressed the rework of defective

products in a multi-product single machine system. They

adopted the common cycle time approach for all products,

allowed non-zero set up times for normal production and

rework process for each product. Then Sarkar et al. (2014)

developed an economic production quantity model for

defective products with backorders and rework process in a

single stage production system.

In the highly competitive marketing environment, the

managers of business organizations have a lot of pressure

to sell products to downstream channel members. In gen-

eral, vendors influence their customers with sales teams’

initiatives or promotional policies, i.e., free gifts, discounts,

delay in payments, packaging, special services and adver-

tising, among others (Crdenas-Barrn et al. 2014). Nair and

Tarasewich (2003) have obtained the optimal design of

promotional efforts such as free gifts, discounts and special

services. Krishnan et al. (2004) have shown that pricing,

displays, free goods and advertising are necessary actions

to accomplish maximum revenues. Szmerekovsky and

Zhang (2009) have addressed the pricing options and two-

tier advertising actions between one manufacturer and one

retailer when customers’ demand is dependent on the retail

price and advertising by both players. Ramanathan and

Muyldermans (2010) have studied the effect of promo-

tional efforts on the sales of soft drinks. Sana (2010) has

presented a multi-item EOQ model for perishable and

ameliorating products when the time-varying demand is

dependent on the enterprise’s initiatives such as advertising

and salesmen’s initiatives. Sana (2011) has also developed

EOQ model for similar products when the demand of the

end customers depends on the stock level, selling price and

sales teams’ initiatives.

The classical EMQ model assumes a continuous issuing

policy for satisfying product demand. However, in real life

vendor–buyer integrated supply chain environment, a

multiple deliveries policy is commonly used in dealing

with customer’s demands. Goyal (1977) introduced the

concept and developed a framework for integrated sup-

plier–customer inventory model. He proposed a method

that is typically applicable to those inventory problems

where a product is procured by a single customer from a

single supplier. Some researchers (see Aderohunmu et al.

1995; Chiu et al. 2011, 2012; Cardenas-Barron et al. 2013;

Taleizadeh et al. 2014, 2015a, b) addressed various coor-

dination supply chain optimization issues extending the

idea of Goyal (1977). Aderohunmu et al. (1995) achieved

cost savings of both the vendor and buyer when they fol-

lowed a cooperative batching policy and shared cost

information along with other information in time. Chiu

et al. (2011) developed an inventory model based on EMQ

considering rework and multiple shipments. They optimize

the replenishment lot-size using differential calculus tech-

nique. Then Chiu et al. (2012) determined the replenish-

ment policy for the EMQ model with rework and multiple

shipments through mathematical modeling approach. Car-

denas-Barron et al. (2013) determined jointly both the

optimal replenishment lot size and the optimal number of

shipments for an EMQ model with rework and multiple

shipments. Taleizadeh et al. (2015a) recently determined

the optimal price, replenishment lot size and number of

shipment in an EPQ model with rework and multiple

shipments.

Setup cost is usually treated as a constant in the afore-

mentioned inventory models. However, in some practical

situations, setup cost can be controlled and reduced through

various efforts such as worker training, procedural changes

and specialized equipment acquisition. For instance, faster

changeovers have been associated with lower inventory,

faster throughput, shorter lead time, improved quality and

lower unit cost. Quick setups are also considered an

important element for successfully implementing just-in-

time (JIT) production or time-based competition. There-

fore, for achieving production system efficiency, reduced

lot sizes alone are not sufficient, unless accompanied by

corresponding setup cost reduction. Thus considerable

attention has been paid to the optimal lot sizing and

investments in setup cost reduction (see Hong et al. 1995;

Porteus 1985; Affisco et al. 2002; Lin and Hou 2005; Hou

2007; Annadurai and Uthayakumar 2010; Priyan et al.

2015; Hall 1983). Porteus (1985) first introduced the con-

cept and developed a framework for investing in reducing

EOQ model setup cost. Affisco et al. (2002) investigated

the investments in setup cost reduction and quality

improvement for a joint supplier-customer system with

defects produced at a known constant rate. Lin and Hou

(2005) considered an inventory system with random yield

in which both the setup cost and yield variability can be

reduced through capital investment. Hou (2007) derived a

mathematical model to investigate the effects of an

imperfect production process involving capital investment

on the optimal solution.

Review of literature reveals that none of the authors

developed an EMQ inventory model for defective products

involving imperfect production processes and rework with

setup cost reduction and multiple shipments under sales

teams’ initiatives-dependent demand. Therefore, this paper

intends to fill this remarkable gap in the literature. A

comparison of our paper with the literature is provided in

Table 1.
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In steel industries, iron ores are divergently transformed

into several hundreds of finished goods through steel

making processes in accordance with the stipulations made

by customers. Similar patterns of production can also be

observed in many petrochemical industries where items are

produced through refining processes of crude oil. The costs

of these industries would be dependent on the manufac-

turing lot-size of finished goods. It is common to all and

above industries that a certain percent of produced/ordered

products are of imperfect quality. Today, all the above

industries are rework those imperfect products into perfect

ones due to limited availability of natural resources.

However, all industries have a lot of pressure to sell those

reworked products to downstream channel members due to

the lack of proper knowledge about inventory system.

Therefore, this paper investigates the issue of an EMQ

inventory system for defective products with the consid-

eration of imperfect production processes, rework, variable

setup cost and sales team’s initiatives-dependent demand in

a multiple shipments policy. The main contribution of this

paper is to develop a mathematical model and design an

iterative solution procedure to effectively increase invest-

ment and to reduce the expected total cost for EMQ

inventory system involving defective products with rework

and sales team’s initiative-dependent demand in a multiple

shipments policy. The objective of this paper was to

achieve optimal replenishment lot-size, setup cost and the

initiatives of sales team so that the total cost of system is

minimized. The numerical results of this paper also indi-

cate that it can share substantial cost savings from the setup

cost reduction investment. The proposed model can be used

in industries like aircraft, healthcare, automobiles, com-

puters, textiles, footwear, printers, refrigerators, mobile

phones, televisions, air conditioners, washing machines,

tyres and bulk products such as printed circuit boards., etc.

The paper is designed as follows: introduction is given

in Sect. 1. In Sect. 2, notation and assumptions are given.

The mathematical formulation of the problem is discussed

in Sect. 3. The solution procedure is given Sect. 4.

Numerical and sensitivity analysis are given in Sect. 5.

Finally, the conclusion of the study is summarized in

Sect. 6.

Table 1 Comparison with the literature

References Model Demand type Rework Capital investment Multiple shipments

Dutta et al. (2007) EOQ Fuzzy

Taleizadeh et al. (2010a) EPQ Constant

Taleizadeh et al. (2010b) EPQ Constant

Crdenas-Barrn et al. (2012) EPQ Constant U

Taleizadeh et al. (2013a) EOQ Constant

Taleizadeh et al. (2013b) EPQ Constant U

Sarkar et al. (2014a) EMQ Price and timea

Shekarian et al. (2014) EPQ Fuzzy U

Taleizadeh et al. (2010c) EPQ Constant U

Taleizadeh et al. (2011) EPQ Constant U

Pal et al. (2013) EPQ Stochastic

Taleizadeh et al. (2013c) EPQ Constant U

Sarkar et al. (2014b) EPQ Constant U

Sana (2010) EOQ Sales team’s initiativesa

Sana (2011) EOQ Salesmen’s initiatives, stock and pricea

Goyal (1977) Two-echelon Constant U

Aderohunmu et al. (1995)] Two-echelon Constant U

Chiu et al. (2011) EMQ Constant U U

Taleizadeh et al. (2014) EPQ Constant U

Taleizadeh et al. (2015a) EPQ Constant U U

Porteus (1985) EOQ Constant U

Affisco et al. (2002) EPQ Constant U U

Hou (2007) EPQ Constant U

Priyan et al. (2015) IPP Constant U

This paper EMQ Sales team’s initiativesa
U U U

a Dependent
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Notations and assumptions

We adopt the following notations and assumptions to

develop the mathematical model of the proposed problem.

Additional notations and assumptions will be given out

when required.

Notations

Q Manufacturing batch size, to be determined for

each cycle, a decision variable

S Setup cost per cycle ($/cycle), a decision variable

q Initiatives of the sales teams (measured by point

scale such as 1-point, 2-points, etc.), a decision

variable

DðqÞ Demand rate of the products (units/time unit)

D1 The first part of the demand rate which is

independent of the sales teams’initiatives ðqÞ
(units/time unit)

D2 A scale parameter of 2nd part of the demand which

varies with the sales teams’ initiatives ðqÞ
(units/time unit)

S0 Original setup cost (before any investment is made)

I(S) Capital investment required to achieve setup cost S

s Fractional opportunity cost of capital per unit time

(e.g., interest rate)

n Number of fixed quantity installments of the

finished batch to be delivered by request to

customers

Cv Production cost ($/unit)

Cr Rework cost ($/unit)

Cd Disposal cost per scrap product ($/unit)

v Delivery cost per product shipped to customers ($/

unit)

F Fixed delivery cost per shipment ($/shipment)

h Holding cost ($/unit/time unit)

hr Holding cost for each reworked product ($/

unit/time unit)

P Production rate (units/time unit)

Pr Reworking rate (units/time unit)

g Cost per unit effort of the sales teams’ initiatives

($/unit)

m An elasticity parameter

a Defective rate, a random variable

f ðaÞ The probability density function of a which follows

uniform distribution

h A proportion of scrap; it is assumed to be known

and constant

T Cycle length

Assumptions

1. All defective products produced are detected after the

production cycle is over, and rework cost for defective

products will be incurred.

2. The rate of demand is an increasing function of sales

teams’ initiatives and the sales teams’ initiatives is a

discrete decision variable.

3. The relationship between setup cost reduction and

capital investment can be described by the logarithmic

investment cost function. That is,

IðSÞ ¼ Mln
S0

S

� �
for 0 \ S� S0

where M ¼ 1=d, and d is the percentage decrease in

S per dollar increase in I(S). This function is consistent

with the Japanese experience as reported in Hall (1983)

and has been utilized in many researches (e.g. Porteus

1985 and others).

4. Fixed quantity multiple installments of the finished

batch are delivered to customers at a fixed interval of

time and there is no shortage in the system.

Mathematical model formulation

In the EMQ inventory system, the rate of demand for the

final customers is given by the following expres-

sion:DðqÞ ¼ D1 þ D2 1 � 1
ð1þqÞ

� �
which is similar to

Crdenas-Barrn et al. (2014). The first part of the demand

ðD1Þ is independent of the sales teams’ initiatives. On the

other hand, the second part of the demand is a bounded

increasing function of q; unlike the unbounded function of

q: Here, D ! ðD1 þ D2Þ when q ! 1; and D ! D1 when

q ! 0: It is important to remark that the term D1 tends to

zero when new products are launched into the market. In

this case, the demand of the product is zero when q ! 0;

i.e., the quality and prices are not familiar to the customers;

whereas the demand of the familiar products is already

increased by promotional efforts such as free gifts, better

services, discounts, delay in payments, etc. The units of q
is measured by the volume of the efforts made by the sales

teams like the number of efficient salesmen and the above

promotional efforts. It does not have any traditional units

but it is measured by point scale such as 1-point, 2-point, 3-

point, etc. In practice, larger point scale includes more

promotional effort that results in higher cost (Crdenas-

Barrn et al. 2014). Then the cost of sales teams’ initiatives
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ðqÞ is given by gqm, where g ([0) is a scale parameter and

m ([0) is the elasticity parameter.

Consider a manufactured product has an annual demand

rate DðqÞ and this product can be produced at a finite

production rate P. The process may randomly generate a

portion a of defective products at a production rate d. All

produced products are screened 100 % and inspection cost

is included in the unit production cost Cv. All produced

defective products are reworked immediately at a finite rate

Pr after the regular process ends. A portion h (where

0\h\1) of reworked items fails and becomes scrap. To

prevent a shortage from occurring, the production rate P is

assumed to be larger than the sum of demand rate D and

production rate of defective products d. That is: ðP� d �
DÞ[ 0 or ð1 � a� D=PÞ[ 0; where d can be expressed as

d ¼ Pa. Let d1 denote the production rate of scrap items

during the rework process, then d1 can be expressed as:

d1 ¼ Prh. It is further assumed that a multiple shipment

policy is employed and the finished items can only be

delivered to customers if the whole lot is quality assured at

the end of rework. Fixed quantity n installments of a fin-

ished batch are delivered to customers at a fixed interval of

time during production downtime t3. The on-hand inven-

tory level of perfect quality products during t3 is depicted

in Fig. 1.

In Fig. 1, H1 = the maximum level of on-hand inventory

in units when regular production process ends, H = the

maximum level of on-hand inventory in units when the

rework process finishes, t1 = the production uptime for the

proposed EMQ model, t2 = time required for reworking of

defective products, t3 = time required for delivering all

quality assured finished products and tn = a fixed interval of

time between each installment of finished products deliv-

ered during production downtime t3.

The production cycle length T ¼ t1 þ t2 þ t3 and the

following equations can be obtained directly from Fig. 1

(for more see Hayek and Salameh 2001; Chiu et al. 2011):

H1 ¼ ðP� dÞt1 ¼ ðP� dÞ Q
P
¼ ð1 � aÞQ

H ¼ H1 þ ðPr � d1Þt2 ¼ Qð1 � haÞ
t1 ¼ Q

P
¼ H1

P�d

t2 ¼ aQ
Pr

t3 ¼ ntn ¼ T � ðt1 þ t2Þ ¼ Q
ð1�haÞ

D
� 1

P
� a

Pr

� �
The on-hand inventory of defective products during

production uptime t1 and rework time t2 is depicted in

Fig. 2. One notes that maximum level of on-hand defective

products is dt1, and a portion h of reworked products fails

during the reworking and becomes scrap. Therefore, total

number of scrap products are hdt1, where

dt1 ¼ Pat1 ¼ aQ

hdt1 ¼ hPat1 ¼ haQ

Hence, based on the above description, the long-run

average total cost denoted by P which is sum of production

costs, cost of sales teams’ initiatives, fixed setup cost,

rework costs, disposal costs, delivery costs, holding cost

for items reworked, holding cost during uptime t1 and

reworking time t2, and holding cost for finished goods

during the delivery time t3 can be obtained as Chiu et al.

(2011) is

P¼ ðSþ gqmþ nFÞD
Qð1� hE½a�Þ þD Cv þCrE½a� þCdE½a�hð Þ

ð1� hE½a�Þ

þ hQD

2Prð1� hE½a�Þf2E½a� � ðE½a�Þ2 � hðE½a�Þ2g

þ hQD

2Pð1� hE½a�Þþ vDþ hr E½a�ð Þ2
QD

2Prð1� hE½a�Þ

þ n� 1

n

� �
hQð1� hE½a�Þ

2
� hQD

2P
� hQE½a�D

2Pr

� �
ð1Þ

Fig. 1 On-hand inventory of perfect quality products in the proposed

EMQ model

Fig. 2 On-hand inventory of defective products in the proposed EMQ

model
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Now we consider the defective rate a follows uniform distri-

bution with mean EðaÞ ¼ aþb
2

where a[ 0; b[ 0 and a\b.

Using EðaÞ ¼ aþb
2

, Eq. (2) can be re-written as

P ¼ 2ðSþ gqm þ nFÞD
Q 2 � hðaþ bÞf g þ 2D

2 � hðaþ bÞf g

Cv þ Cr

aþ b

2

� �
þ Cd

aþ b

2

� �
h

� 	

þ hQD

Pr 2 � hðaþ bÞf g ðaþ bÞ � aþ b

2

� �2

ð1 þ hÞ
" #

þ hQD

P 2 � hðaþ bÞf g þ vD

þ hrðaþ bÞ2
QD

4Pr 2 � hðaþ bÞf g þ
hQD

2

n� 1

n

� �

2 � hðaþ bÞf g
2D

� 1

P
� ðaþ bÞ

2Pr

� �
ð2Þ

In order to accommodate a more realistic inventory situation,

we seek to add the effects of investment cost function for

setup cost reduction. That is, we assume that the capital

investment I(S) in reducing setup cost is a logarithmic

function of the setup cost S. The investment required to

reduce the setup cost from original level S0 to a target level S,

where I(S) is a convex and strictly decreasing function. Here,

investment I(S) is the one-time investment cost whose ben-

efits will extend indefinitely into the future. Thus the annual

cost of such an investment is sIðSÞ; where s is the annual

fractional cost of capital investment (e.g., interest rate).

Hence, our objective is to minimize the new long-run

average total cost per unit time denoted by P̂, namely the

sum of the capital investment cost for reducing S and the

inventory relevant cost as expressed in (2), by optimizing

over Q, S and q constrained on 0 \S � S0. Then the long-

run average total cost per unit time for the system becomes

P̂¼ sIðSÞ þP

¼ sMln
S0

S

� �
þ 2ðSþ gqm þ nFÞD

Q 2� hðaþ bÞf g

þ 2D

2� hðaþ bÞf g Cv þCr

aþ b

2

� �
þCd

aþ b

2

� �
h

� 	

þ hQD

Pr 2� hðaþ bÞf g ðaþ bÞ � aþ b

2

� �2

ð1þ hÞ
" #

þ hQD

P 2� hðaþ bÞf gþ vD

þ hrðaþ bÞ2
QD

4Pr 2� hðaþ bÞf gþ
hQD

2

n� 1

n

� �

2� hðaþ bÞf g
2D

� 1

P
� ðaþ bÞ

2Pr

� �
ð3Þ

constrained on 0 \S � S0.

Now, if the rework process is assumed to be perfect, i.e.

h ¼ 0. In other words, all reworked products are repaired,

then it may be noted that during the rework time t2 the

slope is Pr instead of ðPr � d1Þ. Hence, the long-run

average total cost per unit time given in Eq. (3) reduces to

P̂ ¼ sMln
S0

S

� �
þ ðSþ gqm þ nFÞD

Q

þ D Cv þ Cr

aþ b

2

� �
þ v

� 	
þ hQD

2P

þ hQD

2Pr

ðaþ bÞ � aþ b

2

� �2
" #

þ hrðaþ bÞ2
QD

8Pr

þ hQD

2

n� 1

n

� �
1

D
� 1

P
� ðaþ bÞ

2Pr

� �

constrained on 0 \S � S0.

On the other hand, the problem of EMQ inventory

system for defective products with rework and variable

setup cost under sales teams’ initiatives-dependent demand

can be mathematically formulated by

Min P̂ ¼ sMln
S0

S

� �
þ 2ðSþ gqm þ nFÞD

Q 2 � hðaþ bÞf g

þ 2D

2 � hðaþ bÞf g Cv þ Cr

aþ b

2

� ��

þCd

aþ b

2

� �
h

	
þ hQD

Pr 2 � hðaþ bÞf g

ðaþ bÞ � aþ b

2

� �2

ð1 þ hÞ
" #

þ hQD

P 2 � hðaþ bÞf g

þ vDþ hrðaþ bÞ2
QD

4Pr 2 � hðaþ bÞf g

þ hQD

2

n� 1

n

� �

2 � hðaþ bÞf g
2D

� 1

P
� ðaþ bÞ

2Pr

� �

Subject to 0 \S � S0:

ð4Þ

Solution procedure

In order to find the minimum cost for this non-linear pro-

gramming problem, ignore the constraint 0 \S � S0 for

the moment and minimize the total relevant cost function

over Q, S and q with classical differential calculus opti-

mization techniques.

Proposition 1 For fixed Q and S, P̂ is convex in q.

Proof Taking the first and second partial derivatives of P̂
with respect to q, we have

522 J Ind Eng Int (2015) 11:517–529
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oP̂
oq

¼ mqm�1

and

o2P̂
oq2

¼ mðm� 1Þqm�2 [ 0:

Therefore, for fixed Q and S, P̂ is convex in q This com-

pletes the proof of Proposition 1. h

Now for fixed q, taking the first partial derivatives of P̂
with respect to Q and S, respectively, we obtain

oP̂
oQ

¼�2ðSþ gqm þ nFÞD
Q2 2� hðaþ bÞf g þ hD

Pr 2� hðaþ bÞf g

� ðaþ bÞ � aþ b

2

� �2

ð1þ hÞ
( )

þ hD

P 2� hðaþ bÞf gþ
hrðaþ bÞ2

D

4Pr 2� hðaþ bÞf gþ
GhD

2
ð5Þ

and

oP̂
oS

¼ � sM
S

þ 2D

Qð2 � hðaþ bÞÞ
ð6Þ

To simplify notation, we define G ¼ n�1
n


 � 2�hðaþbÞf g
2D

�
h

1
P
� ðaþbÞ

2Pr
�:

Then, by examining the second-order sufficient condi-

tions (SOSC), it can be verified that P̂ is a convex function

of Q and S for fixed q.

On the other hand, for a given value of q, by setting

Eqs. (5) and (6) equal to zero, we obtain

and

S ¼ QsMð2 � hðaþ bÞÞ
2D

ð8Þ

respectively.

Theoretically, for fixed q, by solving Eqs. (7) and (8),

we can obtain the values of Q and S (denote these values by

Q� and S�, respectively). The following proposition asserts

that, for fixed q, when the constraint 0 \S � S0 is

ignored, the point (Q�, S�) is the optimal solution such that

the expected total cost P̂ has minimum value.

Proposition 2 For fixed q, the Hessian matrix for P̂ is

positive definite at point ðQ�, S�Þ.

Proof See Appendix.

Now we consider the constraint 0 \S � S0. From

Eq. (8), we note that S is positive, as the parameters

s; M; Q; D are positive and 0 \h\1; 0 \a \1 and

0 \b \1 . Also, if S� \ S0, then (Q�, S�) is an interior

optimal solution. On the other hand, if S� � S0, then it is

unrealistic to invest in reducing setup cost; in this situation,

the optimal S� ¼ S0.

Based on the convexity behavior of objective function

with respect to the decision variables, the following algo-

rithm is designed to find the optimal values for the Q, S and

q; the flowchart of the algorithm is also illustrated in Fig. 3.

Algorithm 1

Step 1. Set the initiatives of the sales teams q ¼ 0.

Step 2. Repeat step (1.1)–(1.3) until no change occurs in

the values of Q and S. Denote the solution by

ð _Q; _SÞ.

Step 2:1. Start with S1 ¼ S0.

Step 2:2. Substituting S1 into Eq. (7) evalu-

ates Q1.

Step 2:3. Utilizing Q1 determines S2 from

Eq. (8).

Step 3. Compare _S with S0

(i) If _S\S0, go to step (3).

(ii) If _S[ S0, then set _S ¼ S0 and utilize

Eq. (7) (replace S by S0) to determine the

new _Q, then go to step (4).

Step 4. Compute the corresponding P̂ðqÞ using Eq. (4).

Step 5. Set q ¼ qþ 1, repeat Step 2–4 to get P̂ðqÞ.

Step 6. If P̂ðqÞ � P̂ðq�1Þ, then go to Step 5; otherwise

goto Step 7.

Step 7. Set ðQ�; S�; q�Þ ¼ ð _Q; _S; q� 1Þ, then P̂ðQ�;S�;q�Þ is

the minimum long-run average total cost, and

ðQ�; S�; q�Þ is the optimal solution for the

proposed EMQ inventory problem.

Q ¼ 4ðSþ gqm þ nFÞ
h 2

P
þ ðaþbÞ2

hr

2hPr
þ 2

Pr
ðaþ bÞ � aþb

2


 �2ð1 þ hÞ
n o

þ Gð2 � hðaþ bÞÞ
h i

8<
:

9=
;

1=2

ð7Þ
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Numerical analysis

In this section, a numerical example is given to illustrate

the above solution procedure. The solutions to this example

is obtained using the computer MatLab software.

The values of the following parameters are almost

similar to those used in Chiu et al. (2011): P ¼ 60;000

units/year, D1 ¼ 3400 units/year, D2 ¼ 5 units/year, Pr ¼
2200 units/year, h ¼ 0:1, Cv ¼ $100/unit,

F ¼ $4350/shipment, v ¼ 0:1/unit, Cr ¼ $60/unit,

Cd ¼ $20/unit, h ¼ $20/unit/year, hr ¼ $40/unit/year,

g ¼ $50/unit m ¼ 1, a = 0.15, b = 0.25 and n ¼ 4 install-

ments of the finished batch are delivered per cycle. In

addition, for setup cost reduction EMQ inventory system,

we take and s = 0.1 per dollar per year. In Chiu et al.

(2011) model, they considered the setup cost S ¼ $20;000

per production run. Therefore, we solve the Logarithmic

investment case for which the initial setup cost

S0 ¼ 20;000.

Now, applying the proposed algorithm for different

parameter of investment function M ¼ 7250; 5800 and

4350, the results of the solution procedure are summarized

in Table 2. Here also, the results of the no-investment

policy in the same table are listed to illustrate the effects of

setup cost reduction.

Sensitivity analysis

To further illustrate the model and algorithm, we now

study the effects of parameters D1;P and Pr on the optimal

replenishment lot-size Q�, setup cost S�, the initiatives of

sales teams q� and the minimum long-run average total

cost P̂. The sensitivity analysis is performed by changing

the parameters of D1;P and Pr by ?50, ?25,�25 and

�50 %. The results are presented in Tables 2, 3 and 4 and

the corresponding curves of the average total cost are

plotted in Fig. 4. In addition, the sensitivity analysis of h is

shown in Table 5 and the graphic of the average total cost

P̂ for distinct value of h is depicted also in Fig. 4.

Managerial implications

There are some interesting managerial implications in the

above analyses. We make the following observations:

1. From Table 2, we can recognize that a decrease in the

first part of demand rate D1 tends to reduce the optimal

replenishment lot-size Q and long-run average total

cost P̂, but it is interesting to note that the optimal

setup cost S increases.
Fig. 3 Computer flowchart of algorithm

Table 2 Summary of optimal

solution
Parameter of investment cost function M ðQ�; S�; q�Þ P̂ ($) Savings (%)

7250 (2271, 474, 1) 448,100 4.6

5800 (2265, 378, 1) 447,720 4.7

4350 (2259, 283, 1) 446,950 4.8

No investment ðQ�;q�Þ = (3283,1) 469,800 –
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2. Table 3 shows that when the production rate P

decreases, the optimal replenishment lot-size Q and

setup cost S also decrease but the long-run average

total cost P̂ increases without affecting the initiatives

of sales teams q.

3. Generally, we spend large amount of money to setup if

we rework the large amount of quantity. Similarly, we

spend small amount of money to setup if we rework

the small amount of quantity. In view of this the setup

time or cost may be depend on rework rate. The

present analyses proved this general fact. That is,

Table 4 shows that when rework production rate Pr

decreases, the setup cost S and replenishment lot-size

Q decrease, but the long-run average total cost P̂
increases.

4. We can observe that if the proportion of scrap rate h

increases, then the long-run average total cost P̂
increases (see Tables 5, 6). This fact is

expected, because, in practice, if the manufacturing

company’s scrap rate is large, then the company may

Table 3 Effects of demand on

optimal solution
Parameter % of change Parameter of investment

cost function M

ðQ�; S�; q�Þ P̂ ($) Savings (%)

D1 ?50 7250 (2535, 353, 1) 661,780 4.3

5800 (2534, 282, 1) 661,180 4.4

4350 (2525, 211, 1) 660,540 4.5

No investment ðQ�;q�Þ ¼ ð3677; 1Þ 691,790 –

?25 7250 (2419, 404, 1) 555,050 4.5

5800 (2413, 322, 1) 554,470 4.6

4350 (2408, 241, 1) 553,850 4.7

No investment ðQ�;q�Þ ¼ ð3503; 1Þ 580,940 –

�25 7250 (2077, 578, 1) 340,800 4.9

5800 (2070, 461, 1) 340,270 5.0

4350 (2063, 344, 1) 339,700 5.2

No investment (Q�;q�Þ = (2993, 1) 358,180 –

�50 7250 (1805, 753, 1) 232,860 5.2

5800 (1797, 600, 1) 232,370 5.7

4350 (1790, 448, 1) 231,840 6.0

No investment ðQ�;q�Þ ¼ ð2589; 1Þ 245,700 –

Table 4 Effects of production

rate on optimal solution
Parameter % of change Parameter of investment

cost function M

ðQ�; S�; q�Þ P̂ ($) Savings (%)

P ?50 7250 (2276, 475, 1) 447,980 4.6

5800 (2270, 379, 1) 447,430 4.7

4350 (2264, 283, 1) 446,830 4.9

No investment ðQ�; q�Þ ¼ ð3290; 1Þ 469,630 –

?25 7250 (2274, 475, 1) 448,030 4.6

5800 (2268, 378, 1) 447,470 5.0

4350 (2262, 283, 1) 446,880 4.9

No investment ðQ�; q�Þ ¼ ð3287; 1Þ 469,700 –

�25 7250 (2266, 473, 1) 448,220 4.6

5800 (2260, 377, 1) 447,660 4.9

4350 (2254, 282, 1) 447,060 4.9

No investment ðQ�; q�Þ ¼ ð3276; 1Þ 469,970 –

�50 7250 (2257, 471, 1) 448,450 4.6

5800 (2251, 376, 1) 447,890 4.8

4350 (2244, 281, 1) 447,290 5.1

No investment ðQ�; q�Þ ¼ ð3262; 1Þ 470,300 –
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lose large amounts of money. Therefore, we can say

that the proposed mathematical modeling and com-

putational algorithm may applicable for real life

marketing.

5. The analyses show that if we add the mathematical

investment function IðSÞ ¼ Mln S0

S


 �
in objective func-

tion, then the significant savings can be easily

achieved.

Fig. 4 Graphic of average total cost for distinct D1;P;Pr and h

Table 5 Effects of reworking

rate on optimal solution
Parameter % of change Parameter of investment

cost function M

ðQ�; S�; q�Þ P̂ ($) Savings (%)

Pr ?50 7250 (2432, 507, 1) 444,530 4.3

5800 (2425, 405, 1) 443,980 4.4

4350 (2418, 303, 1) 443390 4.6

No investment ðQ�; q�Þ ¼ ð3512; 1Þ 464,640 –

?25 7250 (2364, 493, 1) 445,990 4.4

5800 (2357, 393, 1) 445,430 4.8

4350 (2350, 294, 1) 444,840 4.7

No investment ðQ�; q�Þ ¼ ð3415; 1Þ 466,740 –

�25 7250 (2139, 446, 1) 451,450 4.9

5800 (2133, 356, 1) 450,880 5.3

4350 (2128, 266, 1) 450,280 5.1

No investment ðQ�; q�Þ ¼ ð3094; 1Þ 474,640 –

�50 7250 (1928, 403, 1) 457,210 5.5

5800 (1927, 322, 1) 457,040 5.5

4350 (1922, 241, 1) 456,420 5.6

No investment ðQ�; q�Þ ¼ ð2797; 1Þ 483,570 –
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Conclusion

Industrial engineering is a branch of engineering which deals

with the optimization of complex processes or systems. It is

concerned with the development, improvement, implemen-

tation and evaluation of integrated systems of people,

accounting, inventory management, marketing, financial

analysis, information, decision making, customer services,

operations, financial management and marketing strategies,

as well as the mathematical and physical together with the

principles and methods of engineering design to specify,

predict and evaluate the results to be obtained from such

systems or processes. This study developed a mathematical

model for a defective product involving imperfect produc-

tion processes and rework with variable setup cost in a

multiple shipments inventory system. Here we assumed that

the demand is dependent on sales team’s initiatives. Mathe-

matical modeling is employed here, and the long-run average

function is derived and proved to be convex. We offered

strategic decision-making to achieve optimal replenishment

lot-size, setup cost and the initiatives of sales teams so that

the total cost of system is minimized. Numerical example and

sensitivity analyses are given to demonstrate the application

and the performance of the proposed methodology.

Table 6 Effects of h on optimal

solution
Parameter h Parameter of investment

cost function M

ðQ�; S�; q�Þ P̂ ($) Savings (%)

0.1 7250 (2271, 474) 448,100 4.6

5800 (2265, 378) 447,720 4.7

4350 (2259, 283) 446,950 4.8

No investment ðQ�; q�Þ ¼ ð3283; 1Þ 469,800 –

0.2 7250 (2300, 470) 458,080 4.6

5800 (2294, 375) 457,520 4.7

4350 (2288, 281) 456,920 4.8

No investment ðQ�; q�Þ ¼ ð3325; 1Þ 479,970 –

0.3 7250 (2330, 466) 468,490 4.5

5800 (2323, 372) 467,930 4.6

4350 (2317, 278) 467,330 4.7

No investment ðQ�; q�Þ ¼ ð3368; 1Þ 490,580 –

0.4 7250 (2360, 462) 479,360 4.4

5800 (2353, 369) 478,800 4.6

4350 (2347, 276) 478,200 4.7

No investment ðQ�; q�Þ ¼ ð3412; 1Þ 501,670 –

0.5 7250 (2390, 458) 490,720 4.4

5800 (2384, 365) 490,150 4.5

4350 (2378, 273) 489,550 4.6

No investment ðQ�; q�Þ ¼ ð3456; 1Þ 513,250 –

0.6 7250 (2421, 454) 502,600 4.3

5800 (2415, 362) 502,030 4.4

4350 (2409, 271) 501,430 4.6

No investment ðQ�; q�Þ ¼ ð3502; 1Þ 525,370 –

0.7 7250 (2453, 449) 515,040 4.2

5800 (2446, 358) 514,470 4.4

4350 (2440, 268) 513,870 4.5

No investment ðQ�; q�Þ ¼ ð3548; 1Þ 538,070 –

0.8 7250 (2485, 444) 528,080 4.2

5800 (2478, 355) 527,510 4.5

4350 (2472, 265) 526,900 4.4

No investment ðQ�; q�Þ ¼ ð3594; 1Þ 551,380 –

0.9 7250 (2517, 439) 541,760 4.2

5800 (2512, 351) 541,190 4.3

4350 (2505, 262) 540,580 4.4

No investment ðQ�; q�Þ ¼ ð3642; 1Þ 565,350 –
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There are several extension of this work that could

constitute future research related to this field. One imme-

diate probable extension could be to discuss the effect of

shortage. Also, we can consider multi-echelon supply

chains such as single buyer multiple-vendor, multiple-

buyer single-vendor and multiple-buyer multiple-vendor

systems. Furthermore, some of parameter of the model may

be either fuzzy or random variable. In this case, the model

has either fuzzy or stochastic nature.
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Appendix

We want to prove the Hessian Matrix of P̂ at point ðQ�; S�Þ
for fixed q is positive definite. We first obtain the Hessian

matrix H as follows:

H ¼

o2P̂
oQ2

o2P̂
oQoS

o2P̂
oSoQ

o2P̂
oS2

2
6664

3
7775

where

o2P̂
oQ2

¼ 4ðSþ gqm þ nFÞD
Q3 2 � hðaþ bÞf g ;

o2P̂
oQoS

¼ o2P̂
oSoQ

¼ � 2D

Q2ð2 � hðaþ bÞÞ ;

o2P̂
oS2

¼ 2sM
S2

:

Then we proceed by evaluating the principal minor deter-

minants of H at point ðQ�; S�Þ. The first principal minor

determinant of H is

jH11j ¼
4D

Q�3

ðSþ gqm þ nFÞ
2 � hðaþ bÞf g

� �
ðA1Þ

The second principal minor of H is

jH22j ¼
4D

Q�3

ðSþ gqm þ nFÞ
2 � hðaþ bÞf g

� �
2sM
S2

þ 2D

Q�2ð2 � hðaþ bÞÞ
[ 0: ðA2Þ

Therefore, from (A1)-(A2), it is clearly seen that the

Hessian matrix H is positive definite at point ðQ�; S�Þ.
The proof is completed. h
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